首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decapod crustaceans synthesize highly active proteolytic enzymes in the midgut gland and release at least a part of them into the stomach where they facilitate the first step in peptide hydrolysis. The most common proteinases in the gastric fluid characterized so far are serine proteinases, that is, trypsin and chymotrypsin. These enzymes show highest activities at neutral or slightly alkaline conditions. The presence of acid proteinases, as they prevail in vertebrates, has been discussed contradictorily yet in invertebrates. In this study, we show that acid aspartic proteinases appear in the gastric fluid of several decapods. Lobsters Homarus gammarus showed the highest activity with a maximum at pH 3. These activities were almost entirely inhibited by pepstatin A, which indicates a high share of aspartic proteinases. In other species (Panulirus interruptus, Cancer pagurus, Callinectes arcuatus and Callinectes bellicosus), proteolytic activities were present at acid conditions but were distinctly lower than in H. gammarus. Zymograms at pH 3 showed in each of the studied species at least one, but mostly two-four bands of activity. The apparent molecular weight of the enzymes ranged from 17.8 to 38.6 kDa. Two distinct bands were identified which were inhibited by pepstatin A. Acid aspartic proteinases may play an important role in the process of extracellular digestion in decapod crustaceans. Activities were significantly higher in clawed lobster than in spiny lobster and three species of brachyurans. Therefore, it may be suggested that the expression of acid proteinases is favored in certain groups and reduced in others.  相似文献   

2.
The spectrum of Tenebrio molitor larval digestive proteinases was studied in the context of the spatial organization of protein digestion in the midgut. The pH of midgut contents increased from 5.2-5.6 to 7.8-8.2 from the anterior to the posterior. This pH gradient was reflected in the pH optima of the total proteolytic activity, 5.2 in the anterior and 9.0 in the posterior midgut. When measured at the pH and reducing conditions characteristic of each midgut section, 64% of the total proteolytic activity was in the anterior and 36% in the posterior midgut. In the anterior midgut, two-thirds of the total activity was due to cysteine proteinases, whereas the rest was from serine proteinases. In contrast, most (76%) of the proteolytic activity in the posterior midgut was from serine proteinases. Cysteine proteinases from the anterior were represented by a group of anionic fractions with similar electrophoretic mobility. Trypsin-like activity was predominant in the posterior midgut and was due to one cationic and three anionic proteinases. Chymotrypsin-like proteinases also were prominent in the posterior midgut and consisted of one cationic and four anionic proteinases, four with an extended binding site. Latent proteinase activity was detected in each midgut section. These data support a complex system of protein digestion, and the correlation of proteinase activity and pH indicates a physiological mechanism of enzyme regulation in the gut.  相似文献   

3.
Digestive proteinases of various taxa of invertebrates of the boreal seas have been studied: crustaceans Paralithodes camtchaticus, Pandalus borealis; molluscs Chlamys islandicus, Buccinum undatum, Serripes groenlandicus, and echinoderms Strongylocentrotus droebachiensis, Cucumaria frondosa, Asterias rubens, and Crossaster papposus. The presence of two proteolytic activity peaks in the acidic (pH 2.5–3.5) and lower alkaline ranges (pH 7.5–8.5) and a similar proteinase spectrum have been revealed in digestive organs of the studied animals. The proteolytic activity in digestive organs of the Barents Sea invertebrates exceeds significantly that of terrestrial homoiothermal animals, which seems to be an extensive compensation for poor differentiation of the digestive system and for low substrate specificity of the enzymes as well as for cold conditions of the habitat. The principal qualitative difference between vertebrates and invertebrates consists in that the latter have no pepsin activity, but do have the cathepsin activity that is absent in vertebrate digestive organs. Contribution to the acid proteolysis is made by lysosomal cathepsins, rather than by pepsins. Activity in the alkaline and neutral pH ranges is provided by serine proteinases. In digestive cavities of invertebrates, hydrolysis of proteins and mechanical processing of food occur only in the lower alkaline pH range, whereas acid proteolysis has intracellular lysosomal localization.  相似文献   

