首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A subset of mitochondrial carrier proteins from plants contain a cleavable N-terminal extension. We have used a reconstituted protein import assay system into intermembrane space-depleted mitochondria to study the role of the cleavable extension in the carrier import pathway. Insertion of carrier proteins into the inner membrane can be stimulated by the addition of a soluble intermembrane space fraction isolated from plant mitochondria. Greater stimulation of import of the adenine nucleotide carrier (ANT) and phosphate carrier (Pic), which contain N-terminal cleavable extensions, was observed compared to the import of the oxoglutarate malate carrier (OMT), which does not contain a cleavable extension. Removal of the N-terminal cleavable extension from ANT and Pic resulted in loss of stimulation of insertion into the inner membrane. Conversely, addition of the N-terminal extension from ANT or Pic to OMT resulted in significantly enhanced insertion into the inner membrane. The polytopic inner membrane proteins TIM17 and TIM23 that are imported via the carrier import pathway contain no cleavable extension, displayed high-level stimulation of insertion into the inner membrane by addition of the intermembrane space fraction. Addition of the N-terminal cleavable extension from carrier proteins to TIM23 enhanced insertion of TIM23 into the inner membrane even in the absence of the soluble intermembrane space fraction. Together, these results demonstrate that the cleavable N-terminal extensions present on carrier proteins from plants are required for efficient insertion into the inner mitochondrial membrane, and that they can stimulate insertion of any carrier-like protein into the inner membrane.  相似文献   

2.
Yeast cytochrome c oxidase subunit IV (an imported mitochondrial protein) is made as a larger precursor with a transient pre-sequence of 25 amino acids. If this pre-sequence is fused to the amino terminus of mouse dihydrofolate reductase (a cytosolic protein) the resulting fusion protein is imported into the matrix space, and cleaved to a smaller size, by isolated yeast mitochondria. We have now fused progressively shorter amino-terminal segments of the subunit IV pre-sequence to dihydrofolate reductase and tested each fusion protein for import into the matrix space and cleavage by the matrix-located processing protease. The first 12 amino acids of the subunit IV pre-sequence were sufficient to direct dihydrofolate reductase into the mitochondrial matrix, both in vitro and in vivo. However, import of the corresponding fusion protein into the matrix was no longer accompanied by proteolytic processing. Fusion proteins containing fewer than nine amino-terminal residues from the subunit IV pre-piece were not imported into isolated mitochondria. The information for transporting attached mouse dihydrofolate reductase into mitochondria is thus contained within the first 12 amino acids of the subunit IV pre-sequence.  相似文献   

3.
Selective deuteration is a general solution to the resolution problem which limits the application of double resonance experiments to the assignment of the 1H NMR spectra of proteins. Spin-decoupling and NOE experiments have been carried out on Lactobacillus casei dihydrofolate reductase and on selectively deuterated derivatives of the enzyme containing either [γ-2H6]Val or (α,δ2,?1-2H3]His, [α,δ12,?1,?2,ζ-2H6]Phe, [α,δ1,?3232-2H6]Trp and [α,?1,?2-2H3]Tyr. When combined with ring-current shift calculations based on the crystal structure of the enzyme, these experiments allow us to assign 1H resonances of Val 61, Val 115, Tyr 46 and Tyr 68.  相似文献   

