首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeast cytochrome c oxidase subunit IV (an imported mitochondrial protein) is made as a larger precursor with a transient pre-sequence of 25 amino acids. If this pre-sequence is fused to the amino terminus of mouse dihydrofolate reductase (a cytosolic protein) the resulting fusion protein is imported into the matrix space, and cleaved to a smaller size, by isolated yeast mitochondria. We have now fused progressively shorter amino-terminal segments of the subunit IV pre-sequence to dihydrofolate reductase and tested each fusion protein for import into the matrix space and cleavage by the matrix-located processing protease. The first 12 amino acids of the subunit IV pre-sequence were sufficient to direct dihydrofolate reductase into the mitochondrial matrix, both in vitro and in vivo. However, import of the corresponding fusion protein into the matrix was no longer accompanied by proteolytic processing. Fusion proteins containing fewer than nine amino-terminal residues from the subunit IV pre-piece were not imported into isolated mitochondria. The information for transporting attached mouse dihydrofolate reductase into mitochondria is thus contained within the first 12 amino acids of the subunit IV pre-sequence.  相似文献   

2.
3.
An artificial mitochondrial precursor protein (the presequence of cytochrome oxidase subunit IV fused to mouse dihydrofolate reductase) binds to isolated yeast mitochondrial outer membranes and to liposomes whose phospholipid composition resembles that of outer membranes. In both cases, binding is strongly inhibited by low temperature or methotrexate (which stabilizes the dihydrofolate reductase moiety) and partly inhibited by adriamycin (which binds to acidic phospholipids). Binding is accompanied by partial unfolding of the protein. Binding of the urea-denatured fusion protein to outer membranes or liposomes is insensitive to low temperature, methotrexate, or adriamycin. These results, and those reported in the accompanying paper (Eilers, M., Endo, T., and Schatz, G. (1989) J. Biol. Chem. 264, 2945-2950) suggest that import of this fusion protein into isolated mitochondria involves at least partial unfolding by acidic phospholipids on the mitochondrial surface.  相似文献   

4.
E C Hurt  U Müller    G Schatz 《The EMBO journal》1985,4(13A):3509-3518
We have used an in vivo complementation assay to test whether a given polypeptide sequence can direct an attached protein to the mitochondrial inner membrane. The host is a previously described yeast deletion mutant that lacks cytochrome oxidase subunit IV (an imported protein) and, thus neither assembles cytochrome oxidase in its mitochondrial inner membrane nor grows on the non-fermentable carbon source, glycerol. Growth on glycerol and cytochrome oxidase assembly are restored to the mutant if it is transformed with the gene encoding authentic subunit IV precursor, a protein carrying a 25-residue transient pre-sequence. No restoration is seen with a plasmid encoding a subunit IV precursor whose pre-sequence has been shortened to seven residues. Partial, but significant restoration is achieved by an artificial subunit IV precursor in which the authentic pre-sequence has been replaced by the first 12 amino acids of a 70-kd protein of the mitochondrial outer membrane. If this dodecapeptide is fused to the amino terminus of mouse dihydrofolate reductase (a cytosolic protein), the resulting fusion protein is imported into the matrix of yeast mitochondria in vitro and in vivo. Import in vitro requires an energized inner membrane. We conclude that the extreme amino terminus of the 70-kd outer membrane protein can direct an attached protein across the mitochondrial inner membrane.  相似文献   

5.
A P van Loon  A W Br?ndli  G Schatz 《Cell》1986,44(5):801-812
Gene fusion experiments were used to identify signals that direct imported precursor proteins to specific intramitochondrial locations in yeast. The amino terminus of alcohol dehydrogenase III (ADHIII, a mitochondrial matrix enzyme) transported attached mouse dihydrofolate reductase (DHFR, a cytosolic enzyme) into the mitochondrial matrix. The presequence of cytochrome c1 (a mitochondrial inner membrane protein protruding into the intermembrane space) transported attached DHFR into the intermembrane space. The first half of the cytochrome c1 presequence, which resembles the ADHIII presequence, is a matrix-targeting sequence: it transported attached DHFR into the matrix. The second half of the cytochrome c1 presequence contains a stretch of 19 uncharged amino acids and may thus be a stop-transfer sequence. We conclude that intramitochondrial sorting involves matrix-targeting and stop-transfer sequences within the cleavable presequence.  相似文献   

