首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We introduced a novel method to clone random DNA fragments independent of ligation reaction. The method involves the generation of long protruding ends on PCR amplification DNA. Both oligonucleotides used for the amplification of the vector DNA carried one uracil residue at the tenth position from the 5′ end and this made the creation of the 3′ protruding ends of linearized vector possible by uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV). 76 groups of annealed oligonucleotides that had ten-nucleotides protruding at 3′-end, which were complementary to those at 3′-end of the linearized vector, were designed. The linearized vector and the annealed oligonucleotide were mixed together to transform E.coli directly without ligation reaction. The number of the clone that grew on the plates had been demonstrated to reach 1 × 105 transformants/μg and 96.1% of transformants harbored the cloned fragments. From the results of transformation, we can confirm that the efficiency of the creation of 3′ protruding ends in our method is high and our cloning method is benefit to produce recombinants easily and efficiently.  相似文献   

2.
The gene encoding a heat-labile uracil-DNA glycosylase (UDG) from a psychrophilic, gram-positive marine strain (BMTU3346) has been cloned, sequenced, and expressed in Escherichia coli. The UDG is a cold-active enzyme with an apparent temperature optimum of 35°C and a half-life of 2 min at 40°C. The amino acid sequence shows an identity of 39.1%–46.2% to UDGs from mesophilic bacteria. The primary structure was examined for features that could be related to the thermolability of the enzyme. The amino acid sequence of the heat-labile UDG shows 22 differences with respect to the consensus sequence derived from bacterial UDGs. Features previously recognized in cold-active enzymes such as extended surface loops or a decrease in the number of arginine residues or proline residues in loops were not observed. Because dominant features that could be related to the thermolability of the UDG from BMTU3346 cannot be identified, more subtle modifications of the conformation seem to be responsible for its thermolability. Received: June 30, 1999 / Accepted: November 12, 1999  相似文献   

3.
Enzymes involved in genomic maintenance of human parasites are attractive targets for parasite-specific drugs. The parasitic protozoan Trypanosoma cruzi contains at least two enzymes involved in the protection against potentially mutagenic uracil, a deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and a uracil-DNA glycosylase belonging to the highly conserved UNG-family. Uracil-DNA glycosylase activities excise uracil from DNA and initiate a multistep base-excision repair (BER) pathway to restore the correct nucleotide sequence. Here we report the biochemical characterisation of T.cruzi UNG (TcUNG) and its contribution to the total uracil repair activity in T.cruzi. TcUNG is shown to be the major uracil-DNA glycosylase in T.cruzi. The purified recombinant TcUNG exhibits substrate preference for removal of uracil in the order ssU>U:G>U:A, and has no associated thymine-DNA glycosylase activity. T.cruzi apparently repairs U:G DNA substrate exclusively via short-patch BER, but the DNA polymerase involved surprisingly displays a vertebrate POLdelta-like pattern of inhibition. Back-up UDG activities such as SMUG, TDG and MBD4 were not found, underlying the importance of the TcUNG enzyme in protection against uracil in DNA and as a potential target for drug therapy.  相似文献   

4.
The structure of native and modified uracil-DNA glycosylase from E. coli in solution was studied by synchrotron small-angle X-ray scattering. The modified enzyme (6His-uracil glycosylase) differs from the native one by the presence of an additional N-terminal 11-meric sequence of amino acid residues, including a block of six His residues. In contrast to minimal differences in the amino acid sequences and functional activity, conformations of native and 6His-uracil glycosylases in solution were found to differ substantially at moderate ionic strength (60 mM NaCl). The structure of uracil-DNA glycosylase in solution is close to that in crystal and shows a tendency toward association. The interaction of this enzyme with nonhydrolyzable analogues of DNA ligands causes partial dissociation of associates and compaction of protein structure. At the same time, 6His-uracil DNA glycosylase has a compact structure, intrinsically different from that in crystals. A decrease in the ionic strength of solution results in a partial destruction of the compact structure of the modified protein, keeping its functional activity unchanged.  相似文献   

