首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant-related performance may be one of the most important factors in the selection of host plants by insect herbivores. We investigated the importance of plant-related performance in host selection by the willow leaf beetle, Plagiodera versicolora (Laicharting) (Coleoptera: Chrysomelidae), on four willow species: Salix chaenomeloides Kimura, Salix eriocarpa Fr. et Sav., Salix   integra Thunb., and Salix serissaefolia Kimura (Salicaceae). Bagging experiments in the field revealed that the performance of P. versicolora adults and larvae differed significantly among willow species under enemy-free conditions and at constant densities. Egg clutch and larval abundance were positively related to adult abundance. Plagiodera versicolora adults did not discriminate strongly among willow species for feeding and oviposition. Larval performance did not differ among willow species in the presence of natural enemies, suggesting that interspecific differences in host quality were overridden by mortality from natural enemies. Adult and egg clutch abundance of P. versicolora changed seasonally despite the temporal stability of adult and larval performance under enemy-free field conditions. Thus, plant-related performance of P. versicolora adults and larvae may contribute little to population growth and temporal dynamics of host use in P. versicolora . Potential factors that reduce discrimination of P. versicolora among host willow species are discussed.  相似文献   

2.
Abstract.  1. We examined the plant-mediated indirect effects of the stem-boring moth Endoclita excrescens (Lepidoptera: Hepialidae) on the leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) in three willow species, Salix gilgiana , S. eriocarpa , and S. serissaefolia.
2. When the stem-boring moth larvae damaged stems in the previous year, willows were stimulated to produce vigorously growing lateral shoots on these stems. These new lateral shoots were significantly longer and the upper leaves had significantly higher nitrogen and water content than current-year shoots on unbored stems, although the carbon content and leaf dry mass were not different between lateral and current-year shoots.
3. In the field, leaf beetle larvae and adults had significantly greater densities on lateral shoots of bored stems than on current-year shoots of unbored stems. A laboratory experiment showed that female beetles had significantly greater mass and fecundity when fed on leaves of newly-emerged lateral shoots. Thus, the stem-boring moth had a positive effect on the temporally and spatially separated leaf beetle by increasing resource availability by inducing compensatory regrowth.
4. The strength of the indirect effects on the density and performance of the leaf beetle differed among willow species, because there was interspecific variation in host quality and herbivore-induced changes in plant traits. In particular, we suggest that the differences in magnitude of the changes among willow species in shoot length and leaf nitrogen content greatly affected the strength of the plant-regrowth mediated indirect effect, coupled with host-plant preference of the leaf beetle.  相似文献   

3.
Abstract. 1. The effect of previous damage on the suitability of willow ( Mix bubylonicu and S.ulbu 'Tristis') leaves as food for the imported willow leaf beetle, Plugiodera versicoloru Laich. (Coleoptera: Chrysomelidae), was evaluated by feeding adults and larvae leaves from damaged and undamaged branchlets.
2. Females had lower fecundity when fed leaves from artificially damaged branchlets of S.ufba 'Tristis'. A similar result was obtained when beetles ate leaves from naturally damaged branchlets of S.babylonica .
3. Feeding preference tests suggest that the reductions in leaf suitability were not due to adults avoiding damaged leaves as a food source.
4. PZugiodera versicolora larvae required longer to develop and attained a lower adult weight when fed leaves from damaged branchlets.
5. Changes in leaf suitability brought about by herbivore feeding may affect the seasonal abundance of P.versicoloru on its willow hosts.  相似文献   