6.
The ADP-ATP carrier (also referred to as the adenine nucleotide translocator) of Saccharomyces cerevisiae is encoded by a nuclear gene, translated in the cytosol, and imported into the mitochondrial inner membrane. In order to study the determinants of mitochondrial import, a series of fusion proteins, consisting of the first 21, 72, and 111 amino acids of the ADP-ATP carrier, joined to mouse dihydrofolate reductase were generated. Dihydrofate reductase is a cytoslic protein that does not bind mitochondria. The reticulocyte lysate reaction containing the 35S-methionine-labeled protein was incubated with mitochondria in a buffer containing 3% BSA. Following incubation for import, the reactions were treated with 1 mM PMSF or 25 micrograms/ml proteinase K; mitochondria were reisolated and analyzed by gel electrophoresis. The 21 and 72 amino acid hybrid proteins showed a low level of binding to mitochondria: the bound form was entirely protease accessible. The 111 amino acid hybrid protein was imported to a protease-protected location within mitochondria. It is concluded that the first 72 amino acids of the ADP-ATP carrier do not suffice to import the protein into mitochondria and that the region between amino acids 72 and 111, a region that contains a transmembrane-spanning domain, constitutes at least part of the mitochondrial import signal.  相似文献   

7.
The first seven residues of the yeast cytochrome oxidase subunit IV presequence are insufficient to target attached mouse dihydrofolate reductase into isolated yeast mitochondria. However, the targeting function of this truncated presequence can be restored by presenting the fusion protein to isolated mitochondria either as nascent, unfolded chains, or as full-length chains whose dihydrofolate reductase moiety had been destabilized either by urea treatment or by point mutations. The targeting efficiency of a mitochondrial presequence can thus be strongly influenced by the conformation of the attached 'passenger protein'. These results also underscore the difficulty of defining a 'minimal' mitochondrial targeting signal.  相似文献   

8.
K Verner  G Schatz 《The EMBO journal》1987,6(8):2449-2456
We have studied the post-translational import of incomplete precursor chains into isolated yeast mitochondria. The precursor was a fusion protein containing a mitochondrial presequence attached to mouse dihydrofolate reductase. In vitro-synthesis of the precursor was interrupted by the elongation inhibitor cycloheximide and the arrested nascent chains cosedimenting with ribosomes were released by EDTA. These incomplete chains were efficiently imported by isolated yeast mitochondria; their import resembled that of the complete precursor in requiring an energized inner membrane and a mitochondrial presequence. It differed from that of the completed precursor in its resistance to methotrexate (which only binds to correctly folded dihydrofolate reductase) and its independence of added ATP. The incomplete chains were also more sensitive to proteinase K than the completed precursor. We conclude that the incomplete chains were incompletely folded and suggest that the lack of tight folding caused import into mitochondria to become independent of added ATP. This implies that ATP may participate, directly or indirectly, in the unfolding of the precursor for its transport into mitochondria.  相似文献   

9.
Protein conformational changes related to transport into chloroplasts have been studied. Two chimaeric proteins carrying the transit peptide of either ferredoxin or plastocyanin linked to the mouse cytosolic enzyme dihydrofolate reductase (EC 1.5.1.3.) were employed. In contrast to observations in mitochondria, we found in chloroplasts that transport of a purified ferredoxin-dihydrofolate reductase fusion protein is not blocked by the presence of methotrexate, a folate analogue that stabilizes the structural conformation of dihydrofolate reductase. It is shown that transport competence of this protein in the presence of methotrexate is not a consequence of alteration of the folding characteristics or methotrexate binding properties of dihydrofolate reductase by fusion to the ferredoxin transit peptide. Binding of dihydrofolate reductase fusion proteins to chloroplast envelopes is not inhibited by low temperature and it is only partially diminished by methotrexate. It is demonstrated that the dihydrofolate reductase fusion proteins unfold, despite the presence of methotrexate, on binding to the chloroplast envelopes. We propose the existence of a strong protein unfolding activity associated to the chloroplast envelopes.  相似文献   