5.
Uracil is present in small amounts in DNA due to spontaneous deamination of cytosine and incorporation of dUMP during replication. While deamination generates mutagenic U:G mismatches, incorporated dUMP results in U:A pairs that are not directly mutagenic, but may be cytotoxic. In most cells, mutations resulting from uracil in DNA are prevented by error-free base excision repair. However, in B-cells uracil in DNA is also a physiological intermediate in acquired immunity. Here, activation-induced cytosine deaminase (AID) introduces template uracils that give GC to AT transition mutations in the Ig locus after replication. When uracil-DNA glycosylase (UNG2) removes uracil, error-prone translesion synthesis over the abasic site causes other mutations in the Ig locus. Together, these processes are central to somatic hypermutation (SHM) that increases immunoglobulin diversity. AID and UNG2 are also essential for generation of strand breaks that initiate class switch recombination (CSR). Patients lacking UNG2 display a hyper-IgM syndrome with recurrent infections, increased IgM, strongly decreased IgG, IgA and IgE and skewed SHM. UNG2 is also involved in innate immune response against retroviral infections. Ung(-/-) mice have a similar phenotype and develop B-cell lymphomas late in life. However, there is no evidence indicating that UNG deficiency causes lymphomas in humans.  相似文献   

6.
Uracil in DNA may arise by cytosine deamination or thymine replacement and is removed during DNA repair. Fruitfly larvae lack two repair enzymes, the major uracil-DNA glycosylase and dUTPase, and may accumulate uracil-DNA. We asked if larval tissues contain proteins that specifically recognize uracil-DNA. We show that the best hit of pull-down on uracil-DNA is the protein product of the Drosophila melanogaster gene CG18410. This protein binds to both uracil-DNA and normal DNA but degrades only uracil-DNA; it is termed Uracil-DNA Degrading Factor (UDE). The protein has detectable homology only to a group of sequences present in genomes of pupating insects. It is under detection level in the embryo, most of the larval stages and in the imago, but is strongly upregulated right before pupation. In Schneider 2 cells, UDE mRNA is upregulated by ecdysone. UDE represents a new class of proteins that process uracil-DNA with potential involvement in metamorphosis.  相似文献   

7.
The extremely radiation resistant bacterium, Deinococcus radiodurans, contains a spectrum of genes that encode for multiple activities that repair DNA damage. We have cloned and expressed the product of three predicted uracil-DNA glycosylases to determine their biochemical function. DR0689 is a homologue of the Escherichia coli uracil-DNA glycosylase, the product of the ung gene; this activity is able to remove uracil from a U : G and U : A base pair in double-stranded DNA and uracil from single-stranded DNA and is inhibited by the Ugi peptide. DR1751 is a member of the class 4 family of uracil-DNA glycosylases such as those found in the thermophiles Thermotoga maritima and Archaeoglobus fulgidus. DR1751 is also able to remove uracil from a U : G and U : A base pair; however, it is considerably more active on single-stranded DNA. Unlike its thermophilic relatives, the enzyme is not heat stable. Another putative enzyme, DR0022, did not demonstrate any appreciable uracil-DNA glycosylase activity. DR0689 appears to be the major activity in the organism based on inhibition studies with D. radiodurans crude cell extracts utilizing the Ugi peptide. The implications for D. radiodurans having multiple uracil-DNA glycosylase activities and other possible roles for these enzymes are discussed.  相似文献   

8.
Uracil-DNA glycosylase activity in human blood cells   总被引:1,自引:0,他引:1  
  相似文献   

9.
Epstein-Barr virus (EBV) is a human gamma-herpesvirus. Within its 86 open reading frame containing genome, two enzymes avoiding uracil incorporation into DNA can be found: uracil triphosphate hydrolase and uracil-DNA glycosylase (UNG). The latter one excises uracil bases that are due to cytosine deamination or uracil misincorporation from double-stranded DNA substrates. The EBV enzyme belongs to family 1 UNGs. We solved the three-dimensional structure of EBV UNG in complex with the uracil-DNA glycosylase inhibitor protein (Ugi) from bacteriophage PBS-2 at a resolution of 2.3 A by X-ray crystallography. The structure of EBV UNG encoded by the BKRF3 reading frame shows the excellent global structural conservation within the solved examples of family 1 enzymes. Four out of the five catalytic motifs are completely conserved, whereas the fifth one, the leucine loop, carries a seven residue insertion. Despite this insertion, catalytic constants of EBV UNG are similar to those of other UNGs. Modelling of the EBV UNG-DNA complex shows that the longer leucine loop still contacts DNA and is likely to fulfil its role of DNA binding and deformation differently than the enzymes with previously solved structures. We could show that despite the evolutionary distance of EBV UNG from the natural host protein, bacteriophage Ugi binds with an inhibitory constant of 8 nM to UNG. This is due to an excellent specificity of Ugi for conserved elements of UNG, four of them corresponding to catalytic motifs and a fifth one corresponding to an important beta-turn structuring the catalytic site.  相似文献   

