首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental studies have demonstrated significant secondary damage (including cell apoptosis, blood–brain barrier disruption, inflammatory responses, excitotoxic damage, and free radical production) after traumatic brain injury (TBI). Quercetin is a natural flavonoid found in high quantities in fruits and vegetables, and may be a potential antioxidant and free radical scavenger. The purpose of this study was to determine the effects of quercetin on TBI-induced upregulation of oxidative stress, inflammation, and apoptosis in adult Sprague–Dawley rats. Animals were subjected to Feeney’s weight-drop injury, thus inducing the parietal contusion brain injury model. Quercetin was administered (30 mg/kg intraperitoneal injection) 0, 24, 48, and 72 h after TBI. Quercetin reduced cognitive deficits, the number of TUNEL- and ED-1-positive cells, the protein expressions of Bax and cleaved-caspase-3 proteins, and the levels of TBARS and proinflammatory cytokines, and increased the activity of antioxidant enzymes (GSH-Px, SOD, and CAT) at 1 week after TBI. Our results suggest that in TBI rats, quercetin improves cognitive function owing to its neuroprotective action via the inhibition of oxidative stress, leading to a reduced inflammatory response, thereby reducing neuronal death.  相似文献   

2.
Sigma-1 receptor (Sig-1R) is an integral membrane protein predominantly expressed in the endoplasmic reticulum. Sig-1R demonstrates a high affinity to various synthetic compounds including well-known psychotherapeutic drugs in the central nervous system (CNS). For that, it is considered as an alternative target for psychotherapeutic drugs. On the cellular level, when Sig-1R is activated, it is known to play a role in neuroprotection and neurite elongation. These effects are suggested to be mediated by its ligand-operated molecular chaperone activity, and/or upregulation of various Ca2+ signaling. In addition, recent studies show that Sig-1R activation induces neurite outgrowth via neurotrophin signaling. Here, we tested the hypothesis that Sig-1R activation promotes neurite elongation through activation of tropomyosin receptor kinase (Trk), a family of neurotrophin receptors. We found that 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-084), a selective Sig-1R agonist, significantly promoted neurite outgrowth, and K252a, a Trk inhibitor, attenuated Sig-1R-mediated neurite elongation in cerebellar granule neurons (CGNs). Moreover, we revealed that Sig-1R interacts with TrkB, and PRE-084 treatment enhances phosphorylation of Y515, but not Y706. Thus, our results indicate that Sig-1R activation promotes neurite outgrowth in CGNs through Y515 phosphorylation of TrkB.  相似文献   

3.
Naringin is neuroprotective in ischemia and other disease models. However, the effects of naringin are unknown after traumatic brain injury (TBI). The present study explored the role of naringin for neuroprotection in TBI rats. TBI was performed with the weight drop technique, and naringin was given orally at a dose of 100 mg/kg/day. The neurological scores, tissue edema, and oxidative stress/inflammation parameters [malondialdehyde (MDA), superoxide dismutase, nitric oxide, inducible nitric oxide synthase (iNOS), as well as interleukin-1β (IL-1β)] were measured. Compared to sham controls, TBI rats displayed obvious sensorimotor dysfunction, significant brain edema, and elevated oxidative and inflammatory molecules. Although a 7-day pre-treatment of naringin was unable to reverse these pathological changes, a 14-day continual treatment (7 days before and 7 days after the TBI) attenuated the increases in MDA and nitric oxide; enhanced the activation of superoxide dismutase; depressed the over-activation of iNOS; down-regulated the over-expression of IL-1β; and reduced the cortex edema. Additionally, the TBI-induced behavioral dysfunction was reduced. These results suggest that naringin treatment can attenuate cellular and histopathological alterations and improve the sensorimotor dysfunction of TBI rats, which may be partly due to the attenuation of oxidative and inflammatory damages.  相似文献   

4.
Inflammatory response plays an important role in the pathogenesis of secondary damage after traumatic brain injury (TBI). The inflammasome is a multiprotein complex involved in innate immunity and a number of studies have suggested that the inflammasome plays a critical role in a host inflammatory signaling. Nucleotide-binding domain, leucine-rich repeat, pyrin domain containing 3 (NLRP3) is a key component of the NLRP3-inflammasome, which also includes apoptotic speck-containing protein (ASC) with a cysteine protease (caspase) -activating recruitment domain and pro-caspase1. Activation of the NLRP3-inflammasome causes the processing and release of the interleukin 1 beta (IL-1β) and interleukin 18 (IL-18). Based on this, we hypothesized that the NLRP3-inflammasome could participate in the inflammatory response following TBI. However, the expression of NLRP3-inflammasome in cerebral cortex after TBI is not well known. Rats were randomly divided into control, sham and TBI groups (including 6 h, 1 day, 3 day and 7 day sub-group). TBI model was induced, and animals were sacrificed at each time point respectively. The expression of NLRP3-inflammasome was measured by quantitative real-time polymerase chain reaction, western blot and immunohistochemistry respectively. Immunofluorescent double labeling was performed to identify the cell types of NLRP3-inflammasome’s expression. Moreover, enzyme linked immunosorbent assay was used to detect the alterations of IL-1β and IL-18 at each time point post-injury. The results showed that, TBI could induce assembly of NLRP3-inflammasome complex, increased expression of ASC, activation of caspase1, and processing of IL-1β and IL-18. These results suggested that NLRP3-inflammasome might play an important role in the inflammation induced by TBI and could be a target for TBI therapy.  相似文献   

