首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endosomal density shift is related to a decrease in fusion capacity.   总被引:2,自引:0,他引:2  
Dinitrophenol (DNP)-beta-glucuronidase and mannosylated anti-DNP IgG, which are endocytosed by the mannose receptor and delivered to lysosomes, were previously developed as probes for examination of fusion between early endosomes in a cell-free system. In this study, these probes were found to be transported by intact cells to endocytic vesicles with heavy buoyant density at different rates, as determined by Percoll gradient fractionation of cell homogenates. There was a concomitant loss of in vitro fusion activity as the ligands moved to dense compartments. In monensin-treated cells, DNP-beta-glucuronidase was retained in a light compartment corresponding to intracellular vesicles capable of fusion in vitro. Pulse-chase studies using a DNP-derivatized transferrin-alkaline phosphatase conjugate showed that a recycling ligand was always found in light intracellular vesicles that were capable of fusion to early endosomes in vitro. In contrast to cell-free systems, intact cells sequentially labeled with DNP-beta-glucuronidase and then mannosylated anti-DNP IgG showed ligand mixing in both early and late endocytic compartments. Treatment with nocodazole or colchicine did not affect the rate of DNP-beta-glucuronidase transport to heavy vesicles in intact cells, however, the extent of ligand mixing in late endosomes was decreased by microtubule disruption. Using sequentially labeled cells split into two groups, we directly compared ligand mixing in vitro to mixing by intact cells. Fusion alone does not mediate increases in vesicle density, since DNP-beta-glucuronidase/anti-DNP IgG complexes formed in vitro were found in light vesicles, while intact cells showed immune complexes predominantly in heavy vesicles. These results suggest that the density shift is an initial step in targeting to lysosomes.  相似文献   

2.
In vitro fusion of endosomes following receptor-mediated endocytosis   总被引:25,自引:0,他引:25  
Receptor-mediated endocytosis and receptor recycling involve a series of intracellular membrane fusion events that appear to play an important role in the regulation of the overall rate and efficiency of the process. An endosome-endosome fusion assay is described using two ligands that (i) rapidly and efficiently enter the endosomal compartment via the macrophage mannose receptor and (ii) that mutually recognize each other. Dinitrophenol-derivatized beta-glucuronidase (DNP-beta-glucuronidase), a ligand for the mannose receptor, was endocytosed by one population of J774 E clone cells, and mannose-derivatized monoclonal anti-DNP IgG (Man-IgG) was internalized by a second set of cells. Both ligands were localized in endosomes as determined by fractionation on Percoll gradients. Incubation of vesicles prepared from the two set of cells resulted in vesicle fusion as indicated by the formation of DNP-beta-glucuronidase-Man-IgG complexes. Under standard conditions, fusion was time-, ATP-, and temperature-dependent. KCl was required for fusion. Fusion required both cytosolic- and membrane-associated proteins. N-Ethylmaleimide treatment of cytosol inhibited fusion. Proton ionophores and amines had no effect on the fusion reaction. ATP-dependent fusion was only observed between early endocytic compartments. While in the presence of a Ca2+ chelator fusion was ATP-dependent, in its absence fusion was also observed in an ATP-independent fashion.  相似文献   