4.
We examined whether larvae of the gall midge Rabdophaga rigidae (Diptera: Cecidomyiidae) can modify the seasonal dynamics of the density of a leaf beetle, Plagiodera versicolora (Coleoptera: Chrysomelidae), by modifying the leaf flushing phenology of its host willow species, Salix serissaefolia and Salix eriocarpa (Salicaceae). To test this, we conducted field observations and a laboratory experiment. The field observations demonstrated that the leaf flushing phenology of the willows and the seasonal dynamics of the beetle density differed between shoots with stem galls and shoots without them. On galled shoots of both willow species, secondary shoot growth and secondary leaf production were promoted; consequently, leaf production showed a bimodal pattern and leaf production periods were 1 to 2 months longer than on non‐galled shoots. The adult beetle density on galled shoots was thus enhanced late in the season, and was found to change seasonally, synchronizing with the production of new leaves on the host willow species. From the results of our laboratory experiment, we attributed this synchrony between adult beetle density and willow leaf flush to beetles’ preference to eat new leaves rather than old. Indeed, beetles consumed five times more of the young leaves when they were fed both young and old leaves. These results indicate that stem galls indirectly enhance the adult beetle density by enhancing food quality and quantity late in the beetle‐feeding season. We therefore conclude that midge galls widen the phenological window for leaf beetles by extending the willows’ leaf flush periods.  相似文献   

5.
Abstract.  1. Plant quality can directly and indirectly affect the third trophic level. However, little attention has been paid to how changes in plant quality affect the performance of predators through trophic levels, and which herbivores or predators are affected more strongly by host-plant quality. The present study examined the effects of artificial cutting of willows on the performance of a willow leaf beetle ( Plagiodera versicolora Laicharting) and its predatory ladybird beetle ( Aiolocaria hexaspilota Hope).
2. Laboratory experiments showed that performance (survival rate, developmental time, and adult mass) of the willow leaf beetle was higher when fed with leaves of cut willows than when fed with leaves of uncut willows. Performance (developmental time and adult mass) of the predatory ladybird was also improved when it was fed on the leaf beetle larvae that had been fed on leaves of cut willows, compared with those that had been fed on leaves of uncut willows. This indicates that a bottom-up cascade occurs in the tri-trophic system.
3. In a comparison of improved performance parameters between the leaf beetle and the ladybird, regenerated willows shortened the developmental time of the willow leaf beetle more than that of the ladybird. This indicates that the impacts of willow cutting on insect performance differ between the second and third trophic levels.  相似文献   

6.
Imported willow leaf beetles Plagiodera versicolora oviposit on willow leaves, and both larvae and adults feed on the leaves. In the field, eggs were found on leaves near the center of branchlets, and the number of eggs per cluster was independent of the leaf area and position. However, in the laboratory, females chose young leaves over old leaves, for both oviposition and feeding and choice did not rely on information on relative position or size of leaves. Developing on young versus old leaves may provide both advantages and disadvantages. In the laboratory, larvae developed more quickly and attained a greater adult weight when fed young versus old leaves, perhaps because of increased mandibular wear of larvae fed old leaves. However, in the field, survival of eggs was lower on young versus old leaves. In the laboratory, rates of cannibalism and survivorship to adulthood did not differ on young versus old leaves.  相似文献   

7.
Summary The relationship between the food selection of four leaf beetle species (Phratora vitellinae, Plagiodera versicolora, Lochmaea capreae, Galerucella lineola) and the phenolic glycosides of willow (Salix spp.) leaves was tested in laboratory food choice experiments. Four willow species native to the study area (Eastern Finland) and four introduced, cultivated willows were tested.The willow species exhibited profound differences in their phenolic glycoside composition and total concentration. The food selection patterns of the leaf beetles followed closely the phenolic glycoside spectra of the willow species. Both the total amount and the composition of phenolic glycosides affected the feeding by the beetles. Phenolic glycosides apparently have both stimulatory and inhibitory influences on leaf beetle feeding depending on the degree of adaptation of a particular insect. Very rare glycosides or exceptional combination of several glycoside types seem to provide certain willow species with high level of resistance against most herbivorous insects. Analogously the average absolute amount of leaf beetle feeding was lower on the introduced willows than on the native species to which the local herbivores have a good opportunity to become adapted.  相似文献   