4.
Mutation in the transmembrane protein 65 gene (TMEM65) results in mitochondrial dysfunction and a severe mitochondrial encephalomyopathy phenotype. However, neither the function of TMEM65 nor the cellular responses to its depletion have been fully elucidated. Hence, we knocked down TMEM65 in human cultured cells and analyzed the resulting cellular responses. Depletion of TMEM65 led to a mild increase in ROS generation and upregulation of the mRNA levels of oxidative stress suppressors, such as NFE2L2 and SESN3, indicating that TMEM65 knockdown induced an oxidative stress response. A mild induction of apoptosis was also observed upon depletion of TMEM65. Depletion of TMEM65 upregulated protein levels of the mitochondrial chaperone HSPD1 and mitochondrial protease LONP1, indicating that mitochondrial unfolded protein response (UPRmt) was induced in response to TMEM65 depletion. Additionally, we found that the mitochondrial protein import receptor TOMM22 and HSPA9 (mitochondrial Hsp70), were also upregulated in TMEM65-depleted cells. Notably, the depletion of TMEM65 did not lead to upregulation of TOMM22 in an ATF5-dependent manner, although upregulation of LONP1 reportedly occurs in an ATF5-dependent manner. Taken together, our findings suggest that depletion of TMEM65 causes mild oxidative stress and apoptosis, induces UPRmt, and upregulates protein expression of mitochondrial protein import receptor TOMM22 in an ATF5-independent manner.  相似文献   

5.
Mitochondrial gene products are essential for the viability of eukaryote obligate aerobes. Consequently, mutations of the mitochondrial genome cause severe diseases in man and generate traits widely used in plant breeding. Pathogenic mutations can often be identified but direct genetic rescue remains impossible because mitochondrial transformation is still to be achieved in higher eukaryotes. Along this line, it has been shown that isolated plant and mammalian mitochondria are naturally competent for importing linear DNA. However, it has proven difficult to understand how such large polyanions cross the mitochondrial membranes. The genetic tractability of Saccharomyces cerevisae could be a powerful tool to unravel this molecular mechanism. Here we show that isolated S. cerevisiae mitochondria can import linear DNA in a process sharing similar characteristics to plant and mammalian mitochondria. Based on biochemical data, translocation through the outer membrane is believed to be mediated by voltage-dependent anion channel (VDAC) isoforms in higher eukaryotes. Both confirming this hypothesis and validating the yeast model, we illustrate that mitochondria from S. cerevisiae strains deleted for the VDAC-1 or VDAC-2 gene are severely compromised in DNA import. The prospect is now open to screen further mutant yeast strains to identify the elusive inner membrane DNA transporter.  相似文献   

6.
DHFR-deficient CHO cells are the most commonly used host cells in the biopharmaceutical industry and over the years, individual substrains have evolved, some have been engineered with improved properties and platform technologies have been designed around them.Unexpectedly, we have observed that different DHFR-deficient CHO cells show only poor growth in fed-batch cultures even in HT supplemented medium, whereas antibody producer cells derived from these hosts achieved least 2-3 fold higher peak cell densities. Using a set of different expression vectors, we were able to show that this impaired growth performance was not due to the selection procedure possibly favouring fast growing clones, but a direct consequence of DHFR deficiency. Re-introduction of the DHFR gene reproducibly restored the growth phenotype to the level of wild-type CHO cells or even beyond which seemed to be dose-dependent.The requirement for a functional DHFR gene to achieve optimal growth under production conditions has direct implications for cell line generation since it suggests that changing to a selection system other than DHFR would require another CHO host which - especially for transgenic CHO strains and tailor-suited process platforms - this could mean significant investments and potential changes in product quality. In these cases, DHFR engineering of the current CHO-DG44 or DuxB11-based host could be an attractive alternative.  相似文献   