3.
The presence of acid proteases in the endosomal compartment of macrophages has been recently demonstrated (Diment, S., Leech, M. S., and Stahl, P. D. (1988) J. Biol. Chem. 263, 6901-6907). This proteolytic activity allows the early degradation of ligands internalized by receptor-mediated endocytosis. To study the early steps that initiate the proteolytic processing of ligands, immune complexes formed with anti-dinitrophenol monoclonal IgG and radiolabeled dinitrophenol-derivatized bovine serum albumin were bound at 4 degrees C to Fc receptors of J774 macrophages. Cells were allowed to internalize immune complexes bound to the plasma membrane for different periods of time at 37 degrees C. Vesicle preparations generated from these cells were incubated in vitro at acidic pH to allow the hydrolysis of ligands located in protease-positive compartments. Ligand hydrolysis was observed after about 5 min of internalization, suggesting that at earlier times immune complexes were located in protease-free vesicles. Upon incubation of cell lysates under conditions that support in vitro endosome-endosome fusion, early protease-free endosomes containing ligand acquire proteolytic activity. Reconstitution of fusion-dependent proteolysis required energy, ions, membrane-associated factors, and cytosol. Cytosol was inactivated by incubation with N-ethylmaleimide. The proteolytic compartment formed upon in vitro incubation colocalized with endosomes in the light region of a Percoll gradient. Reconstitution was also achieved using an endosomal preparation separated from lysosomes in a Percoll gradient. Our results indicate that a fusion step between newly formed endocytic vesicles and a light density, protease-positive compartment triggers the proteolytic processing of ligands internalized by receptor-mediated endocytosis.  相似文献   

4.
Y Goda  S R Pfeffer 《FASEB journal》1989,3(13):2488-2495
Proteins bound for the cell surface, lysosomes, and secretory storage granules share a common pathway of intracellular transport. After their synthesis and translocation into the endoplasmic reticulum, these proteins traverse the secretory pathway by a series of vesicular transfers. Similarly, nutrient and signaling molecules enter cells by endocytosis, and move through the endocytic pathway by passage from one membrane-bound compartment to another. Little is known about the mechanisms by which proteins are collected into transport vesicles, or how these vesicles form, identify their targets, and subsequently fuse with their target membranes. An important advance toward our understanding these processes has come from the establishment of cell-free systems that reconstitute vesicular transfers in vitro. It is now possible to measure, in vitro, the transport of proteins from the endoplasmic reticulum to the Golgi, between Golgi cisternae, and the formation of transport vesicles en route from the trans Golgi network to the cell surface. Along the endocytic pathway, cell-free systems are available to study clathrin-coated vesicle formation, early endosome fusion, and the fusion of late endosomes with lysosomes. Moreover, the selective movement of receptors between late endosomes and the trans Golgi network has also been reconstituted. The molecular mechanisms of vesicular transport are now amenable to elucidation.  相似文献   

5.
In vitro clustering and multiple fusion among macrophage endosomes   总被引:4,自引:0,他引:4  
Early steps of receptor-mediated endocytosis appear to require the fusion of endosomes with each other. Recently, these fusion events have been reconstituted in vitro using vesicle preparations from J774 macrophages which have internalized ligands via the mannose receptor (Diaz, R., Mayorga, L., and Stahl, P. (1988) J. Biol. Chem. 263, 6093-6100). The present studies indicate that endosomes first form clusters when incubated under fusogenic conditions. Aggregation state was determined by electron microscopy using vesicles containing ligand-coated colloidal gold of different sizes previously internalized via the mannose receptor. Aggregation required cytosol and ATP. Afterwards, the limiting membranes of the vesicles composing these aggregates undergo multiple fusion and bring about the formation of large diameter vesicles that maintained the same density as endosomes when analyzed by Percoll gradient sedimentation. These large diameter vesicles were no longer fusogenic in the fusion assay. Multiple fusion was determined morphologically by the co-localization of three different size colloidal gold vesicles inside endocytic vesicles and biochemically by the fusion-dependent formation of triple immune complexes between three endocytic ligands internalized by receptor-mediated endocytosis: anti-dinitrophenol mouse IgG and dinitrophenol-derivatized beta-glucuronidase, ligands for the mannose receptor, and aggregated rabbit anti-mouse IgG, a ligand for the macrophage Fc receptor.  相似文献   