8.
Lower SS  Kirshenbaum S  Orians CM 《Oecologia》2003,136(3):402-411
The distribution and abundance of herbivores on plants growing under different environmental conditions may depend upon preference and/or performance. Soil nutrients and water availability are key determinants of herbivore distribution, as both influence plant growth and tissue quality. However, the effects of water on plant quality may depend upon the availability of nutrients and vice versa. Surprisingly few studies have examined the interactions between the two. We investigated the effects of soil nutrient and water availability on (1) the growth and chemistry of the silky willow (Salix sericea Marshall), and (2) the preference and performance of the imported willow leaf beetle (Plagiodera versicolora Laichartig). We conducted two common garden experiments using a similar 2x2 fully factorial design with two levels of soil nutrients (low, high) and two levels of water availability (field capacity, flooded). In the first experiment (larval performance), larval development time and pupal weight were not influenced by nutrient or water availability to the plant. This occurred despite the fact that plants in the high nutrient treatments had higher protein concentration and lower foliar concentrations of the phenolic glycoside 2'-cinnamoylsalicortin. In the second experiment (adult preference), we caged four plants (one from each treatment) and released beetles into cages. We found that plant growth and leaf protein depended upon the interaction between nutrient and water availability. Plant growth was greatest in the high nutrient-field capacity treatment and leaf protein was greatest in the high nutrient-flooded treatment. In contrast, adults settled and oviposited preferentially on the high nutrient treatment under flooded conditions, but we found no evidence of interactions between nutrients and water on preference. Thus, at least under flooded conditions nutrients affect adult preference. We also found that foliar protein was correlated positively with adult oviposition preference and per capita egg production. Our results, then, suggest that soil nutrients can influence adult preference, and that adults choose high-quality hosts (high protein) that promote egg production.  相似文献   

9.
Among numerous other factors, host‐plant volatiles may affect selection of food plants by herbivorous insects. The blue willow leaf beetle, Phratora vulgatissima (L.) (Coleoptera: Chrysomelidae), is known to differentiate between willow species and genotypes. However, so far no knowledge is available on the physiological abilities of this leaf beetle to respond to willow volatiles. In this study, we recorded electroantennograms of male and female P. vulgatissima to volatiles from two Salix viminalis L. (Salicaceae) genotypes: Jorr and 78021. The headspace of these genotypes were analysed by coupled gas chromatography–mass spectrometry. In addition to known green leaf volatiles (GLV), several terpenoid components were found. Both males and females of P. vulgatissima showed strong responses to the GLVs (Z)3‐hexenol and (Z)‐3‐hexenyl acetate, and moderate responses to (E)‐ocimene and β‐caryophyllene. Females, but not males, also responded to R‐(+)‐limonene. This work represents a further step to identify substances relevant for the orientation of P. vulgatissima to host plants.  相似文献   

10.
Nakamura M  Ohgushi T 《Oecologia》2003,136(3):445-449
We experimentally examined the effects on other herbivorous insects of leaf shelters constructed by lepidopteran larvae on a willow, Salix miyabeana. Several insect species occupied the vacant leaf shelters. Our experiment using artificial leaf shelters showed that the number of aphids increased with the number of artificial leaf shelters on a shoot, as did the numbers of three ant species ( Camponotus japonicus, Lasius hayashi, and Myrmica jessensis) that entered leaf shelters to collect aphid honeydew. To determine the ant-mediated effect of leaf shelters on herbivorous insects that do not use leaf shelters, we transferred newly hatched larvae of a common leaf beetle, Plagiodera versicolora, to the leaves of shoots with and without artificial leaf shelters. One day after the transfer, larval survival rate was significantly lower on shoots with shelters than on those without shelters, and shoots with shelters had significantly more ants than did shoots without shelters. Our field experiments demonstrated clearly that shelter-making lepidopteran larvae increased the abundance of both aphids and ants and decreased the survival rate of leaf beetle larvae, probably because the larvae were removed by ants that were attracted to the leaf shelters by the aphid colonies.  相似文献   

