首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Redox reactions were studied in more than 90% pure tonoplast and plasma membranes isolated by free-flow electrophoresis from soybean (Glycine max) hypocotyls. Both types of membrane contained a b-type cytochrome (alpha max = 561 nm) and a noncovalently bound flavin, two possible components of a transmembrane electron-transport chain. Isolated tonoplast and plasma membranes reduced ferricyanide, indophenol and various iron complexes with NADH or NADPH as electron donors. The redox activity was inhibited in tonoplast membranes by about 60% by 10 microM p-chloromercuribenzene sulfonate, 8% by 500 microM lanthanum nitrate and 10% by 100 microM nitrophenyl acetate. In contrast, the redox activity of isolated plasma membranes was inhibited by about 60% by 500 microM lanthanum nitrate or 100 microM nitrophenyl acetate, but only 25% by 10 microM p-chloromercuribenzene sulfonate. The results show that both tonoplast and plasma membranes of soybean contain active electron-transport systems, but that the two systems respond differently to inhibitors.  相似文献   

2.
Cigarette smoking contributes to the development or progression of numerous chronic and age-related disease processes, but detailed mechanisms remain elusive. In the present study, we examined the redox states of the GSH/GSSG and Cys/CySS couples in plasma of smokers and nonsmokers between the ages of 44 and 85 years (n = 78 nonsmokers, n = 43 smokers). The Cys/CySS redox in smokers (−64 ± 16 mV) was more oxidized than nonsmokers (− 76 ± 11 mV; p < .001), with decreased Cys in smokers (9 ± 5 μM) compared to nonsmokers (13 ± 6 μM; p < .001). The GSH/GSSG redox was also more oxidized in smokers (−128 ± 18 mV) than in nonsmokers (−137 ± 17 mV; p = .01) and GSH was lower in smokers (1.8 ± 1.3 μM) than in nonsmokers (2.4 ± 1.0; p < .005). Although the oxidation of GSH/GSSG can be explained by the role of GSH in detoxification of reactive species in smoke, the more extensive oxidation of the Cys pool shows that smoking has additional effects on sulfur amino acid metabolism. Cys availability and Cys/CySS redox are known to affect cell proliferation, immune function, and expression of death receptor systems for apoptosis, suggesting that oxidation of Cys/CySS redox or other perturbations of cysteine metabolism may have a key role in chronic diseases associated with cigarette smoking.  相似文献   

3.
The Caco-2 cell model was used to study the efficiency of absorption and endogenous excretion of zinc (Zn) regulated by dietary Zn concentration. Cells were seeded onto high pore-density membranes and maintained in medium supplemented with 10% FBS. After confluence, cells were treated with 5 or 25 μmol Zn/L for 7 d, and Zn uptake and transport were measured in both apical (AP) and basolateral (BL) directions by using 65Zn. Similar cells were labeled with 65Zn and the release of Zn to the AP and BL sides was measured. The AP uptake of Zn in cells exposed to 25 μmol Zn/L was slower (p < 0.05) than that in cells exposed to 5 μmol Zn/L. The AP to BL transport rate in the 25 μmol Zn/L group was only 40% (p < 0.05) of that in the 5 μM group. In contrast, the rate of BL Zn uptake was 4-fold higher in cells treated with 25 μmol Zn/L than in those treated with 5 μmol Zn/L (p < 0.05). The BL to AP transport rate was 2-fold higher in cells treated with 25 μmol Zn/L than in those treated with 5 μmol Zn/L (p < 0.05). Basolateral uptake was 6 to 25 times greater (p < 0.05) than AP uptake for cells treated with 5 and 25 μmol Zn/L, respectively. The rate of Zn release was enhanced about 4-fold (p < 0.05) by 25 μmol Zn/L treatment. Release to the BL side was 10 times greater than to the AP side. Zn-induced metallothionein (MT), thought to down-regulate AP to BL Zn transport, was 4-fold higher (p < 0.001) in the 25 μmol Zn/L group than in the 5 μM group, but the rate of BL Zn release was higher in cells treated with 25 μmol Zn/L than in those treated with 5 μmol Zn/L (p < 0.05). Induced changes in transport rates by media Zn concentrations could involve the up- and/or down-regulation of Zn influx and efflux proteins such as the ZIP and ZnT families of Zn transporters.  相似文献   