6.
Rab GTPases are recognized as critical regulatory factors involved in vesicular membrane transport and endosomal fusion. For example, Rab5 directs the transport and fusion of endocytic vesicles to and with early endosomes, whereas Rab4 is thought to control protein trafficking from early endosomes back to the plasma membrane. In the present study, we investigated the role of Rab5 and Rab4 GTPases in regulating the endocytosis, intracellular sorting, and the plasma membrane recycling of the beta(2)AR. In cells expressing the dominant-negative Rab5-S34N mutant, beta(2)AR internalization was impaired, and beta(2)AR-bearing endocytic vesicles remained in either close juxtaposition or physically attached to the plasma membrane. In contrast, a constitutively active Rab5-Q79L mutant redirected internalized beta(2)AR to enlarged endosomes but did not prevent beta(2)AR dephosphorylation and recycling. The expression of either wild-type Rab4 or a Rab4-N121I mutant did not prevent beta(2)AR dephosphorylation. However, the dominant-negative Rab4-N121I mutant blocked beta(2)AR resensitization by blocking receptor recycling from endosomes back to the cell surface. Our data indicate that, in addition to regulating the intracellular trafficking and fusion of beta(2)AR-bearing endocytic vesicles, Rab5 also contributes to the formation and/or budding of clathrin-coated vesicles. Furthermore, beta(2)AR dephosphorylation occurs as the receptor transits between Rab5- and Rab4-positive compartments.  相似文献   

7.
Previously we reported that internalized ligand-receptor complexes are transported within the alveolar macrophage at a rate that is independent of the ligand and/or receptor but is dependent on the endocytic apparatus (Ward, D. M., R. S. Ajioka, and J. Kaplan. 1989. J. Biol. Chem. 264:8164-8170). To probe the mechanism of intracellular vesicle transport, we examined the ability of vesicles internalized at different times to fuse. The mixing of ligands internalized at different times was studied using the 3,3'-diaminobenzidine/horseradish peroxidase density shift technique. The ability of internalized vesicles to fuse was dependent upon their location in the endocytic pathway. When ligands were administered as tandem pulses a significant amount of mixing (20-40%) of vesicular contents was observed. The pattern of mixing was independent of the ligands employed (transferrin, mannosylated BSA, or alpha macroglobulin), the order of ligand addition, and temperature (37 degrees C or 28 degrees C). Fusion was restricted to a brief period immediately after internalization. The amount of fusion in early endosomes did not increase when cells, given tandem pulses, were chased such that the ligands further traversed the early endocytic pathway. Little fusion, also, was seen when a chase was interposed between the two ligand pulses. The temporal segregation of vesicle contents seen in early endosomes was lost within late endosomes. Extensive mixing of vesicle contents was observed in the later portion of the endocytic pathway. This portion of the pathway is defined by the absence of internalized transferrin and is composed of ligands en route to lysosomes. Incubation of cells in iso-osmotic medium in which Na+ was replaced by K+ inhibited movement of internalized ligands to the lysosome, resulting in ligand accumulation within the late endocytic pathway. The accumulation of ligand was correlated with extensive mixing of sequentially internalized ligands. Although significant amounts of ligand degradation were observed, this compartment was devoid of conventional lysosomal markers such as acid glycosidases. These results indicate changing patterns of vesicle fusion within the endocytic pathway, with a complete loss of temporal ligand segregation in a prelysosomal compartment.  相似文献   

8.
Receptor-mediated endocytosis is the most specific pathway for macromolecules and macromolecular complexes generally designated as ligands to enter cells. Upon binding to their transmembrane receptors, the ligands enter endocytic vesicles that fuse with each other giving rise to the so-called early endosomes. The sorting of ligand-receptor complexes internalized in these endosomes depends on their nature: metabolic receptors are recycled back to the plasma membrane, while signaling receptors and their ligands (e.g. receptor tyrosine kinases or receptors associated with tyrosine kinase) are delivered to internal vesicles of the multivesicular late endosomes and finally are degraded after interaction with lysosomes. During these processes, endosomes undergo translocation from the cell periphery to the juxtanuclear region, which is accompanied by multiple fusion, invagination, tabulation, and membrane fission events. This review considers modern concepts of the sorting mechanisms of ligand-receptor complexes, the crosstalk between endosomes, microtubules, and actin, and the role of this crosstalk in endosome maturation.  相似文献   