4.
The study of properties of proteolytic enzymes in midgut of imago of the cockroachNauphoeta cinerea Oliv. Has been carried out. It is shown that the total proteolytic activity of digestive proteases, measured with azocasein as substrate, is maximal at pH 11.5 both in the anterior and in the posterior parts of the midgut. The predominant part of this activity (67%) was present in the posterior part. Fractionation of preparation from the posterior part on a column with Sephadex G-50 and subsequent analysis of the activity in the obtained fractions using specificp-nitroanilide substrates and effects of activators and inhibitors of active center have allowed revealing three types of activity of serine proteinases and one cysteine proteinase. No activity of aspartic and metalloproteinases were detected. Among serine proteinases, one trypsin-like, one unusual SHdependent serine, one chymotrypsin-like, and not less than two enzymes hydrolyzing specific substrate of subtilisin were established. The fractionation of the preparation from the anterior part has allowed revealing only three proteinases that were similar by their properties to cysteine, SHdependent serine, and chymotrypsin-like ones in the posterior part of midgut. Their activity was lower in the anterior, than in the posterior part of the midgut. The probable causes of the low proteolytic activity in the anterior part of the midgut are discussed.  相似文献   

5.
Recent data on the nature of trypsin-, chymotrypsin-like proteinases of fish are generalized. Localization and secretion of these enzymes in pyloric appendages of fish are considered in detail. Trypsin and chymotrypsin are in the state of proenzymes and transform into the active form by means of their own proteolytic factors. It is observed that the classical methods for isolation of individual chymotrypsin and trypsin cannot be used in the case of fish, since the fish enzymes are stable in the neutral and low-alkaline media and unstable in the acid medium. This is, first of all, accounted for by differences in the physicochemical characteristics of the test enzymes. New data on the biospecific chromatography of serine proteinases of lower invertebrates are presented. Biospecific sorbents used for isolating enzymes from mammals are not always convenient for purification of fish serine proteinases. This evidences for considerable differences in their active sites and, probably, in their binding sites, whose nature is responsible for the specificity and is important for the selective chromatography of enzymes.  相似文献   

6.
We characterized the digestive proteinases of eight species of beetles to improve our understanding of the phylogenetic distribution of serine and cysteine proteinases. Serine proteinases function optimally under alkaline pH conditions, whereas cysteine proteinases require acidic pH. The phylogenetic distribution of cysteine proteinases suggests that they first appeared in an early cucujiform ancestor, however, data for some groups is patchy, and there has been speculation that they have been lost in at least one group, the long-horned beetles (Cerambycidae). The pattern we found supports the hypothesized origin of the proteinases and extends their distribution to an additional superfamily. In addition, we confirmed the presence of cysteine proteinases in some Curculionoidea. Cysteine proteinases were absent, however, from all three species of cerambycids surveyed, supporting the hypothesis that this group has reverted to the more ancestral serine (alkaline) digestive strategy. In four species we compared the pH optima for total proteolytic activity to the actual pH of the midgut and found the match between optimal and actual pH to be weaker in the cerambycids. These findings suggest that either a close correlation between midgut pH and the proteolytic pH optimum is not needed for adequate digestive efficiency, or that midgut pH is a more constrained digestive feature and there has been insufficient time for it to shift upwards to maximize serine proteinase activity.  相似文献   

7.
Structural basis of the endoproteinase-protein inhibitor interaction   总被引:9,自引:0,他引:9  
Proteolytic enzymes are potentially hazardous to their protein environment, so that their activity must be carefully controlled. Living organisms use protein inhibitors as a major tool to regulate the proteolytic activity of proteinases. Most of the inhibitors for which 3D structures are available are directed towards serine proteinases, interacting with the active sites in a 'canonical' i.e. substrate-like manner via an exposed reactive site loop of conserved conformation. More recently, some non-canonically binding serine proteinase inhibitors directed against coagulation factors, in particular thrombin, a few cysteine proteinase inhibitors inhibitory towards papain-like proteinases, and three zinc endopeptidase inhibitors directed against metzincins and thermolysin have been characterised in the free and complexed state, displaying novel mechanisms of inhibition with their target proteinases. These different interaction modes are presented and briefly discussed with respect to the different strategies applied by nature.  相似文献   