10.
The mitochondrial processing peptidase (MPP) specifically cleaves N-terminal targeting signals from hundreds of nuclear-encoded, matrix-targeted precursor proteins. In contrast to yeast and mammals, the plant MPP is an integral component of the respiratory cytochrome bc1 complex. The topology of the protein import channel in relation to MPP/bc1 in plants was studied using chimeric precursors containing truncated cytochrome b2 (cyt b2) proteins of 55-167 residues in length, fused to dihydrofolate reductase (DHFR). The DHFR domain could be tightly folded by methotrexate (MTX), generating translocation intermediates trapped in the import channel with only the cyt b2 pre-sequence/mature domain protruding into the matrix. Spinach and soybean mitochondria imported and processed unfolded precursors. MTX-folded intermediates were not processed in spinach but the longest (1-167) MTX-folded cyt b2-DHFR construct was processed in soybean, while yeast mitochondria successfully processed even shorter MTX-folded constructs. The MTX-folded precursors were cleaved with high efficiency by purified spinach MPP/bc1 complex. We interpret these results as indicating that the protein import channel is located distantly from the MPP/bc1 complex in plants, and that there is no link between protein translocation and protein processing.  相似文献   

11.
《The Journal of cell biology》1988,107(6):2045-2049
A purified, artificial precursor protein was used as a transport vehicle to test the tolerance of the mitochondrial protein import system. The precursor was a fusion protein consisting of mouse dihydrofolate reductase linked to a yeast mitochondrial presequence; it contained a unique cysteine as its COOH-terminal residue. This COOH- terminal cysteine was covalently coupled to either a stilbene disulfonate derivative or, with the aid of a bifunctional cross-linker, to one of the free amino groups of horse heart cytochrome c. Coupling to horse heart cytochrome c generated a mixture of branched polypeptide chains since this cytochrome lacks a free alpha-amino group. Both adducts were imported and cleaved by isolated yeast mitochondria. The mitochondrial protein import machinery can thus transport more complex structures and even highly charged "membrane-impermeant" organic molecules. This suggests that transport occurs through a hydrophilic environment.  相似文献   

12.
The mitochondrial matrix enzyme manganese superoxide dismutase (SOD) of Saccharomyces cerevisiae is encoded in the nucleus. It is synthesized as a precursor with an NH2-terminal extension of 26 amino acids which is cleaved off during import into the mitochondrion. Fusions between the NH2-terminal 34 amino acids of SOD and the cytosolic proteins invertase of yeast and mouse dihydrofolate reductase (DHFR) were tested for in vitro binding and import into mitochondria. Efficient translocation over the mitochondrial membranes takes place in the case of the SOD-DHFR fusion. The SOD-invertase fusion protein does not get translocated and binds to the organelle with only low efficiency. Yeast transformants harbouring the SOD-invertase fusion gene accumulate approximately 95% of the hybrid protein in the cytosol. The remaining material is found in the interior of the mitochondrion, loosely attached to the inner membrane. We conclude that the pre-sequence of SOD is able to deliver a passenger protein to the mitochondrion. The efficiency of protein delivery and translocation across the membrane is, however, influenced by the passenger protein.  相似文献   