10.
Summary Ultraviolet light (UV) induced mutations in the glnU and glnV utRNA genes in Escherichia coli are thought to be targeted by UV photoproducts. In a previous study with a uracil-DNA glycosylase deficient strain, UV-induced glnU oand glnV otRNA suppressor mutations became resistant to photoreactivation (PR) following thermal treatment. It was proposed that deamination of cytosine in the cytosine-containing cyclobutyl dimers at the sites of these suppressor mutations produced uracil residues in sequence upon PR. In the absence of glycosylase, the C U conversion yielded the requisite G:C A:T transitions. In the present study, this thermal resistance of UV-mutagenesis to PR is characterized. It is dependent on the initial UV-fluence and temperature of holding but not on the UmuC+ gene product. The data obtained yield an estimate of an activation energy of 17±3 kcal/mol for the deamination of cytosines contained in dimers. This compares to 29 kcal/mol for unaffected cytosines in DNA. In addition, an estimate of the probability of cyclobutyl dimer formation at the target sites for glnU oand glnV osuppressor mutations indicate that these lesions can not entirely account for the mutation frequencies recovered in the absence of PR. This is interpreted as an indication that, in addition to thyminecytosine cyclobutyl dimers, other UV-induced lesions, possibly Thy(6-4)Cyt photoproducts, may also target glnU oand glnV osuppressor mutations.  相似文献   

11.
DNA glycosylases     
Summary Various DNA glycosylases exist, which initiate the first step in base-excision repair. A summary of the kinetic and physical characteristics of three classes of DNA glycosylase are presented here. The first class discussed, include glycosylases which recognize alkylated DNA. Various data from enzymes derived from both prokaryotic and eukaryatic sources is discussed. The second class deals with a glycosylase that recognizes and initiates the excision of pyrimidine dimers in DNA. To date, this enzyme has only been uncovered from two sources, Micrococcus luteus and the T4 bacteriophage of E. coli. The third class consists of the most studied of the glycosylases, the uracil-DNA glycosylase enzymes. Various characteristics are presented for the uracil-DNA glycosylases derived from various sources. Recent information from our laboratory is presented implicating that herpes simplex virus may mediate a uracil-DNA glycosylase activity in productively infected cells.  相似文献   

12.
A method for determination of a non-methylated deoxycytidine (dC) residue in the recognition site of 5-cytosine DNA-methyltransferases is suggested. The method is based on treatment of methylated DNA by sodium bisulfite and successive reaction of the thus modified DNA with a repair enzyme, uracil-DNA glycosylase. This method was successfully applied to identify NlaX methyltransferase specificity.  相似文献   