4.
Fatty acid hydroperoxides in the plasma of 18 patients who were undergoing normal postoperative periods following major thoracic or abdominal operations were measured by using a sensitive assay based upon the activation of the cyclooxygenase activity of prostaglandin H synthase. Following major thoracic operations of nine patients, the mean difference between the arterial (0.49 ± 0.13 μM, mean ± S.E.M.) and mixed venous (−0.09 ± 0.12 μM) level of hydroperoxide was 0.58 ± 0.13 μM (p < 0.01). In marked contrast to this result, major abdominal operations of nine patients led to a mean difference between the arterial (−0.19 ± 0.16 μM) and mixed venous (0.46 ± 0.08 μM) hydroperoxide levels of −0.65 ± 0.17 μM (p < 0.01). Both pulmonary and intraabdominal tissues appear capable of generating significant amounts of fatty acid hydroperoxide in response to standard surgical procedures. The A-MV differences suggest that the blood-borne hydroperoxides were rapidly cleared from the circulation by tissue capillary beds.  相似文献   

5.
Vesamicol [2-(4-phenylpiperidino)cyclohexanol, formerly AH5183] at a concentration of 10 μM reduced by 16–20% the amount of vesicle-bound ACh in intact pieces of Torpedo electric organ (isolated prisms). When [14C]acetate was applied to prisms in the presence of 10 μM vesamicol, vesicular translocation of newly synthesized [14C]ACh was inhibited by 40%. During short trains of field shocks given at 10 Hz to the tissue, vesamicol inhibited by 93% the release of [14C]ACh, but left the release of prestored ACh unaltered. In spite of these alterations, 10 μM vesamicol did not impair nerve-electroplaque transmission, even after prolonged electrical stimulation and during a recovery period. It is concluded that in the Torpedo electric organ the actions of vesamicol on ACh metabolism have apparently little or no effect on the efficiency of synaptic transmission.  相似文献   

6.
Objective: We have previously demonstrated that the inducible form of heme oxygenase plays a critical role in protecting against oxidative stress in mammals. To gain further insight into the functions of this enzyme in plants, we have tested its activity and expression in soybean nodules subjected to cadmium (Cd) stress.

Materials and methods: Four-weeks-old soybean nodulated plants were treated with different cadmium chloride concentrations (0, 50 and 200 μM) during 48 h. Oxidative stress parameters such as TBARS content, GSH levels and antioxidant enzyme activities were measured as well as heme oxygenase activity and expression. Besides, the effect of biliverdin and Zn-protophorphyrin IX were analized.

Results: Treatment with 200 μM Cd during 48 h caused a 67% increase in TBARS content, whereas GSH decreased 44%, and total superoxide dismutase, gluthatione reductase and guaiacol peroxidase were also inhibited 54, 20 and 60%, respectively. A total of 200 μM Cd produced the overexpression of heme oxygenase-1, as well as a 10-fold enhancement of its activity. Co-administration of biliverdin (10 μM) completely prevented the effects caused by Cd. Treatment with Zn protoporphyrin IX, a strong inhibitor of heme oxygenase, expectedly decreased heme oxygenase-1 activity to half. When the inhibitor was given together with Cd, completely prevented the enzyme induction and oxidative stress parameters were significantly enhanced.

Conclusion: Taking together, these results are indicating that heme oxygenase plays a protective role against oxidative cell damage in soybean nodules.  相似文献   

7.
The plasma membrane hexose transporter and the tonoplast hexose transporter from heterotrophically grown transformed Nicotiana tabacum cells have been studied in vitro using membrane vesicles for trans-zero transport studies. In highly purified phase-partitioned outside-out plasma membrane vesicles (PMV) the hexose transporter showed an apparent Km value of 230 microM (substrate: 3-O-methyl-D-glucose (3-OMG); pHi 7.2/pHo 7.2), which was reduced to 120 microM when a pH gradient was imposed (pHo 5.7/pHi 7.2). However, the Vmax value was not affected indicating that no stable pH gradient was formed. Uptake experiments with 14C-labelled acetate supported this interpretation. Transport was insensitive to N-ethylmaleimide (NEM; up to 1 mM concentration) and p-chloromercuribenzene sulfonate (PCMBS; up to 500 microM), whereas the tonoplast hexose transporter (in mixed inside / out and outside / out vesicles) was inhibited by NEM in a substrate-protectable manner, and PCMBS was also inhibitory. Kinetically two components with apparent Km values of 6 and 20 mM could be distinguished for the tonoplast hexose transporter. Substrate specificities of both transporters were similar except for D-galactose and D-fructose. The results indicate structural differences between the tonoplast and plasma membrane hexose transporters in plants.  相似文献   

