共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Expression of Zymomonas mobilis adhB (encoding alcohol dehydrogenase II) and adhB-lacZ operon fusions in recombinant Z. mobilis. 总被引:1,自引:6,他引:1
下载免费PDF全文

The Zymomonas mobilis alcohol dehydrogenase II gene (adhB) was overexpressed 7- to 14-fold on a recombinant plasmid, accompanied by a small decrease in growth rate. A fragment containing the truncated gene with promoter reduced expression from the chromosomal gene as measured immunologically and enzymatically, consistent with the presence of a trans-active regulatory factor and positive regulatory control. Both the complete gene and the promoter fragment increased pyruvate decarboxylase and glucokinase activities, with no effect on alcohol dehydrogenase I or eight glycolytic enzymes. Tandem promoters from adhB expressed beta-galactosidase at higher levels than did either promoter alone in operon fusions. Addition of 50 microM zinc sulfate in minimal medium reduced the expression of adhB and of the operon fusions. Abundant but inactive alcohol dehydrogenase II was produced in iron-limited cells. This inactive enzyme did not form intracellular aggregates, and no morphological changes were apparent by transmission electron microscopy. 相似文献
5.
Isolation and properties of the glycolytic enzymes from Zymomonas mobilis. The five enzymes from glyceraldehyde-3-phosphate dehydrogenase through to pyruvate kinase. 总被引:13,自引:0,他引:13
下载免费PDF全文

The five glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase were each purified from extracts of Zymomonas mobilis cells, by using dye-ligand chromatography as the principal step. Two procedures, producing three and two of the enzymes respectively, are described in detail. Z. mobilis glyceraldehyde-phosphate dehydrogenase was found to be similar in most respects to the enzyme from other sources, except for having a slightly larger subunit size. Phosphoglycerate kinase has properties typical for this enzyme; however, it did not show the sulphate activation effects characteristic of this enzyme from most other sources. Phosphoglycerate mutase is a dimer, partially independent of 2,3-bisphosphoglycerate, and has a high specific activity. Enolase was found to be octameric; otherwise its properties were very similar to those of the yeast enzyme. Pyruvate kinase is unusual in being dimeric, and not requiring K+ for activity. It is not allosterically activated by sugar phosphates, having a high activity in the absence of any effectors. Some quantitative differences in the relative amounts of these enzymes, compared with eukaryotic species, are ascribed to the fact that Z. mobilis utilizes the Entner-Doudoroff pathway rather than the more common Embden-Meyerhoff glycolytic route. 相似文献
6.
Differential inactivation of alcohol dehydrogenase isoenzymes in Zymomonas mobilis by oxygen.
下载免费PDF全文

Zymomonas mobilis is endowed with two isoenzymes of fermentative alcohol dehydrogenase, a zinc-containing enzyme (ADH I) and an iron-containing enzyme (ADH II). The activity of ADH I remains fully conserved, while ADH II activity decays when anaerobic cultures are shifted to aerobiosis. This differential response depends on the metal present on each isoenzyme, since pure preparations of ADH I are resistant to oxidative inactivation and preparations of zinc-containing ADH II, obtained by incubation of pure ADH II with ZnCl2, showed no modification of the target for oxidative damage (His277-containing peptide). It was consistently found that the activity of the zinc-containing ADH II, once submitted to oxidative treatment, was fully restored when iron was reintroduced into the enzyme structure. These results indicate that zinc bound to these proteins plays an important role in the protection of their active centers against oxidative damage and may have relevant biochemical and physiological consequences in this species. 相似文献
7.
Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc. 总被引:1,自引:8,他引:1
下载免费PDF全文