13.
Evidence is presented on two forms of uracil-DNA glycosylase (UDG1 and UDG2) that exist in human cells. We have developed an affinity technique to isolate uracil-DNA glycosylases from HeLa cells. This technique relies on the use of a uracil-DNA glycosylase inhibitor (Ugi) produced by theBacillus subtilisbacteriophage, PBS2. Affinity-purified preparations of uracil-DNA glycosylase, derived from total HeLa cell extracts, reveal a group of bands in the 36,000 molecular weight range and a single 30,000 molecular weight band when analyzed by SDS–PAGE and silver staining. In contrast, only the 30,000 molecular weight band is seen in HeLa mitochondrial preparations. Separation of HeLa cell nuclei from the postnuclear supernatant reveals that uracil-DNA glycosylase activity is evenly distributed between the nuclear compartment and the postnuclear components of the cell. Immunostaining of a nuclear extract with antisera to UDG1 indicates that the nuclear associated uracil-DNA glycosylase activity is not associated with the highly conserved uracil-DNA glycosylase, UDG1. With the use of Ugi-Sepharose affinity chromatography, we show that a second and distinct uracil-DNA glycosylase is associated with the nuclear compartment. Immunoblot analysis, utilizing antisera generated against UDG1, reveals that the 30,000 molecular weight protein and a protein in the 36,000 range share common epitopes. Cycloheximide treatment of HeLa cells indicates that upon inhibition of protein synthesis, the higher molecular weight species disappears and is apparently posttranslationally processed into a lower molecular weight form. This is substantiated by mitochondrial import studies which reveal thatin vitroexpressed UDG1 becomes resistant to trypsin treatment within 15 min of incubation with mitochondria. Within this time frame, a lower molecular weight form of uracil-DNA glycosylase appears and is associated with the mitochondria. Antibodies generated against peptides from specific regions of the cyclin-like uracil-DNA glycosylase (UDG2), demonstrate that this nuclear glycosylase is a phosphoprotein with a molecular weight in the range of 36,000. SDS–PAGE analysis of Ugi affinity-purified and immunoprecipitated UDG2 reveals two closely migrating phosphate-containing species, indicating that UDG2 either contains multiple phosphorylation sites (resulting in heterogeneous migration) or that two distinct forms of UDG2 exist in the cell. Cell staining of various cultured human cell lines corroborates the finding that UDG1 is largely excluded from the nucleus and that UDG2 resides mainly in the nucleus. Our results indicate that UDG1 is targeted to the mitochondria and undergoes proteolytic processing typical of resident mitochondrial proteins that are encoded by nuclear DNA. These results also indicate that the cyclin-like uracil-DNA glycosylase (UDG2) may be a likely candidate for the nuclear located base-excision repair enzyme.  相似文献   

14.
Deamination of 5-methyl cytosine is a major cause of cancer-driver mutations in inflammation-associated cancers. The deaminase APOBEC3B is expressed in these cancers and causes mutations under replication stress; however, the mechanisms by which APOBEC3B mediates deamination and its association with genomic disorders are still unclear. Here, we show that APOBEC3B is stabilized to induce deamination reaction in response to DNA double-strand breaks (DSBs), resulting in the formation of long-lasting DSBs. Uracil, the major deamination product, is subsequently targeted by base excision repair (BER) through uracil-DNA glycosylase 2 (UNG2); hence late-onset DSBs arise as by-products of BER. The frequency of these delayed DSBs was increased by treatment of cells with a PARP inhibitor, and was suppressed following knock-down of UNG2. The late-onset DSBs were induced in an ATR-dependent manner. Those secondary DSBs were persistent, unlike DSBs directly caused by γ-ray irradiation. Overall, these results suggest that the deaminase APOBEC3B is induced in response to DSBs, leading to long-lasting DSB formation in addition to mutagenic 5me-C>T transition induction.  相似文献   

15.
16.
Human uracil-DNA glycosylase complements E. coli ung mutants.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have previously isolated a cDNA encoding a human uracil-DNA glycosylase which is closely related to the bacterial and yeast enzymes. In vitro expression of this cDNA produced a protein with an apparent molecular weight of 34 K in agreement with the size predicted from the sequence data. The in vitro expressed protein exhibited uracil-DNA glycosylase activity. The close resemblance between the human and the bacterial enzyme raised the possibility that the human enzyme may be able to complement E. coli ung mutants. In order to test this hypothesis, the human uracil-DNA glycosylase cDNA was established in a bacterial expression vector. Expression of the human enzyme as a LacZ alpha-humUNG fusion protein was then studied in E. coli ung mutants. E. coli cells lacking uracil-DNA glycosylase activity exhibit a weak mutator phenotype and they are permissive for growth of phages with uracil-containing DNA. Here we show that the expression of human uracil-DNA glycosylase in E. coli can restore the wild type phenotype of ung mutants. These results demonstrate that the evolutionary conservation of the uracil-DNA glycosylase structure is also reflected in the conservation of the mechanism for removal of uracil from DNA.  相似文献   