8.
Summary NADH-ferricyanide oxido-reductase activity was demonstrated at the inner (cytoplasmic) aspect of plasma membranes and plasma membrane vesicles from hypocotyls of etiolated soybean (Glycine max L.) seedlings by cytochemical procedures. The plasma membrane-associated activity, observed in both tissue and vesicle preparations, resisted fixation in 0.1 % glutaraldehyde, required the presence of exogenous pyridine nucleotide and was inhibited by adriamycin. With tissue, the activity could be demonstrated only with broken cells where reactants could penetrate freely. With vesicles of plasma membrane origin, activity was seen only with cytoplasmic side out vesicles (fraction E) prepared by free-flow electrophoresis. Activity was observed also on the cytoplasmic surface of the tonoplast and on putative tonoplast vesicles oriented cytoplasmic side out.Recipient of a NSF/CNRS post doctoral fellowship.  相似文献   

9.
Aminopeptidase was detected in homogenates of the free-living nematode Panagrellus redivivus with the aminoacyl substrate L-alanine-4-nitroanilide. Subcellular distribution of activity was 80% soluble and 20% membrane-associated. Aminopeptidases in the two fractions differed in affinity for Ala-4-NA, with Km''s of 0.65 mM (soluble) and 2.90 mM (membrane). Specific activities (units/mg) at pH 7.8, 27°C were 9.10 (soluble) and 14.30 (membrane). Each enzyme was competitively inhibited by amastatin (90% at 100 μM inhibitor, IC50 = 3.7 μM) and inhibited by puromycin (30% at 500 μM) and 1,10-phenanthroline (IC50''s:; 148 μM, soluble; 89 μM, membrane). Activity was restored by Zn++, with maximum recoveries of 50% (soluble) and 90% (membrane), each at 23 μM ZnCl2. Estimated molecular masses for each were ∼150 kDa. FMRFamide-like neuropeptides behaved as competitive inhibitors. Modification of the N-terminal F of FMRFamide weakened inhibition by 95%, suggesting that the N-terminus is essential for binding to the enzyme. Two nematode FMRFamides, APKPFIRFa and RNKFEFIRFa, were the most potent tested. This is the first biochemical characterization of aminopeptidase in a free-living nematode other than Caenorhabditis elegans and demonstrates the high selectivity of the P. redivivus enzymes for neuropeptide substrates.  相似文献   

10.
Isolated hepatocytes incubated with selenite (30–100 μM) exhibited changes in the glutathione redox system as shown by an increase in O2 consumption, oxidation of glutathione and loss of NADPH. Selenite (50 μM) raised O2 consumption within the 1 h and induced an partial depletion of thiols with a concomitant increase in oxidized glutathione, as well as a decrease in NADPH levels within 2 h. With 100 μM selenite more pronounced effects were obtained such as a total depletion of thiols. This concentration of selenite also lysed cells within 3 h. Arsenite, HgCl2 and KCN prevented the increase in O2 uptake, counteracted loss of thiols and delayed selenite induced lysis. p-Tert-butylbenzoic acid, an inhibitor of gluconeogenesis, decreased selenite dependent O2 consumption and potentiated the effect on NADPH levels as well as the toxic effect. Finally, methionine further enhanced O2 consumption by selenite and also delayed loss of thiols and potentiated selenite toxicity. These results indicated that selenite catalyzed a reduction of O2 in glutathione dependent redox cycles with NADPH as an electron donor. With subtoxic concentrations of selenite (50 μM) there were indications that O2 reduction was terminated by selenite biotransformation to methylated metabolites. With toxic concentrations of selenite (100 μM) it appeared that O2 reduction was eventually limited by the capacity of the cell to regenerate NADPH. It is suggested that a depletion of NADPH mediated the observed cytotoxicity of selenite.  相似文献   