8.
Digestive proteinases of various taxa of invertebrates of the Northern seas have been studied: crustaceans Paralithodes camtchaticus, Pandalus borealis; molluscs Chlamys islandicus, Buccinum undatum, Serripes groenlandicus, and echinoderms Strongylocentrotus droebachiensis, Cucumaria frondosa, Asterias rubens, and Grossaster papposus. The presence of two proteolytic activity peaks in the acid (pH 2.5-3.5) and low alkaline zones (pH 7.5-8.5) and a similar proteinase spectrum have been revealed in digestive organs of the studied animals. The proteolytic activity in digestive organs of the Barents Sea invertebrates exceeds significantly that of terrestrial homoiothermal animals, which seems to be an extensive compensation for poor differentiation of the digestive system and for low substrate specificity of the enzymes as well as for cold conditions of the habitat. The principal qualitative difference between vertebrates and invertebrates consists in that the latter have no pepsin activity, but do have the cathepsin activity that is absent in vertebrate digestive organs. Contribution to the acid proteolysis is made by lysosomal cathepsins, rather than by pepsins. Activity in the alkaline and neutral pH zones is provided by serine proteinases. In digestive cavities of invertebrates, hydrolysis of proteins and mechanical processing of food occur only in the low alkaline zone, whereas acid proteolysis has intracellular lysosomal localization.  相似文献   

9.
The alpha-aminoboronic acid analog of proline has been synthesized and incorporated into a number of peptides as the COOH-terminal residue. These peptide prolyl boronic acids are potent inhibitors of both the type 1 and type 2 IgA proteinases from Neisseria gonorrhoeae and Hemophilus influenzae, but not of the functionally similar IgA proteinase from Streptococcus sanguis. The best inhibitors synthesized thus far have Ki values in the nanomolar range (4.0 to 60 nM). These results indicate that the N. gonorrhoeae and the H. influenzae enzymes belong to the serine protease family of proteolytic enzymes while that from S. sanguis does not. As a group, the IgA proteinases have been noted for their remarkable specificity; thus, the peptide prolyl boronic acids reported here are the first small synthetic molecules to exhibit a relatively high affinity for the active site of an IgA proteinase and are therefore the first to yield some insight into the active site structure and specificity requirements of these enzymes.  相似文献   

10.
The functioning of different proteinases hydrolysing proteins in a wide pH range, most of which display activity in the alkaline zone of pH, on the digestive-absorptive surfaces of the parasite and host has been investigated. The dynamics of desorption of these proteinases from the intestine of fishes and tegument of cestodes has been studied. It has been shown that the worms possess less proteolytic activity and less capacity for adsorption of proteinases as compared to the intestines of their hosts. The dependence of proteolytic activity of desorbed fractions on the incubation medium temperature has been noted: with the increase in temperature the enzymes, bound closely with the membranes, increase their capacity to hydrolyse proteins. The predominance in cestodes, as compared to the intestine, of easily desorbed fractions D1 and D2 (in the percent ratio of the total proteolytic activity of all fractions) has been detected.  相似文献   

11.
Proteinase activities in the larval midguts of the bruchids Callosobruchus maculatus and Zabrotes subfasciatus were investigated. Both midgut homogenates showed a slightly acidic to neutral pH optima for the hydrolysis of fluorogenic substrates. Proteolysis of epsilon-aminocaproil-Leu-Cys(SBzl)-MCA was totally inhibited by the cysteine proteinase inhibitors E-64 and leupeptin, and was activated by 1.5 mM DTT in both insects, while hydrolysis of the substrate Z-ArgArg-MCA was inhibited by aprotinin and E-64, which suggests that it is being hydrolysed by serine and cysteine proteinases. Gel assays showed that the proteolytic activity in larval midgut of C. maculatus was due to five major cysteine proteinases. However, based on the pattern of E-64 and aprotinin inhibition, proteolytic activity in larval midgut of Z. subfasciatus was not due only to cysteine proteinases. Fractionation of the larval midgut homogenates of both bruchids through ion-exchange chromatography (DEAE-Sepharose) revealed two peaks of activity against Z-ArgArg-MCA for both bruchid species. The fractions from C. maculatus have characteristics of cysteine proteinases, while Z. subfasciatus has one non-retained peak of activity containing cysteine proteinases and another eluted in a gradient of 250-350 mM NaCl. The proteolytic activity of the retained peak is higher at pH 8.8 than at pH 6.0 and corresponds with a single peak that is active against N-p-tosyl-GlyGlyArg-MCA, and sensitive to 250 microM aprotinin (90% inhibition). The peak contains a serine proteinase which hydrolyzes alpha-amylase inhibitor 1 from the common bean (Phaseolus vulgaris). Arch.  相似文献   