11.
We conducted a 3-year study of a natural population of the willow leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) on a river bank of the Inukami River, Shiga, central Japan, where four willow species (Salix chaenomeloides, S. eriocarpa, S. integra, and S. serissaefolia) occur sympatrically. Our survey showed that: (1) at the study site, the abundance of P. versicolora greatly varied among years and among willow species; (2) adult abundance changed seasonally with species-specific patterns on different willow species; and (3) the dispersal-settlement of adults had the most pronounced effects on the seasonal population growth rate of P. versicolora. Factors affecting these results were discussed.  相似文献   

12.
1 Selection can favour herbivores that choose host plants benefitting their offspring either by enhancing growth rates or by increasing larval defences against native predators. For exotic predator species that feed on herbivores, their success with invading new habitats may depend upon overcoming defences used by native prey. Whether exotic predators can alter herbivore host choice has remained unexamined. Therefore, we compared the efficacy of larval defence by Chrysomela knabi (a native beetle species) that had fed on two native willow hosts: Salix sericea (a phenolic glycoside (PG)-rich species) and Salix eriocephala (a PG-poor species), when attacked by exotic generalist predators. In addition, the preference and performance of C. knabi on S. sericea and S. eriocephala was examined.
2  Chrysomela knabi preferred and performed better on S. sericea. In a common garden, adult C. knabi were nine-fold more common and oviposited five-fold more frequently on S. sericea than on S. eriocephala . In the laboratory, adult feeding preference on leaf discs and survival rates of larvae were both greater on S. sericea , and time to pupation was shorter.
3  Chrysomela knabi larvae produced significantly more salicylaldehyde when fed S. sericea leaves than when fed S. eriocephala leaves. Additionally, those larvae with greater salicylaldehyde had reduced predation by two exotic generalist predators, Harmonia axyridis larvae and juvenile Tenodera aridifolia sinensis .
4 The results obtained in the present study suggest that selection favoured the preference of C. knabi for PG-rich willow plants because larvae grew and survived better and that selection by common exotic generalist predators would reinforce this preference.  相似文献   

13.
Insect herbivores contend with various plant traits that are presumed to function as feeding deterrents. Paradoxically, some specialist insect herbivores might benefit from some of these plant traits, for example by sequestering plant chemical defenses that herbivores then use as their own defense against natural enemies. Larvae of the butterfly species Battus philenor (L.) (Papilionidae) sequester toxic alkaloids (aristolochic acids) from their Aristolochia host plants, rendering larvae and adults unpalatable to a broad range of predators. We studied the importance of two putative defensive traits in Aristolochia erecta: leaf toughness and aristolochic acid content, and we examined the effect of intra- and interplant chemical variation on the chemical phenotype of B. philenor larvae. It has been proposed that genetic variation for sequestration ability is ??invisible to natural selection?? because intra- and interindividual variation in host-plant chemistry will largely eliminate a role for herbivore genetic variation in determining an herbivore??s chemical phenotype. We found substantial intra- and interplant variation in leaf toughness and in the aristolochic acid chemistry in A. erecta. Based on field observations and laboratory experiments, we showed that first-instar larvae preferentially fed on less tough, younger leaves and avoided tougher, older leaves, and we found no evidence that aristolochic acid content influenced first-instar larval foraging. We found that the majority of variation in the amount of aristolochic acid sequestered by larvae was explained by larval family, not by host-plant aristolochic acid content. Heritable variation for sequestration is the predominant determinant of larval, and likely adult, chemical phenotype. This study shows that for these highly specialized herbivores that sequester chemical defenses, traits that offer mechanical resistance, such as leaf toughness, might be more important determinants of early-instar larval foraging behavior and development compared to plant chemical defenses.  相似文献   