11.
An isocratic liquid chromatographic method employing one extraction step and a 150 mm × 4.6 mm I.D. Spherisorb ODS2, 3-μm HPLC column using UV-absorbance detection at 210 nm has been developed for the quantitation of felbamate and three felbamate metabolites in 0.100-ml aliquots of rat and dog plasmas. The linear quantitation range in rat plasma is 0.195–200 μg/ml for felbamate; 1.563–200 μg/ml for the p-hydroxy metabolite; 0.391–200 μg/ml for the 2-hydroxy metabolite; and 0.098–200 μg/ml for the monocarbamate metabolite. The linear quantitation range in dog plasma is 0.195–200 μg/ml for felbamate; 0.781–200 μg/ml for the p-hydroxy metabolite; 0.195–200 μg/ml for the 2-hydroxy metabolite; and 0.098–200 μg/ml for the monocarbamate metabolite.  相似文献   

12.
A simple, accurate and precise isocratic reversed-phase high-performance liquid chromatographic method was developed and validated for the determination of p-chloronitrobenzene (p-CNB) in rat plasma. A plasma sample was deproteinized with methanol containing the internal standard (p-bromonitrobenzene). The resulting methanol eluate obtained after centrifugation was filtered and injected into a high-performance liquid chromatograph (50 μl each). A column packed with 5 μm octadecylsilane (ODS) spherical particles was used with isocratic elution of methanol—water (45:55, v/v) at a flow-rate of 1.0 ml/min. The compounds were detected by ultraviolet absorbance at 280 nm. The retention times of p-CNB and the internal standard were 12.5 and 15.5 min, respectively, at a column oven temperature of 30°C. The results were linear from 0.05 to 100 μg/ml (r = 0.999), and the detection limit was 0.01 μg/ml. The relative error and the coefficient of variation on replicate assays were less than 7 and 10%, respectively, for all concentrations studied. The overall recoveries of p-CNB were between 97 and 105%. Plasma samples could be stored for up to one month at −20°C.  相似文献   

13.
H.H. Robinson  R.R. Sharp  C.F. Yocum   《BBA》1980,593(2):414-426
Treatments (illumination, chemical oxidation or reduction) which are potentially capable of producing paramagnetic centers in chloroplast thylakoid membranes do not produce enhancements of the proton magnetic relaxivities of these preparations. However, exposure of thylakoid membranes to varying concentrations of hydroxylamine induces a time-dependent increase in relaxivity for which the steady-state magnitude is dependent on hydroxylamine concentration. The appearance of relaxivity is correlated kinetically with inactivation of oxygen-evolving centers; in addition both processes show a threshold effect with respect to hydroxylamine concentration. Kinetic analyses of these hydroxylamine-induced effects suggest that at low (100 μM) and at intermediate (200–500 μM) concentrations, hydroxylamine extraction is partially counteracted by a reverse process that reactivates oxygen-evolving centers in the dark.  相似文献   

14.
Results of a 7-month field test of in situ bioremediation of carbon tetrachloride (CT) under denitrifying conditions are reported. The demonstration was conducted in a portion of a several-square-mile CT and nitrate plume. Pretest CT and nitrate levels were 12.5 ± 0.14 μM and 3.87 ± 0.26 mM, respectively. During the test, the CT concentration dropped by 3.71 ± μM, representing an estimated total of 1.42 kg of CT destroyed. The total quantities of acetate and nitrate injected during the demonstration were 221 and 300 kg, respectively. Nitra injection was composed of short-duration, high-concentration pulses added with acetate pulses, and continuously injected nitrate that was present in the surrounding groundwater. Biomass was distributed successfully within the flow field without fouling the injection well. Levels of planktonic denitrifiers increased 10- and 5-fold in monitoring wells 3 and 6 m downstream from the injection well, respectively. A distributed growth pattern was indicated through reductions in the concentrations of acetate, nitrate, and nitrite between these wells. Chloroform (CF) production was controlled by adjusting acetate and nitrate pulsing to keep low levels of nitrate in most of the flow field. Under this regime only 1 mol% of transformed CT appeared as CF. In contrast, approximately 33 mol% of CT transformed to appear as CF when nutrient-feeding conditions were adjusted so that nitrate was consistently absent.  相似文献   