7.
Data reported in the literature indicate that lipid movement between intracellular organelles can occur through contacts and close physical association of membranes (Vance, J.E. 1990. J Biol Chem 265: 7248-7256). The advantage of this mechanism is that the direct interaction of membranes provides the translocation event without the involvement of lipid-transport systems. However, pre-requisite for the functioning of this machinery is the presence of protein factors controlling membrane association and fusion. In the present work we have found that liposomes fuse to mitochondria at acidic pH and that the pre-treatment of mitochondria with pronase inhibits the fusogenic activity. Mixing of 14C-phosphatilyserine (PS) labeled liposomes with mitochondria at pH 6.0 results in the translocation of 14C-PS into mitochondria and in its decarboxylation to14 C-phosphatidylethanolamine through the PS decarboxylase activity localized on the outer surface of the inner mitochondrial membrane. Incorporation of 14C-PS is inhibited by the pre-treatment of mitochondria with pronase or with EEDQ, a reagent for the derivatization of the protonated form of carboxylic groups. These results indicate the presence of a protein associated with mitochondria which is able to trigger the fusion of liposomes to the mitochondrial membrane. A partial purification of a mitochondrial fusogenic glycoprotein is described in this work. The activity of the fusogenic protein appears to be dependent on the extent of protonation of the residual carboxylic groups and is influenced by the glucidic moiety, as demonstrated by its interaction with Concanavalin A. The purifed protein is able to promote the recover of the14 C-PS import from liposomes to pronase-treated mitochondria. Therefore, the protein is candidate to be an essential component in the machinery for the mitochondrial import of PS. (Mol Cell Biochem 175: 71–80, 1997)  相似文献   

8.
Chloroplast biogenesis requires the large-scale import of cytosolically synthesized precursor proteins. A trimeric translocon (Toc complex) containing two homologous GTP-binding proteins (atToc33 and atToc159) and a channel protein (atToc75) facilitates protein translocation across the outer envelope membrane. The mechanisms governing function and assembly of the Toc complex are not yet understood. This study demonstrates that atToc159 and its pea orthologue exist in an abundant, previously unrecognized soluble form, and partition between cytosol-containing soluble fractions and the chloroplast outer membrane. We show that soluble atToc159 binds directly to the cytosolic domain of atToc33 in a homotypic interaction, contributing to the integration of atToc159 into the chloroplast outer membrane. The data suggest that the function of the Toc complex involves switching of atToc159 between a soluble and an integral membrane form.  相似文献   

9.
The transfer of genetic information from the mitochondrion to the nucleus is thought to be still underway in higher plants. The mitochondrial genome of Arabidopsis thaliana contains only one rps14 pseudogene. In this paper we show that the functional gene encoding mitochondrial ribosomal protein S14 has been translocated to the nucleus. This gene transfer is a recent evolutionary event, which occurred within Cruciferae, probably after the divergence of Arabidopsis and Brassica napus. A 5′ extension of the rps14 reading frame encodes a presequence which, in vitro, targets the polypeptide to isolated mitochondria and is cleaved off during or after import. No intron was found at the junction of the targeting presequence with the mitochondrially derived sequence, which are directly connected. By contrast, a 90-bp intron, which is removed by splicing to give a mature poly(A)+mRNA of 0.9 kb, is located in the 3′ non-coding region. To our knowledge, this is the first report of an intron in such a position in a functional transferred gene in higher plants, and suggests that exon shuffling may have been involved in the acquisition of elements necessary for expression in the nucleus. Putative roles of this intron in polyadenylation and enhancement of gene expression are discussed. Received: 11 January 1999 / Accepted: 27 April 1999  相似文献   

10.
The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane.  相似文献   

11.
12.
The protein import machinery of the mitochondrial membranes   总被引:1,自引:0,他引:1  
Mitochondria are surrounded by two membranes that contain independent and non-related protein transport machineries. Remarkable progress was recently achieved in elucidating the structure of the outer membrane import channel and in the identification of new components involved in protein traffic across the intermembrane space and the inner membrane. Traditional concepts of protein targeting and sorting had to be revised. Here we briefly summarize the data on the mitochondrial protein import system with particular emphasis on new developments and perspectives.  相似文献   