14.
Abstract. 1. We report on the mating status of overwintering adults of the imported leaf beetle, Plagiodera versicolora Laicharting. This species overwinters as adults, under the bark of willow trees.
2. Individuals were collected both in the autumn, just after initiation of diapause, and in the spring, just before natural termination of diapause. From the autumn sample, we discovered that diapause can be terminated by husbanding the adults at 4°C for 4 weeks.
3. Most females lay fertile eggs upon the termination of diapause; however, a significant number of females lay non-fertile eggs after overwintering in the field.
4. Many females mate with more than one male before entering diapause. Progeny analysis using allozyme genetic markers shows that, on average, females who are fertile upon termination of diapause utilize sperm from 1.2 males to fertilize their eggs.  相似文献   

15.
Willows are often attacked by both herbivorous insects and rust fungi. Little is known about interactions between these two willow enemies. We studied whether feeding and oviposition behavior of the willow leaf beetle Plagiodera versicolora upon the willow hybrid Salix x cuspidata is affected when the rust fungus Melampsora allii-fragilis has attacked the plant. Laboratory bioassays revealed that adult willow leaf beetles significantly avoided feeding and oviposition on rust-infected leaves when compared to healthy leaves. Further bioassays aimed to elucidate the temporal and spatial scale of effects of rust infection on feeding behavior of adults. While infected parts of leaves were avoided at all times past infection tested (8, 12, and 16 days), symptom-free parts of infected leaves were only avoided 16 days past infection. Systemic effects extended only one leaf position up and two leaf positions down from the infection site.  相似文献   

16.
Plant characteristics, such as leaf structure or hairiness, are important for the movement and attachment of insects. It has been suggested that increased trichome density on new Salix cinerea L. (Salicaceae) leaves, produced after grazing by the willow leaf beetle Phratora vulgatissima L. (Coleoptera: Chrysomelidae), function as an inducible defence against the beetle and especially its larvae. Here we studied whether and how two of the main natural enemies of P. vulgatissima, viz., Anthocoris nemorum L. (Heteroptera: Anthocoridae) and Ortothylus marginalis L. (Heteroptera: Miridae), were influenced by trichome density on S. cinerea leaves. The effect of trichome density on these two predators was studied on plants with different trichome densities, comparing natural enemy efficiency, measured as number of P. vulgatissima eggs consumed or larvae missing and/or killed. To obtain different trichome densities, cuttings of several different clones of S. cinerea were used. In the experiment using eggs as prey, an increase in trichome density was, in addition, induced through leaf beetle defoliation on half of the plants of each willow clone. Furthermore, a field study was performed to investigate whether trichome density was correlated with natural enemy abundance. The results indicate that neither the efficiency of these two natural enemies in the greenhouse, nor their abundance in the field was influenced by trichome density. A well‐known behavioural difference between the two predator species could probably account for the higher disappearance of larvae after exposure to the more active predator. These findings are relevant for the development of pest management programs, not least because the enemies are polyphagous predators. It is concluded that an induced increase in leaf hairiness in willows in response to leaf beetle grazing could be a plant resistance trait worthy of further study in this system, because no negative effects on the main natural enemies were observed.  相似文献   

17.
The effect of leaf species (willow, Salix fragilis L., and white gum, Eucalyptus viminalis Labill.) and leaf state (senescent or green) on the feeding selectivity and growth rates of three species of macroinvertebrate Notalina sp. Mosely (Trichoptera: Leptoceridae), Koorrnonga sp. Campbell and Suter (Ephemeroptera: Leptophlebiidae) and Physastra gibbosa (Gould) (Mollusca: Planorbidae) were tested in the laboratory. All three species of macroinvertebrate selected green willow most strongly over the other leaf types (senescent willow, green eucalypt and senescent eucalypt). Growth rates of P. gibbosa and Notalina sp. were significantly greater on green willow than on the other leaf types. We were unable to measure the growth of Koorrnonga sp. Invertebrates had access to softer internal tissues of leaf material during preference trials, therefore we do not think that leaf structure was the main influence on selection between these materials. Green willow material may have been a better food source because of the noticeably thicker biofilm that it supported, and this material may also retain higher levels of nutrients than abscissed leaves. We speculate that willow leaves may provide a preferred source of food but will be available for less time than native eucalypt detritus.  相似文献   