17.
Uracil-DNA glycosylase is the DNA repair enzyme responsible for the removal of uracil from DNA, and it is present in all organisms investigated. Here we report on the cloning and sequencing of a cDNA encoding the human uracil-DNA glycosylase. The sequences of uracil-DNA glycosylases from yeast, Escherichia coli, herpes simplex virus type 1 and 2, and homologous genes from varicella-zoster and Epstein-Barr viruses are known. It is shown in this report that the predicted amino acid sequence of the human uracil-DNA glycosylase shows a striking similarity to the other uracil-DNA glycosylases, ranging from 40.3 to 55.7% identical residues. The proteins of human and bacterial origin were unexpectedly found to be most closely related, 73.3% similarity when conservative amino acid substitutions were included. The similarity between the different uracil-DNA glycosylase genes is confined to several discrete boxes. These findings strongly indicate that uracil-DNA glycosylases from phylogenetically distant species are highly conserved.  相似文献   

18.
Uracil-DNA glycosylase (Ung) can quickly locate uracil bases in an excess of undamaged DNA. DNA glycosylases may use diffusion along DNA to facilitate lesion search, resulting in processivity, the ability of glycosylases to excise closely spaced lesions without dissociating from DNA. We propose a new assay for correlated cleavage and analyze the processivity of Ung. Ung conducted correlated cleavage on double- and single-stranded substrates; the correlation declined with increasing salt concentration. Proteins in cell extracts also decreased Ung processivity. The correlated cleavage was reduced by nicks in DNA, suggesting the intact phosphodiester backbone is important for Ung processivity.  相似文献   

19.
Two uracil-DNA glycosylase (ung) mutation selection procedures based upon the ability of uracil glycosylase to degrade the chromosomes of organisms containing uracil-DNA were devised to obtain a collection of well-defined ung alleles. In an enrichment procedure, lysogens were selected from Escherichia coli cultures infected with lambda pKanr phage containing uracil in their DNA. (These uracil-DNA phage were prepared by growth on host cells deficient in both dUTPase and uracil-DNA glycosylase.) The lysogenic Kanr population was enriched for uracil glycosylase-deficient mutants by a factor of 10(4). In a phage suicide selection procedure, lambda pung+ phage were unable to form plaques on dut ung cells containing uracil-DNA in their chromosomes, and all of the progeny were lambda pung-. Deletion, insertion (ung::Mu and ung::Tn10), nonsense, and missense mutants were isolated by using these procedures. Extracts of three insertion mutants contained no detectable enzyme activity. All of the other mutant isolates had less than 1% of the normal uracil glycosylase specific activity. The previously studied ung-1 allele, which was derived by N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, produced about 0.02% of the normal amount of uracil glycosylase activity. No significant phenotypic differences between ung-1 and ung::Tn10 alleles were observed. Variations of the lysogen selection procedure may be helpful for isolating other DNA glycosylase mutations in E. coli and other organisms.  相似文献   

20.
The DNA repair enzyme uracil-DNA glycosylase from Mycoplasma lactucae (831-C4) was purified 1,657-fold by using affinity chromatography and chromatofocusing techniques. The only substrate for the enzyme was DNA that contained uracil residues, and the Km of the enzyme was 1.05 +/- 0.12 microM for dUMP containing DNA. The product of the reaction was uracil, and it acted as a noncompetitive inhibitor of the uracil-DNA glycosylase with a Ki of 5.2 mM. The activity of the enzyme was insensitive to Mg2+, Mn2+, Zn2+, Ca2+, and Co2+ over the concentration range tested, and the activity was not inhibited by EDTA. The enzyme activity exhibited a biphasic response to monovalent cations and to polyamines. The enzyme had a pI of 6.4 and existed as a nonspherical monomeric protein with a molecular weight of 28,500 +/- 1,200. The uracil-DNA glycosylase from M. lactucae was inhibited by the uracil-DNA glycosylase inhibitor from bacteriophage PBS-2, but the amount of inhibitor required for 50% inhibition of the mycoplasmal enzyme was 2.2 and 8 times greater than that required to cause 50% inhibition of the uracil-DNA glycosylases from Escherichia coli and Bacillus subtilis, respectively. Previous studies have reported that some mollicutes lack uracil-DNA glycosylase activity, and the results of this study demonstrate that the uracil-DNA glycosylase from M. lactucae has a higher Km for uracil-containing DNA than those of the glycosylases of other procaryotic organisms. Thus, the low G + C content of the DNA from some mollicutes and the A.T-biased mutation pressure observed in these organisms may be related to their decreased capacity to remove uracil residues from DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号