9.
The transfer of molecules from the cell surface to the early endosomes is mediated by preendosomal vesicles. These vesicles, which have pinched off completely from the plasma membrane but not yet fused with endosomes, form the earliest compartment along the endocytic route. Using a new assay to distinguish between free and cell surface connected vesicle profiles, we have characterized the preedosomal compartment ultrastructurally. Our basic experimental setup was labeling of the entire cell surface at 4 degrees C with Con A-gold, warming of the cells to 37 degrees C to allow endocytosis, followed by replacing incubation medium with fixative, all within either 30 or 60 s. Then the fixed cells were incubated with anti-Con A-HRP to distinguish truly free (gold labeled) endocytic vesicles from surface-connected structures. Finally, analysis of thin (20-30 nm) serial sections and quantification of vesicle diameters were carried out. Based on this approach it is shown that the preendosomal compartment comprises both clathrin-coated and non-coated endocytic vesicles with approximately the same frequency but with distinct diameter distributions, the average noncoated vesicle being smaller (95 nm) than the average coated one (110 nm). In parallel experiments, using an anti-transferrin receptor gold-conjugate as a specific marker for clathrin-dependent endocytosis it is also shown that uncoating of coated vesicles plays only a minor role for the total frequency of noncoated vesicles. Furthermore, after perturbation of clathrin-dependent endocytosis by potassium depletion where uptake of transferrin is blocked, noncoated endocytic vesicles with Con A-gold, but not coated vesicles, exist already after 30 and 60 s. Finally, it is shown that the existence of small, free vesicles in the short-time experiments cannot be ascribed to recycling from the early endosomes.  相似文献   

10.
We have previously demonstrated that the preendosomal compartment in addition to clathrin-coated vesicles, comprises distinct nonclathrin coated endocytic vesicles mediating clathrin-independent endocytosis (Hansen, S. H., K. Sandvig, and B. van Deurs. 1991. J. Cell Biol. 113:731-741). Using K+ depletion in HEp-2 cells to block clathrin- dependent but not clathrin-independent endocytosis, we have now traced the intracellular routing of these nonclathrin coated vesicles to see whether molecules internalized by clathrin-independent endocytosis are delivered to a unique compartment or whether they reach the same early and late endosomes as encountered by molecules internalized with high efficiency through clathrin-coated pits and vesicles. We find that Con A-gold internalized by clathrin-independent endocytosis is delivered to endosomes containing transferrin receptors. After incubation of K(+)- depleted cells with Con A-gold for 15 min, approximately 75% of Con A- gold in endosomes is colocalized with transferrin receptors. Endosomes containing only Con A-gold may be accounted for either by depletion of existing endosomes for transferrin receptors or by de novo generation of endosomes. Cationized gold and BSA-gold internalized in K(+)- depleted cells are also delivered to endosomes containing transferrin receptors. h-lamp-1-enriched compartments are only reached occasionally within 30 min in K(+)-depleted as well as in control cells. Thus, preendosomal vesicles generated by clathrin-independent endocytosis do not fuse to any marked degree with late endocytic compartments. These data show that in HEp-2 cells, molecules endocytosed without clathrin are delivered to the same endosomes as reached by transferrin receptors internalized through clathrin-coated pits.  相似文献   