13.
One of the earliest events in the evolution of mitochondriawas the development a means to translocate proteins made inthe cytosol into the "protomitochondrion." How this was achievedremains uncertain, and the nature of the earliest version ofthe protein translocation machinery is not known. Comparativesequence analysis suggests three subunits, Tom40, Tom7, andTom22 as common elements of the protein translocase in the mitochondrialouter membrane in diverse extant eukaryotes. Tom22, the 22-kDasubunit, plays a critical role in the function of this complexin fungi and animals, and we show that an 8-kDa subunit of theplant translocase is a truncated form of Tom22. It has a singletransmembrane segment conforming in sequence to the same regionof Tom22 from other eukaryotic lineages and a short carboxy-terminaltrans domain located in the mitochondrial intermembrane space.The trans domain from the Arabidopsis thaliana protein functionsin yeast lacking their own Tom22 by complementing protein importdefects and restoring cell growth. Moreover, we have identifiedorthologs of Tom22, Tom7, and Tom40 in diverse eukaryotes suchas the diatom Phaeodactylum tricornutum, the amoebic slime Dictyosteliumdiscoideum, and the protozoan parasite Plasmodium falciparum.This finding strongly suggests these subunits as the core ofthe protein translocase in the earliest mitochondria.  相似文献   

14.
15.
2-Cys peroxiredoxins (Prxs) play important roles in the antioxidative defense systems of plant chloroplasts. In order to determine the interaction partner for these proteins in Arabidopsis, we used a yeast two-hybrid screening procedure with a C175S-mutant of Arabidopsis 2-Cys Prx-A as bait. A cDNA encoding an NADPH-dependent thioredoxin reductase (NTR) isotype C was identified and designated ANTR-C. We demonstrated that this protein effected efficient transfer of electrons from NADPH to the 2-Cys Prxs of chloroplasts. Interaction between 2-Cys Prx-A and ANTR-C was confirmed by a pull-down experiment. ANTR-C contained N-terminal TR and C-terminal Trx domains. It exhibited both TR and Trx activities and co-localized with 2-Cys Prx-A in chloroplasts. These results suggest that ANTR-C functions as an electron donor for plastidial 2-Cys Prxs and represents the NADPH-dependent TR/Trx system in chloroplasts.  相似文献   

16.
Molecular chaperones are important components of mitochondrial protein biogenesis and are required to maintain the organellar function under normal and stress conditions. We addressed the functional role of the Hsp100/ClpB homolog Hsp78 during aggregation reactions and its functional cooperation with the main mitochondrial Hsp70, Ssc1, in mitochondria of the yeast Saccharomyces cerevisiae. By establishing an aggregation/disaggregation assay in intact mitochondria we demonstrated that Hsp78 is indispensable for the resolubilization of protein aggregates generated by heat stress under in vivo conditions. The ATP-dependent disaggregation activity of Hsp78 was capable of reversing the preprotein import defect of a destabilized mutant form of Ssc1. This role in disaggregation of Ssc1 is unique for Hsp78, since the recently identified, Hsp70-specific chaperone Zim17 had no effect on the resolubilization reaction. We observed only a minor effect of the second mitochondrial Hsp100 family member Mcx1 on protein disaggregation. A "holding" activity of the mitochondrial Hsp70 system was a prerequisite for a successful resolubilization of aggregated proteins. We conclude that the protective role of Hsp78 in thermotolerance is mainly based on maintaining the molecular chaperone Ssc1 in a soluble and functional state.  相似文献   

17.
The binding of trimethoprim and [1,3,2-amino-15N3]-trimethoprim to Lactobacillus casei dihydrofolate reductase has been studied by 15N and 1H NMR spectroscopy. 15N NMR spectra of the bound drug were obtained by using polarisation transfer pulse sequences. The 15N chemical shifts and 1H-15N spin-coupling constants show unambiguously that the drug is protonated on N1 when bound to the enzyme.The N1-proton resonance in the complex has been assigned using the 15N-enriched molecule. The temperature-dependence of the linewidth of this resonance has been used to estimate the rate of exchange of this proton with the solvent: 160±10s-1 at 313 K, with an activation energy of 75 (±9) kJ·mole-1. This is considerably faster than the dissociation rate of the drug from this complex, demonstrating that there are local fluctuations in the structure of the complex.  相似文献   