13.
Dihydrofolate reductase fusion proteins have been widely used to study conformational properties of polypeptides translocated across membranes. We have studied the import of dihydrofolate reductase fusion proteins into glycosomes and mitochondria of Trypanosoma brucei. As signal sequences we used the last 22 carboxy-terminal amino acids of glycosomal phosphoglycerate kinase for glycosomes, and the cleavable presequences of yeast cytochrome b2 or cytochrome oxidase subunit IV for mitochondria. Upon addition of aminopterin, a folate analogue that stabilizes the dihydrofolate reductase moiety, import of the fusion protein targeted to glycosomes was not inhibited, although the results of protease protection assays showed that the fusion protein could bind the drug. Under the same conditions, import of a DHFR fusion protein targeted to mitochondria was inhibited by aminopterin. When DHFR fusion proteins targeted simultaneously to both glycosomes and mitochondria were expressed, import into mitochondria was inhibited by aminopterin, whereas uptake of the same proteins into glycosomes was either unaffected or slightly increased. These findings suggest that the glycosomes possess either a strong unfolding activity or an unusually large or flexible translocation channel.  相似文献   

14.
To test the hypothesis that 70-kD mitochondrial heat shock protein (mt- hsp70) has a dual role in membrane translocation of preproteins we screened preproteins in an attempt to find examples which required either only the unfoldase or only the translocase function of mt-hsp70. We found that a series of fusion proteins containing amino-terminal portions of the intermembrane space protein cytochrome b2 (cyt. b2) fused to dihydrofolate reductase (DHFR) were differentially imported into mitochondria containing mutant hsp70s. A fusion protein between the amino-terminal 167 residues of the precursor of cyt. b2 and DHFR was efficiently transported into mitochondria independently of both hsp70 functions. When the length of the cyt. b2 portion was increased and included the heme binding domain, the fusion protein became dependent on the unfoldase function of mt-hsp70, presumably caused by a conformational restriction of the heme-bound preprotein. In the absence of heme the noncovalent heme binding domain in the longer fusion proteins no longer conferred a dependence on the unfoldase function. When the cyt. b2 portion of the fusion protein was less than 167 residues, its import was still independent of mt-hsp70 function; however, deletion of the intermembrane space sorting signal resulted in preproteins that ended up in the matrix of wild-type mitochondria and whose translocation was strictly dependent on the translocase function of mt-hsp70. These findings provide strong evidence for a dual role of mt-hsp70 in membrane translocation and indicate that preproteins with an intermembrane space sorting signal can be correctly imported even in mutants with severely impaired hsp70 function.  相似文献   

15.
《The Journal of cell biology》1989,109(4):1421-1428
Passage of precursor proteins through translocation contact sites of mitochondria was investigated by studying the import of a fusion protein consisting of the NH2-terminal 167 amino acids of yeast cytochrome b2 precursor and the complete mouse dihydrofolate reductase. Isolated mitochondria of Neurospora crassa readily imported the fusion protein. In the presence of methotrexate import was halted and a stable intermediate spanning both mitochondrial membranes at translocation contact sites accumulated. The complete dihydrofolate reductase moiety in this intermediate was external to the outer membrane, and the 136 amino acid residues of the cytochrome b2 moiety remaining after cleavage by the matrix processing peptidase spanned both outer and inner membranes. Removal of methotrexate led to import of the intermediate retained at the contact site into the matrix. Thus unfolding at the surface of the outer mitochondrial membrane is a prerequisite for passage through translocation contact sites. The membrane-spanning intermediate was used to estimate the number of translocation sites. Saturation was reached at 70 pmol intermediate per milligram of mitochondrial protein. This amount of translocation intermediates was calculated to occupy approximately 1% of the total surface of the outer membrane. The morphometrically determined area of close contact between outer and inner membranes corresponded to approximately 7% of the total outer membrane surface. Accumulation of the intermediate inhibited the import of other precursor proteins suggesting that different precursor proteins are using common translocation contact sites. We conclude that the machinery for protein translocation into mitochondria is present at contact sites in limited number.  相似文献   