11.
12.
After endocytosis, lysosomally targeted ligands pass through a series of endosomal compartments. The endocytic apparatus that accomplishes this passage may be considered to take one of two forms: (a) a system in which lysosomally targeted ligands pass through preexisting, long-lived early sorting endosomes and are then selectively transported to long-lived late endosomes in carrier vesicles, or (b) a system in which lysosomally targeted ligands are delivered to early sorting endosomes which themselves mature into late endosomes. We have previously shown that sorting endosomes in CHO cells fuse with newly formed endocytic vesicles (Dunn, K. W., T. E. McGraw, and F. R. Maxfield. 1989. J. Cell Biol. 109:3303-3314) and that previously endocytosed ligands lose their accessibility to fusion with a half-time of approximately 8 min (Salzman, N. H., and F. R. Maxfield. 1989. J. Cell Biol. 109:2097-2104). Here we have studied the properties of individual endosomes by digital image analysis to distinguish between the two mechanisms for entry of ligands into late endosomes. We incubated TRVb-1 cells (derived from CHO cells) with diO-LDL followed, after a variable chase, by diI-LDL, and measured the diO content of diI-containing endosomes. As the chase period was lengthened, an increasing percentage of the endosomes containing diO-LDL from the initial incubation had no detectable diI-LDL from the second incubation, but those endosomes that contained both probes showed no decrease in the amount of diO-LDL per endosomes. These results indicate that (a) a pulse of fluorescent LDL is retained by individual sorting endosomes, and (b) with time sorting endosomes lose the ability to fuse with primary endocytic vesicles. These data are inconsistent with a preexisting compartment model which predicts that the concentration of ligand in sorting endosomes will decline during a chase interval, but that the ability of the stable sorting endosome to receive newly endocytosed ligands will remain high. These data are consistent with a maturation mechanism in which the sorting endosome retains and accumulates lysosomally directed ligands until it loses its ability to fuse with newly formed endocytic vesicles and matures into a late endosome. We also find that, as expected according to the maturation model, new sorting endosomes are increasingly labeled during the chase period indicating that new sorting endosomes are continuously formed to replace those that have matured into late endosomes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Phagosome maturation involves extensive remodelling of the phagosomal membrane as a result of intracellular transport events. Newly formed phagosomes exchange membrane-associated and soluble proteins with early endosomes by fusion. Budding of vesicles from the phagosome and fusion with Golgi-derived vesicles may also contribute to the remodelling of the phagosomal compartment. As a consequence of changes in membrane composition, phagosomes acquire the ability to fuse with late endocytic compartments. In vitro reconstitution and other studies suggest that the trafficking events underlying phagosome maturation require several GTP-binding proteins, including Rab5 and Galphas', NSF-SNAP-SNARE complexes and coatomers.  相似文献   

14.
Using multicolor live cell imaging in combination with biochemical assays, we have investigated an endocytic pathway mediated by cell surface proteoglycans, primary receptors for many cationic ligands. We have characterized this pathway for a variety of proteoglycan-binding ligands including cationic polymers, lipids and polypeptides. Following clathrin- and caveolin-independent, but flotillin- and dynamin-dependent internalization, proteoglycan-bound ligands associate with flotillin-1-positive vesicles and are efficiently trafficked to late endosomes. The route to late endosomes differs considerably from that following clathrin-mediated endocytosis. The proteoglycan-dependent pathway to late endosomes does not require microtubule-dependent transport or phosphatidyl-inositol-3-OH kinase-dependent sorting from early endosomes. The pathway taken by these ligands is identical to that taken by an antibody against heparan sulfate proteoglycans, suggesting that this mechanism may be used generally by cell surface proteoglycans and proteoglycan-binding ligands that lack secondary receptors.  相似文献   