15.
W. A. Cramer  P. Horton  J. J. Donnell 《BBA》1974,368(3):361-370
The presence of low (1–4 μM) concentrations of carbonylcyanide p-trifluoromethoxyphenylhydrazone during actinic illumination of chloroplasts generally inhibits the rate of subsequent dark chemical oxidation-reduction reactions of cytochrome ƒ and b-559. Ferricyanide oxidation and ascorbate reduction of cytochromes ƒ and b-559 are inhibited, as is hydroquinone reduction of cytochrome b-559. Inhibition by carbonylcyanide p-trifluoromethoxyphenylhydrazone of hydroquinone reduction of cytochrome ƒ, the most rapid of these chemical oxidation-reduction reactions, cannot be detected. The rate of the chemical redox reactions of the cytochromes in the presence of carbonylcyanide p-trifluoromethoxyphenylhydrazone are all markedly dependent upon the concentration of oxidant or reductant except the hydroquinone reduction of cytochrome b-559 photooxidized in the presence of carbonylcyanide p-trifluoromethoxyphenylhydrazone.

The data is interpreted in terms of an effect of carbonylcyanide p-trifluoromethoxyphenylhydrazone on thylakoid membrane structure which generally inhibits accessibility to the hydrophobic interior of the membrane, possibly through an increase in membrane microviscosity. The question of whether such an effect on membrane structure could be involved in uncoupling or inhibition effects of the carbonylcyanidephenylhydrazone compounds is discussed, as is the special effect of these compounds on the cytochrome b-559 photoreactions at room temperature.  相似文献   


16.
We have previously shown that crystals of calcium oxalate (COM) elicit a superoxide (O2) response from mitochondria. We have now investigated: (i) if other microparticles can elicit the same response, (ii) if processing of crystals is involved, and (iii) at what level of mitochondrial function oxalate acts. O2 was measured in digitonin-permeabilized MDCK cells by lucigenin (10 μM) chemiluminescence. [14C]-COM dissociation was examined with or without EDTA and employing alternative chelators. Whereas mitochondrial O2 in COM-treated cells was three- to fourfold enhanced compared to controls, other particulates (uric acid, zymosan, and latex beads) either did not increase O2 or were much less effective (hydroxyapatite +50%, p < 0.01), with all at 28 μg/cm2. Free oxalate (750 μM), at the level released from COM with EDTA (1 mM), increased O2 (+50%, p < 0.01). Omitting EDTA abrogated this signal, which was restored completely by EGTA and partially by ascorbate, but not by desferrioxamine or citrate. Omission of phosphate abrogated O2, implicating phosphate-dependent mitochondrial dicarboxylate transport. COM caused a time-related increase in the mitochondrial membrane potential (Δψm) measured using TMRM fluorescence and confocal microscopy. Application of COM to Fura 2-loaded cells induced rapid, large-amplitude cytosolic Ca2+ transients, which were inhibited by thapsigargin, indicating that COM induces release of Ca2+ from internal stores. Thus, COM-induced mitochondrial O2 requires the release of free oxalate and contributes to a synergistic response. Intracellular dissociation of COM and the mitochondrial dicarboxylate transporter are important in O2 production, which is probably regulated by Δψm.  相似文献   

17.
The effect of clomiphene, an ovulation-inducing agent, on cytosolic free Ca2+ levels ([Ca2+]i) in populations of PC3 human prostate cancer cells was explored by using fura-2 as a Ca2+ indicator. Clomiphene at concentrations between 10-50 μM increased [Ca2+]i in a concentration-dependent manner. The [Ca2+]i signal was biphasic with an initial rise and a slow decay. Ca2+ removal inhibited the Ca2+ signal by 41%. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with clomiphene in Ca2+-free medium, confirming that clomiphene induced Ca2+ entry. In Ca2+-free medium, pretreatment with 50 μM brefeldin A (to permeabilize the Golgi complex), 1 μM thapsigargin (to inhibit the endoplasmic reticulum Ca2+ pump), and 2 μM carbonylcyanide m-chlorophenylhydrazone (to uncouple mitochondria) inhibited 25% of 50 μM clomiphene-induced store Ca2+ release. Conversely, pretreatment with 50 μM clomiphene in Ca2+-free medium abolished the [Ca2+]i increase induced by brefeldin A, thapsigargin or carbonylcyanide m-chlorophenylhydrazone. The 50 μM clomiphene-induced Ca2+release was unaltered by inhibiting phospholipase C with 2 μM 1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Trypan blue exclusion assay suggested that incubation with clomiphene (50 μM) for 2-15 min induced time-dependent decrease in cell viability by 10-50%. Collectively, the results suggest that clomiphene induced [Ca2+]i increases in PC3 cells by releasing store Ca2+ from multiple stores in an phospholipase C-independent manner, and by activating Ca2+ influx; and clomiphene was of mild cytotoxicity.  相似文献   