18.
Density of leaf trichomes in Salix borealis affected both the choice of individual host plants and feeding behaviour of adults and last instar larvae of the willow feeding leaf beetle, Melasoma lapponica. Beetles clearly preferred shaved disks to unshaved ones taken from the same leaf; this preference was highest in leaves of the most pubescent plants. High leaf pubescence explained the low preference for willow clones from the high density site in among-site preference trials; shaving significantly increased the consumption of these pubescent willow clones. In no-choice experiments, the food consumption by both adults and last instar larvae decreased with an increase in leaf pubescence. The time budget of adults did not depend on leaf pubescence of the host plants, however adults compelled to feed on highly pubescent plants changed their feeding sites twice as often as on less pubescent willow clones. Larvae feeding on highly pubescent plants spend moving three times as much time as larvae feeding on less pubescent plants. Combined with our earlier observations on the increase in leaf pubescence in the year(s) following defoliation, these data suggest that leaf hairiness may have contributed to the delayed induced resistance in S. borealis by disturbing the feeding behaviour of M. lapponica.  相似文献   

19.
Herbivores and pathogens on willow: do they affect each other?   总被引:3,自引:0,他引:3  
Abstract 1 Willows often need to cope with attack by both rust fungi and herbivores. We studied whether rust infection on willow affects the herbivore, and vice versa, whether herbivore feeding affects the fungal infection. The system investigated by laboratory bioassays and greenhouse experiments consisted of the willow hybrid Salix × cuspidata, the rust Melampsora allii‐fragilis and the willow leaf beetle Plagiodera versicolora. Effects were studied both on a local scale (rust infection and feeding on the same leaf) and systemically (rust infection and feeding on different, but adjacent leaves). 2 Rust infection was not affected by herbivore feeding on a local scale. Systemically, however, the willow's susceptibility towards rust infection was increased by herbivore feeding, as indicated by a higher number of rust sori on leaves adjacent to feeding‐damaged leaves. The herbivore's performance was detrimentally affected by rust infection: increase of mortality (systemically), decrease of larval weight (locally and systemically) and prolonging of developmental time (locally and systemically). 3 Previous rust infection enhanced systemically the willow's susceptibility towards subsequent fungal infection. Previous herbivore feeding on the willow had no effects on the herbivore's developmental time and mortality. However, feeding upon previously feeding‐damaged willow leaves significantly reduced larval weight.  相似文献   

20.
The leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) is a specialist herbivore, all of whose mobile stages feed on the leaves of salicaceous plants. Both the larval and adult stages of the ladybird Aiolocaria hexaspilota (Coleoptera: Coccinellidae) are dominant natural enemies of the larvae of the leaf beetle. To clarify the role of plant volatiles in prey‐finding behaviour of A. hexaspilota, the olfactory responses of the ladybird in a Y‐tube olfactometer are studied. The ladybird adults show no preference for willow plants Salix eriocarpa that are infested by leaf beetle adults (nonprey) over that for intact plants but move more to the willow plants infested by leaf beetle larvae (prey) than to intact plants. Moreover, ladybird larvae show no preference for willow plants infested by leaf beetle larvae or adults over intact plants. Using gas chromatography‐mass spectrometry, six volatile compounds are released in larger amounts in the headspace of willow plants infested by leaf beetle larvae than in the headspace of willow plants infested by leaf beetle adults. In addition, the total amount of volatiles emitted from willow plants that are either intact or infested by leaf beetle adults is much smaller than that from willow plants infested by leaf beetle larvae. These results indicate that volatiles from S. eriocarpa infested by P. versicolora inform A. hexaspilota adults about the presence of the most suitable stage of their prey, whereas A. hexaspilota larvae do not use such information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号