12.
We studied the dependence of activity and stability of proteolytic enzymes in salmon roe on pH and temperature. The activity of proteolytic enzymes in roe was primarily determined by proteinases. These enzymes were active at acid pH and had an optimum of 3.6. A study of subclasses of proteolytic enzymes in salmon roe and the published data suggest that the activity of proteinases may be related to the presence of aspartyl proteinases (cathepsin D). Serine proteinases and metalloenzymes were not found in roe. The activity of cysteine proteinases was low. The proposed conditions of pasteurization favored the complete inactivation of salmon roe at pH 6.0-6.4.  相似文献   

13.
We studied the dependence of activity and stability of proteolytic enzymes in salmon roe on pH and temperature. The activity of proteolytic enzymes in roe was primarily determined by proteinases. These enzymes were active at acid pH and had an optimum of 3.6. A study of subclasses of proteolytic enzymes in salmon roe and the published data suggest that the activity of proteinases may be related to the presence of aspartyl proteinases (cathepsin D). Serine proteinases and metalloenzymes were not found in roe. The activity of cysteine proteinases was low. The proposed conditions of pasteurization favored the complete inactivation of salmon roe at pH 6.0–6.4.  相似文献   

14.
G Salvesen  J J Enghild 《Biochemistry》1990,29(22):5304-5308
The majority of proteinases exist as zymogens whose activation usually results from a single proteolytic event. Two notable exceptions to this generalization are the serine proteinases neutrophil elastase (HNE) and cathepsin G (cat G), proteolytic enzymes of human neutrophils that are apparently fully active in their storage granules. On the basis of amino acid sequences inferred from the gene and cDNAs encoding these enzymes, it is likely that both are synthesized as precursors containing unusual C-terminal and N-terminal peptide extensions absent from the mature proteins. We have used biosynthetic radiolabeling and radiosequencing techniques to identify the kinetics of activation of both proteinases in the promonocyte-like cell line U937. We find that both N- and C-terminal extensions are removed about 90 min after the onset of synthesis, resulting in the activation of the proteinases. HNE and cat G are, therefore, transiently present as zymogens, presumably to protect the biosynthetic machinery of the cell from adventitious proteolysis. Activation results from cleavage following a glutamic acid residue to give an activation specificity opposite to those of almost all other serine proteinase zymogens, but shared, possibly, by the "granzyme" group of related serine proteinases present in the killer granules of cytotoxic T-lymphocytes and rat mast cell proteinase II.  相似文献   

15.
Tissue type plasminogen activator (tPA) is the physiological initiator of fibrinolysis, activating plasminogen via highly specific proteolysis; plasmin then degrades fibrin with relatively broad specificity. Unlike other chymotrypsin family serine proteinases, tPA is proteolytically active in a single-chain form. This form is also preferred for therapeutic administration of tPA in cases of acute myocardial infarction. The proteolytic cleavage which activates most other chymotrypsin family serine proteinases increases the catalytic efficiency of tPA only 5- to 10-fold. The X-ray crystal structure of the catalytic domain of recombinant human single-chain tPA shows that Lys156 forms a salt bridge with Asp194, promoting an active conformation in the single-chain form. Comparisons with the structures of other serine proteinases that also possess Lys156, such as trypsin, factor Xa and human urokinase plasminogen activator (uPA), identify a set of secondary interactions which are required for Lys156 to fulfil this activating role. These findings help explain the anomalous single-chain activity of tPA and may suggest strategies for design of new therapeutic plasminogen activators.  相似文献   