15.
An in vitro endosome fusion assay using Dictyostelium discoideum is described. The method requires endocytosis of anti-dinitrophenol (DNP) IgG or DNP-derivitized beta-glucuronidase into two sets of cells. After homogenizing the cells, the vesicles were mixed, and fusion was measured by quantitating immune complex formation between DNP-beta-glucuronidase and anti-DNP IgG. Fusion was dependent upon ATP, temperature, pH, ionic strength, and cytosol and sensitive to detergent, dilution, trypsin, N-ethylmaleimide, and guanosine 5'-3-O-(thio)triphosphate. Although weak bases, ionophores, hadacidin, [ethylenebis(oxyethylenenitrilo)]tetraacetic acid, and caffeine inhibit endocytosis in vivo, these reagents had no affect on in vitro endosome fusion. Comparison of Dictyostelium with mammalian cells showed differences in the temperature, pH, and salt requirements for fusion, possibly reflecting differences in the life-styles of various cell types. Like mammalian cells, Dictyostelium required GTP-binding protein(s) and an N-ethylmaleimide-sensitive factor for endosome fusion. Thus, the mechanism driving endosome fusion may have been conserved throughout evolution. Electron microscopic studies confirmed in vitro endosome fusion and revealed endosomes were being engulfed by other endosomes, resulting in formation of multivesicular elements (i.e. autophagic vesicles). This system may be useful for characterizing mutations, evolution, and developmental regulation along the endocytic pathway.  相似文献   

16.
A Dautry-Varsat 《Biochimie》1986,68(3):375-381
A variety of ligands and macromolecules enter cells by receptor-mediated endocytosis. Ligands bind to their receptors on the cell surface and ligand-receptor complexes are localized in specialized regions of the plasma membrane called coated pits. Coated pits invaginate and give rise to intracellular coated vesicles containing ligand-receptor complexes which are thus internalized. Transferrin, a major serum glycoprotein which transports iron into cells, enters cells by this pathway. It binds to its receptor on the cell surface, transferrin-receptor complexes cluster in coated pits and are internalized in coated vesicles. Coated vesicles then lose their clathrin coat and fuse with endosomes, an organelle with an internal pH of about 5-5.5. Most ligands dissociate from their receptors in endosomes and they finally end up in lysosomes where they are degraded, while their receptors remain bound to membrane structures and recycle to the cell surface. Transferrin has a different fate: in endosomes iron dissociates from transferrin but apotransferrin remains bound to its receptor because of its high affinity for the receptor at acid pH. Apotransferrin thus recycles back to the plasma membrane still bound to its receptor. When the ligand-receptor complex reaches the plasma membrane or a compartment at neutral pH, apotransferrin dissociates from its receptor with a half-life of 18 s because of its low affinity for its receptor at neutral pH. The receptor is then ready for a new cycle of internalization, while apotransferrin enters the circulation, reloads iron in the appropriate organs and is ready for a new cycle of iron transport.  相似文献   

17.
Transferrin receptors labeled with the B3/25 monoclonal antibody-gold complexes were followed in living A431 cells by using video-enhanced contrast microscopy. Initially, the antibody-gold complexes bind to receptors which are freely mobile on the upper cell surface; they then become trapped at the inner margins of the peripheral lamellae and internalize. During endocytosis discrete gold-loaded vesicular elements first appear, and then, as they fuse, a heterogenous peripheral endosomal compartment forms. The endosomes from this compartment then begin to migrate centripetally through the cytoplasm in a saltatory way so that within 15 min gold label accumulates in a juxtanuclear endosome compartment. This compartment, which consists mainly of multivesicular bodies, is thus formed by the influx and retention of peripheral endosomal elements and their continued fusion in the juxtanuclear area. Although their overall migration is inward, saltating endosomes frequently reverse their direction of movement. As label builds up in the juxtanuclear area, small vesicles containing gold label continuously pinch off from the larger elements and migrate toward the cell periphery. Experiments with nocodazole and sodium azide show that the saltatory movements, the accumulation and retention of endosomes in the juxtanuclear area, and the separation of vesicles from endosomes are driven by a microtubule-associated, ATP-dependent, motility-generating mechanism. Analysis of the movements shows that although each individual vesicle saltation can occur unpredictably toward the centre or the periphery of the cell, a net centripetal flux is observed. Moreover, it is evident that the probability of migration toward and maintenance in the juxtanuclear area is related to the diameter of the vesicles. We propose a mechanism by which bidirectional saltation along microtubules forming a radial network may be instrumental in the selective concentration of large endosomes in the juxtanuclear area while small vesicles are left free to return to the periphery. This process may be responsible for the sorting of receptors and ligands destined either for intracellular degradation in juxtanuclear lysosomes or, alternatively, for recycling to the plasma membrane.  相似文献   