18.
Fasting increases neuropeptide Y (NPY) concentrations in the arcuate nucleus (ARC), its site of synthesis, and in other regions of the rat hypothalamus. Neuropeptide Y is a potent central orexigenic agent and may therefore stimulate appetite during fasting. We tested the hypothesis that low plasma insulin levels stimulate ARC levels of NPY in fasted rats. Compared with freely fed controls (n = 8), rats fasted for 72 h (n = 8) showed significantly lower plasma insulin levels (28.9 ± 1.6 vs. 52.6 ± 5.7 pmol/l; p < 0.001) and higher ARC NPY concentrations (14.2 ± 1.8 vs. 8.4 ± 2.2 fmol/μg protein; p < 0.001). Fasted rats treated with subcutaneous insulin (5 U/kg/day; n = 10), which nearly normalized plasma insulin (46.6 ± 2.8 pmol/l), showed intermediate ARC NPY levels (11.2 ± 1.4 fmol/μg protein; p < 0.01 vs. controls and untreated fasted rats). Insulin administered peripherally, therefore, attenuates fasting-induced NPY increases in the ARC, supporting the hypothesis that hypoinsulinemia stimulates hypothalamic NPY.  相似文献   

19.
Highly purified plasma membranes were isolated by aqueous two-phase partitioning from rice (Oryza sativa) seedling roots. The effects of lanthanum chloride (LaCl3) on the activities of lipid peroxidation, the redox system and H+-ATPase, Ca2+-ATPase of plasma membranes were studied. The lipid peroxidation of plasma membranes could be depressed by certain low concentrations of LaCl3 and enhanced by high concentrations of LaCl3, while the lipid peroxidation was also dependent on the plasma membrane protein and incubation time. The relative activity of O2 uptake of plasma membranes was inhibited by all tested LaCl3 concentrations. In contrast, the reduction rate of Fe(CN)6 3– by plasma membranes was stimulated below 40 M of LaCl3, but was reduced above 60 M of LaCl3. The relative activities of both H+-ATPase and Ca2+-ATPase increased constantly from control to LaCl3 of concentration 60 M where the activities of both enzymes were the maximum, but decreased remarkably at 80 M LaCl3 concentrations various LaCl3 were added to culture solutions. In the other measurement case in which various LaCl3 concentrations were added directly to reaction medium and the plasma membrane vesicles only came from the control cultured rice seedling roots, the response of H+-ATPase activity to La3+ was similar to the response in culture solution. However, the La3+ concentration was only 20 M when the activity of H+-ATPase was the maximum. In contrast to the case of LaCl3 addition to culture solution, Ca2+-ATPase activity was inhibited by all concentrations of La3+ which were added directly to the reaction medium. The above results revealed that REEs inhibited electron transfer from NADH to oxygen in plant plasma membranes, depressed the production of active oxygen radicals, and reduced the formation of lipid peroxides through plasma membrane lipid peroxidation. REEs ions also enhanced the H+ extrusion by both standard redox system and H+-ATPase in plasma membranes at certain concentrations. A possible role for the plant cell wall in REEs effects on plasma membranes was also suggested.  相似文献   

20.
Highly purified plasma membrane vesicles were prepared from yeast protoplasts by a combination of osmotic lysis, differential centrifugation, and separation in an aqueous dextran/polyethylene glycol two-phase system. The vesicles were predominantly (85-90%) of cytoplasmic side-out orientation and displayed large ATP-dependent proton pumping activity which was inhibited by vanadate (100 μM) but not by bafilomycin or nitrate. The preparation presented a distinct polypeptide profile with respect to the total membrane fraction and was enriched in the 110-kDa polypeptide corresponding to the plasma membrane H+-ATPase. This preparation of native plasma membranes vesicles is especially suitable for functional studies in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号