Zymomonas mobilis is an unusual microorganism which utilizes both iron-containing alcohol dehydrogenase (ADHII) and zinc-containing alcohol dehydrogenase (ADHI) isoenzymes during fermentative growth. This organism is obligately ethanologenic, and alcohol dehydrogenase activity is essential. The activities of ADHI and ADHII were altered by supplementing growth medium with iron or zinc salts and by iron starvation. Growth under iron-limiting conditions (chelators, minimal medium) reduced ADHII activity but did not prevent the synthesis of the ADHII protein. The inactive form of this enzyme appeared quite stable, was not renatured by iron addition, and persisted in the cell. The iron-induced increase in ADHII activity required de novo synthesis which was blocked by antibiotic additions. The ability of Z. mobilis to synthesize ADHII and ADHI may be advantageous in nature. 相似文献
8.
Use of the tac promoter and lacIq for the controlled expression of Zymomonas mobilis fermentative genes in Escherichia coli and Zymomonas mobilis.
下载免费PDF全文

The Zymomonas mobilis genes encoding alcohol dehydrogenase I (adhA), alcohol dehydrogenase II (adhB), and pyruvate decarboxylase (pdc) were overexpressed in Escherichia coli and Z. mobilis by using a broad-host-range vector containing the tac promoter and the lacIq repressor gene. Maximal IPTG (isopropyl-beta-D-thiogalactopyranoside) induction of these plasmid-borne genes in Z. mobilis resulted in a 35-fold increase in alcohol dehydrogenase I activity, a 16.7-fold increase in alcohol dehydrogenase II activity, and a 6.3-fold increase in pyruvate decarboxylase activity. Small changes in the activities of these enzymes did not affect glycolytic flux in cells which are at maximal metabolic activity, indicating that flux under these conditions is controlled at some other point in metabolism. Expression of adhA, adhB, or pdc at high specific activities (above 8 IU/mg of cell protein) resulted in a decrease in glycolytic flux (negative flux control coefficients), which was most pronounced for pyruvate decarboxylase. Growth rate and flux are imperfectly coupled in this organism. Neither a twofold increase in flux nor a 50% decline from maximal flux caused any immediate change in growth rate. Thus, the rates of biosynthesis and growth in this organism are not limited by energy generation in rich medium. 相似文献
9.
Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. 总被引:3,自引:4,他引:3
下载免费PDF全文

Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA). 相似文献
10.
K Ohta D S Beall J P Mejia K T Shanmugam L O Ingram 《Applied and environmental microbiology》1991,57(4):893-900
Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA). 相似文献
11.
12.
Moon JH Lee HJ Park SY Song JM Park MY Park HM Sun J Park JH Kim BY Kim JS 《Journal of molecular biology》2011,407(3):413-424
The ethanologenic bacterium Zymomonas mobilis ZM4 is of special interest because it has a high ethanol yield. This is made possible by the two alcohol dehydrogenases (ADHs) present in Z. mobilis ZM4 (zmADHs), which shift the equilibrium of the reaction toward the synthesis of ethanol. They are metal-dependent enzymes: zinc for zmADH1 and iron for zmADH2. However, zmADH2 is inactivated by oxygen, thus implicating zmADH2 as the component of the cytosolic respiratory system in Z. mobilis. Here, we show crystal structures of zmADH2 in the form of an apo-enzyme and an NAD+-cofactor complex. The overall folding of the monomeric structure is very similar to those of other functionally related ADHs with structural variations around the probable substrate and NAD+ cofactor binding region. A dimeric structure is formed by the limited interactions between the two subunits with the bound NAD+ at the cleft formed along the domain interface. The catalytic iron ion binds near to the nicotinamide ring of NAD+, which is likely to restrict and locate the ethanol to the active site together with the oxidized Cys residue and several nonpolar bulky residues. The structures of the zmADH2 from the proficient ethanologenic bacterium Z. mobilis, with and without NAD+ cofactor, and modeling ethanol in the active site imply that there is a typical metal-dependent catalytic mechanism. 相似文献
13.
An approach to broaden the product range of the ethanologenic, gram-negative bacterium Zymomonas mobilis by means of genetic engineering is presented. Gene alaD for L-alanine dehydrogenase (EC 1.4.1.1.) from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 mu mol . min -1 . mg of protein -1 in recombinant cells. As a results of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH4+ to the medium, growth of the recombinant cells stopped, and up to 41 mmol alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) (EC 4.1.1.1.) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PPi. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH4+ and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine (7.5 g/liter) over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol . min-1 . mg [dry weight]-1. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h. 相似文献
14.
Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine.
下载免费PDF全文