18.
Molecules travel through the yeast endocytic pathway from the cell surface to the lysosome-like vacuole by passing through two sequential intermediates. Immunofluorescent detection of an endocytosed pheromone receptor was used to morphologically identify these intermediates, the early and late endosomes. The early endosome is a peripheral organelle that is heterogeneous in appearance, whereas the late endosome is a large perivacuolar compartment that corresponds to the prevacuolar compartment previously shown to be an endocytic intermediate. We demonstrate that inhibiting transport through the early secretory pathway in sec mutants quickly impedes transport from the early endosome. Treatment of sensitive cells with brefeldin A also blocks transport from this compartment. We provide evidence that Sec18p/N-ethylmaleimide-sensitive fusion protein, a protein required for membrane fusion, is directly required in vivo for forward transport early in the endocytic pathway. Inhibiting protein synthesis does not affect transport from the early endosome but causes endocytosed proteins to accumulate in the late endosome. As newly synthesized proteins and the late steps of secretion are not required for early to late endosome transport, but endoplasmic reticulum through Golgi traffic is, we propose that efficient forward transport in the early endocytic pathway requires delivery of lipid from secretory organelles to endosomes.  相似文献   

19.
Annexins are calcium-binding proteins with a wide distribution in most polarized and nonpolarized cells that participate in a variety of membrane-membrane interactions. At the cell surface, annexin VI is thought to remodel the spectrin cytoskeleton to facilitate budding of coated pits. However, annexin VI is also found in late endocytic compartments in a number of cell types, indicating an additional important role at later stages of the endocytic pathway. Therefore overexpression of annexin VI in Chinese hamster ovary cells was used to investigate its possible role in endocytosis and intracellular trafficking of low density lipoprotein (LDL) and transferrin. While overexpression of annexin VI alone did not alter endocytosis and degradation of LDL, coexpression of annexin VI and LDL receptor resulted in an increase in LDL uptake with a concomitant increase of its degradation. Whereas annexin VI showed a wide intracellular distribution in resting Chinese hamster ovary cells, it was mainly found in the endocytic compartment and remained associated with LDL-containing vesicles even at later stages of the endocytic pathway. Thus, data presented in this study suggest that after stimulating endocytosis at the cell surface, annexin VI remains bound to endocytic vesicles to regulate entry of ligands into the prelysosomal compartment.  相似文献   

20.
A Alconada  U Bauer    B Hoflack 《The EMBO journal》1996,15(22):6096-6110
We have studied the intracellular trafficking of the envelope glycoprotein I (gpI) of the varicella-zoster virus, a human herpes virus whose assembly is believed to occur in the trans-Golgi network (TGN) and/or in endocytic compartments. When expressed in HeLa cells in the absence of additional virally encoded factors, this type-I membrane protein localizes to the TGN and cycles between this compartment and the cell surface. The expression of gpI promotes the recruitment of the AP-1 Golgi-specific assembly proteins onto TGN membranes, strongly suggesting that gpI, like the mannose 6-phosphate receptors, can leave the TGN in clathrin-coated vesicles for subsequent transport to endosomes. Its return from the cell surface to the TGN also occurs through endosomes. The transfer of the gpI cytoplasmic domain onto a reporter molecule shows that this domain is sufficient to confer TGN localization. Mutational analysis of this domain indicates that proper subcellular localization and cycling of gpI depend on two different determinants, a tyrosine-containing tetrapeptide related to endocytosis sorting signals and a cluster of acidic amino acids containing casein kinase II phosphorylatable residues. Thus, the VZV gpI and the mannose 6-phosphate receptors, albeit localized in different intracellular compartments at steady-state, follow similar trafficking pathways and share similar sorting mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号