16.
Trypsin-like enzymes from the salivary gland complex (SGC) of Lygus hesperus Knight were partially purified by preparative isoelectric focusing (IEF). Enzyme active against Nalpha-benzoyl-L-arginine-p-nitroanilide (BApNA) focused at approximately pH 10 during IEF. This alkaline fraction gave a single activity band when analyzed with casein zymograms. The serine proteinase inhibitors, phenylmethylsulfonyl fluoride (PMSF) and lima bean trypsin inhibitor, completely inhibited or suppressed the caseinolytic activity in the crude salivary gland extract as well as the IEF-purified sample. Chicken egg white trypsin inhibitor also inhibited the IEF-purified sample but was not effective against a major caseinolytic band in the crude salivary gland extract. These data indicated the presence of serine proteinases in the SGC of L. hesperus. Cloning and sequencing of a trypsin-like precursor cDNA provided additional direct evidence for serine proteinases in L. hesperus. The encoded trypsin-like protein included amino acid sequence motifs, which are conserved with five homologous serine proteinases from other insects. Typical features of the putative trypsin-like protein from L. hesperus included residues in the serine proteinase active site (His(89), Asp(139), Ser(229)), conserved cysteine residues for disulfide bridges, residues (Asp(223), Gly(252), Gly(262)) that determine trypsin specificity, and both zymogen signal and activation peptides.  相似文献   

17.
The Lactococcus lactis SK11 cell envelope proteinase is an extracellular, multidomain protein of nearly 2,000 residues consisting of an N-terminal serine protease domain, followed by various other domains of largely unknown function. Using a strategy of deletion mutagenesis, we have analyzed the function of several C-terminal domains of the SK11 proteinase which are absent in cell envelope proteinases of other lactic acid bacteria. The various deletion mutants were functionally expressed in L. lactis and analyzed for enzyme stability, activity, (auto)processing, and specificity toward several substrates. C-terminal deletions of first the cell envelope W (wall) and AN (anchor) domains and then the H (helix) domain leads to fully active, secreted proteinases of unaltered specificity. Gradually increasing the C-terminal deletion into the so-called B domain leads to increasing instability and autoproteolysis and progressively less proteolytic activity. However, the mutant with the largest deletion (838 residues) from the C terminus and lacking the entire B domain still retains proteolytic activity. All truncated enzymes show unaltered proteolytic specificity toward various substrates. This suggests that the main role played by these domains is providing stability or protection from autoproteolysis (B domain), spacing away from the cell (H domain), and anchoring to the cell envelope (W and AN domains). In addition, this study allowed us to more precisely map the main C-terminal autoprocessing site of the SK11 proteinase and the epitope for binding of group IV monoclonal antibodies.  相似文献   

18.
Protease activities of rumen protozoa.   总被引:3,自引:1,他引:2       下载免费PDF全文
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

19.
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

20.
Increasing levels of inhibitors that target cysteine and/or serine proteinases were fed to Tribolium castaneum larvae, and the properties of digestive proteinases were compared in vitro. Cysteine proteinases were the major digestive proteinase class in control larvae, and serine proteinase activity was minor. Dietary serine proteinase inhibitors had minimal effects on either the developmental time or proteolytic activity of T. castaneum larvae. However, when larvae ingested cysteine proteinase inhibitors, there was a dramatic shift from primarily cysteine proteinases to serine proteinases in the proteinase profile of the midgut. Moreover, a combination of cysteine and serine proteinase inhibitors in the diet prevented this shift from cysteine proteinase-based digestion to serine proteinase-based digestion, and there was a corresponding substantial retardation in growth. These data suggest that the synergistic inhibitory effect of a combination of cysteine and serine proteinase inhibitors in the diet of T. castaneum larvae on midgut proteolytic activity and beetle developmental time is achieved through the prevention of the adaptive proteolytic response to overcome the activity of either type of inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号