An approach to broaden the product range of the ethanologenic, gram-negative bacterium Zymomonas mobilis by means of genetic engineering is presented. Gene alaD for L-alanine dehydrogenase (EC 1.4.1.1.) from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 mu mol . min -1 . mg of protein -1 in recombinant cells. As a results of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH4+ to the medium, growth of the recombinant cells stopped, and up to 41 mmol alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) (EC 4.1.1.1.) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PPi. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH4+ and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine (7.5 g/liter) over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol . min-1 . mg [dry weight]-1. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h. 相似文献
15.
A major carcinogenic aminoazo dye-binding protein having Ip of 9.7 (isoelectric focusing) was isolated from the liver cytosol of rats given 40 mg 3'MeDAB. The protein has the molecular weight of 6.8 × 104 (gel-filtration) and two subunits of about 3.9 × 104 molecular weight (SDS-polyacrylamide gel electrophoresis). The amino acid composition was similar to that reported for liver alcohol dehydrogenase of animals. The enzymatic activity was shown to be associated consistently with the dye-binding protein fractions throughout the purification steps suggesting identity of the dye-binding protein as liver alcohol dehydrogenase. 相似文献
16.
Cloning of the Zymomonas mobilis structural gene encoding alcohol dehydrogenase I (adhA): sequence comparison and expression in Escherichia coli. 总被引:1,自引:10,他引:1
下载免费PDF全文

Zymomonas mobilis ferments sugars to produce ethanol with two biochemically distinct isoenzymes of alcohol dehydrogenase. The adhA gene encoding alcohol dehydrogenase I has now been sequenced and compared with the adhB gene, which encodes the second isoenzyme. The deduced amino acid sequences for these gene products exhibited no apparent homology. Alcohol dehydrogenase I contained 337 amino acids, with a subunit molecular weight of 36,096. Based on comparisons of primary amino acid sequences, this enzyme belongs to the family of zinc alcohol dehydrogenases which have been described primarily in eucaryotes. Nearly all of the 22 strictly conserved amino acids in this group were also conserved in Z. mobilis alcohol dehydrogenase I. Alcohol dehydrogenase I is an abundant protein, although adhA lacked many of the features previously reported in four other highly expressed genes from Z. mobilis. Codon usage in adhA is not highly biased and includes many codons which were unused by pdc, adhB, gap, and pgk. The ribosomal binding region of adhA lacked the canonical Shine-Dalgarno sequence found in the other highly expressed genes from Z. mobilis. Although these features may facilitate the expression of high enzyme levels, they do not appear to be essential for the expression of Z. mobilis adhA. 相似文献
17.
Shihui Yang Yaoping Zhang Lydia M. Contreras Sagar M. Utturkar Steven D. Brown Michael E. Himmel Min Zhang 《Microbial biotechnology》2016,9(6):699-717
Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. This review also encompasses perspectives related to classical genetic tools and emerging technologies in this context. 相似文献
18.
19.
Perturbation of the aerobic steady-state in a chemostat culture of the ethanol-producing bacterium Zymomonas mobilis with a small pulse of ethanol causes a burst of ethanol oxidation, although the reactant ratio of the alcohol dehydrogenase (ADH) reaction ([NADH][acetaldehyde][H(+)])/([ethanol][NAD(+)]) remains above the K(eq) value. Simultaneous catalysis of ethanol synthesis and oxidation by the two ADH isoenzymes, residing in different redox microenvironments, has been proposed previously. In the present study, this hypothesis is verified by construction of an ADH-deficient strain and by demonstration that it lacks the oxidative burst in response to perturbation of its aerobic steady-state with ethanol. 相似文献
20.
Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. 总被引:7,自引:3,他引:7
下载免费PDF全文

Heat or ethanol shock of Zymomonas mobilis enhanced the labeling by [35S]methionine of several polypeptides and induced the synthesis of a new polypeptide (molecular weight, 18,500) associated with the envelope fraction. These results indicate the existence of a typical heat-shock response in Z. mobilis. This response could be involved in the induction of increased ethanol tolerance in Z. mobilis cells. 相似文献