16.
With vital yeast cells, a hybrid protein consisting of the amino-terminal third of the precursor to cytochrome b2 and of the entire dihydrofolate reductase was arrested on the import pathway into mitochondria. Accumulation of the protein in the mitochondrial membranes was achieved by inducing a stable tertiary structure of the dihydrofolate reductase domain. Thereby, three salient features of mitochondrial protein uptake in vivo were demonstrated: its posttranslational character; the requirement for unfolding of precursors; and import through translocation contact sites. The permanent occupation of translocation sites by the fusion protein inhibited the import of other precursors; it did, however, not lead to leakage of mitochondrial ions, implying the existence of a channel that is sealed around the membrane spanning polypeptide segment.  相似文献   

17.
Recent developments on virus-like particles have demonstrated their potential in transfecting eucaryotic cells. In the case of particles based on the major coat protein VP1 of polyoma virus, transfection occurs via binding of VP1 to sialic acids. Since sialic acid is present on almost every eucaryotic cell line, this results in an unspecific cell targeting. Generation of a cell-type specificity of this system would imply the presentation of a new function on the surface of VP1. To analyze whether a new functional protein can be placed on VP1, we inserted dihydrofolate reductase from Escherichia coli as a model protein. The effect of such an insertion on both VP1 and the inserted protein was investigated, respectively. The function of VP1, like the formation of pentameric capsomers and its ability to assemble into capsids, was not influenced by the insertion. The inserted dihydrofolate reductase showed major changes when compared to the wild-type form. The thermal stability of the enzyme was dramatically reduced in the fusion protein; nevertheless, the dihydrofolate reductase proved to be a fully active enzyme with only slightly increased K(M) values for its substrates. This model system provides the basis for further modifications of the VP1 protein to achieve an altered surface of VP1 with new properties.  相似文献   

18.
Translocation and folding of proteins imported into mitochondria are mediated by two matrix-localized chaperones, mhsp70 and hsp60. In order to investigate whether these chaperones act sequentially or in parallel, we studied their interaction with newly imported precursor proteins in isolated yeast mitochondria by coimmunoprecipitation. All precursors bound transiently to mhsp70. Release from mhsp70 required hydrolysis of ATP and did not immediately generate a tightly folded protein. For example, after imported mouse dihydrofolate reductase (a soluble monomeric enzyme) had been released from mhsp70, folding to a protease resistant conformation occurred only after a lag and was much slower than the release. Under standard import conditions, no significant association of DHFR with hsp60 could be detected. Similarly, newly imported hsp60 subunit was released from mhsp70 as an incompletely folded, unassembled intermediate which accumulated at low temperature and assembled to hsp60 14-mer at higher temperature in an ATP-dependent manner. Mas2p (the larger subunit of the MAS-encoded processing protease) first bound to mhsp70, then to hsp60, and only then assembled with its partner subunit, Mas1p. We propose that ATP-dependent release from mhsp70 is insufficient to cause folding of imported proteins and that assembly of hsp60 and Mas2p requires sequential, ATP-dependent interactions with mhsp70 and hsp60.  相似文献   

19.
20.
The cleavable pre-sequences of imported chloroplast and mitochondrial proteins have several features in common. This structural similarity prompted us to test whether a chloroplast pre-sequence (`transit peptide') can also be decoded by the mitochondrial import machinery. In the green alga, Chlamydomonas reinhardtii, the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (a chloroplast protein) is nuclear-encoded and synthesized in the cytosol with a transient pre-sequence of 45 residues. The 31 amino-terminal residues of this chloroplast pre-sequence were fused to mouse dihydrofolate reductase (a cytosolic protein) and to yeast cytochrome oxidase subunit IV (an imported mitochondrial protein) from which the authentic pre-sequence had been removed. The chloroplast pre-sequence transported both attached proteins into the yeast mitochondrial matrix or inner membrane, although it functioned less efficiently than an authentic mitochondrial pre-sequence. We conclude that mitochondrial and chloroplast pre-sequences perform their function by a similar mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号