18.
Poly(ADP-ribose) polymerases (PARPs) convert NAD to polymers of ADP-ribose that are converted to free ADP-ribose by poly(ADP-ribose) glycohydrolase (PARG). The activation of the nuclear enzyme PARP-1 following genotoxic stress has been linked to release of apoptosis inducing factor from the mitochondria, but the mechanisms by which signals are transmitted between nuclear and mitochondrial compartments are not well understood. The study reported here has examined the relationship between PARG and mitochondria in HeLa cells. Endogenous PARG associated with the mitochondrial fraction migrated in the range of 60 kDa. Transient transfection of cells with PARG expression constructs with amino acids encoded by exon 4 at the N-terminus was targeted to the mitochondria as demonstrated by subcellular fractionation and immunofluorescence microscopy of whole cells. Deletion and missense mutants allowed identification of a canonical N-terminal mitochondrial targeting sequence consisting of the first 16 amino acids encoded by PARG exon 4. Sub-mitochondrial localization experiments indicate that this mitochondrial PARG isoform is targeted to the mitochondrial matrix. The identification of a PARG isoform as a component of the mitochondrial matrix raises several interesting possibilities concerning mechanisms of nuclear-mitochondrial cross talk involved in regulation of cell death pathways.  相似文献   

19.
Summary Mitochondrial targeting of an Atp2-LacZ fusion protein confers a respiration-defective phenotype on yeast cells. This effect has been utilized to select strains that grow on nonfermentable carbon sources, some of which have decreased levels of hybrid protein localized to the organelle. Many of the mutants obtained were also temperature-sensitive for growth on all media. The recessive mft (mitochondrial fusion targeting) mutants have been assigned to three complementation groups. MFT1 was cloned and sequenced: it encodes a 255 amino acid protein that is highly basic and has no predicted membrane-spanning domains or organelle-targeting sequences. The MFT1 gene is 91% identical to an open reading frame 3 of the SIR3 gene. Evidence is presented that these two closely related genes could represent a recent gene duplication.The sequence reported here has been listed in the EMBL Data Library with Accession Number X55360.  相似文献   

20.
A balance between fission and fusion events determines the morphology of mitochondria. In yeast, mitochondrial fission is regulated by the outer membrane-associated dynamin-related GTPase, Dnm1p. Mitochondrial fusion requires two integral outer membrane components, Fzo1p and Ugo1p. Interestingly, mutations in a second mitochondrial-associated dynamin-related GTPase, Mgm1p, produce similar phenotypes to fzo1 and ugo cells. Specifically, mutations in MGM1 cause mitochondrial fragmentation and a loss of mitochondrial DNA that are suppressed by abolishing DNM1-dependent fission. In contrast to fzo1ts mutants, blocking DNM1-dependent fission restores mitochondrial fusion in mgm1ts cells during mating. Here we show that blocking DNM1-dependent fission in Deltamgm1 cells fails to restore mitochondrial fusion during mating. To examine the role of Mgm1p in mitochondrial fusion, we looked for molecular interactions with known fusion components. Immunoprecipitation experiments revealed that Mgm1p is associated with both Ugo1p and Fzo1p in mitochondria, and that Ugo1p and Fzo1p also are associated with each other. In addition, genetic analysis of specific mgm1 alleles indicates that Mgm1p's GTPase and GTPase effector domains are required for its ability to promote mitochondrial fusion and that Mgm1p self-interacts, suggesting that it functions in fusion as a self-assembling GTPase. Mgm1p's localization within mitochondria has been controversial. Using protease protection and immuno-EM, we have shown previously that Mgm1p localizes to the intermembrane space, associated with the inner membrane. To further test our conclusions, we have used a novel method using the tobacco etch virus protease and confirm that Mgm1p is present in the intermembrane space compartment in vivo. Taken together, these data suggest a model where Mgm1p functions in fusion to remodel the inner membrane and to connect the inner membrane to the outer membrane via its interactions with Ugo1p and Fzo1p, thereby helping to coordinate the behavior of the four mitochondrial membranes during fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号