5.
Perampanel is a novel α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist, approved in over 35 countries as an adjunctive therapy for the treatment of seizures. Recently, it was found to exert protective effects against ischemic neuronal injury in vitro. In the present study, we investigated the potential protective effects of perampanel in a traumatic brain injury (TBI) model in rats. Oral administration with perampanel at a dose of 5 mg/kg exerted no major organ-related toxicities. We found that perampanel significantly attenuated TBI-induced brain edema, brain contusion volume, and gross motor dysfunction. The results of Morris water maze test demonstrated that perampanel treatment also improved cognitive function after TBI. These neuroprotective effects were accompanied by reduced neuronal apoptosis, as evidenced by decreased TUNEL-positive cells in brain sections. Moreover, perampanel markedly inhibited lipid peroxidation and obviously preserved the endogenous antioxidant system after TBI. In addition, enzyme-linked immunosorbent assay (ELISA) was performed at 4 and 24 h after TBI to evaluate the expression of inflammatory cytokines. The results showed that perampanel suppressed the expression of pro-inflammatory cytokines TNF-α and IL-1β, whereas increased the levels of anti-inflammatory cytokines IL-10 and TGF-β1. These data show that the orally active AMPAR antagonist perampanel affords protection against TBI-induced neuronal damage and neurological dysfunction through anti-oxidative and anti-inflammatory activity.  相似文献   

6.
Traumatic brain injury (TBI) induces glutamatergic excitotoxicity through N-methyl-d-aspartate (NMDA) receptors, affecting the integrity of the mitochondrial membrane. Studies have pointed to mitochondria as the master organelle in the preconditioning-triggered endogenous neuroprotective response. The present study is aimed at understanding energy metabolism in the brains of mice after preconditioning with NMDA and TBI. For this purpose, male albino CF-1 mice were pre-treated with NMDA (75 mg/kg) and subjected to brain trauma. Mitochondrial respiratory chain and creatine kinase activities were assessed at 6 or 24 h after trauma. The mice preconditioned and subjected to TBI exhibited augmented activities of complexes II and IV in the cerebral cortex and/or cerebellum. Creatine kinase activity was also augmented in the cerebral cortex after 24 h. We suggest that even though NMDA preconditioning and TBI have similar effects on enzyme activities, each manage their response via opposite mechanisms because the protective effects of preconditioning are unambiguous. In conclusion, NMDA preconditioning induces protection via an increase of enzymes in the mitochondria.  相似文献   

7.
Accumulating evidence indicates that autophagy and inflammatory responses contributes to secondary brain injury after traumatic brain injury (TBI), and toll-like receptor 4 (TLR4) is considered to involvement of this cascade and plays an important role. The present study was designed to determine the hypothesis that administration of resatorvid (TAK-242), a TLR4 antagonist, might provide a neuroprotective effect by inhibit TLR4-mediated pathway in a TBI rat model. Rat subjected to controlled cortical impact injury were injected with TAK-242 (0.5 mg/kg, i.v. injected) 10 min prior to injury. The results demonstrated that TAK-242 treatment significantly attenuated TBI-induced neurons loss, brain edema, and neurobehavioral impairment in rats. Immunoblotting analysis showed that TAK-242 treatment reduced TBI-induced TLR4, Beclin 1, and LC3-II levels, and maintained p62 levels at 24 h. Double immunolabeling demonstrated that LC3 dots co-localized with the hippocampus pyramidal neurons, and TLR4 was localized with the hippocampus neurons and astrocytes. In addition, the expression of TLR4 downstream signaling molecules, including MyD88, TRIF, NF-κB, TNF-α, and IL-1β, was significantly downregulated in hippocampus tissue by Western blot analysis. In conclusion, our findings indicate that pre-injury treatment with TAK-242 could inhibit neuronal autophagy and neuroinflammation responses in the hippocampus in a rat model of TBI. The neuroprotective effects of TAK-242 may be related to modulation of the TLR4-MyD88/TRIF-NF-κB signaling pathway. Furthermore, the study also suggests that TAK-242, an attractive potential drug, may be a promising drug candidate for TBI.  相似文献   

8.
Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Fucoidan, a sulfated polysaccharide extracted from brown algae, possesses potent anti-oxidative and anti-inflammatory effects. Considering TBI happens frequently in adults, especially in aged individuals, we herein sought to define the protective effects of low-molecular-weight fucoidan (LMWF) in the aged mice. 16- to 18-month-old mice administered with LMWF (1–50 mg/kg) or vehicle were subjected to TBI using a controlled cortical impact (CCI) model. LMWF at the doses of 10 and 50 mg/kg significantly reduced both cortical and hippocampal lesion volume. This protection was associated with reduced neuronal apoptosis, as evidenced by TUNEL staining. Importantly, LMWF was effective even when administered up to 4 h after TBI. Treatment with LMWF improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. In addition, LMWF significantly suppressed protein carbonyl, lipid peroxidation, reactive oxygen species (ROS) generation, as well as mitochondrial dysfunction, which was evidenced by mitochondrial cytochrome c release and collapse of mitochondrial membrane potential (MMP). To evaluate the underlying molecular mechanisms, the expression of sirtuin 3 (Sirt3) was detected by RT-PCR and Western blot. The results showed that TBI significantly increased the expression of Sirt3, which was further elevated by LMWF treatment. Knockdown of Sirt3 using intracerebroventricular injection of small interfering RNA (siRNA) partially prevented the therapeutic effects of LMWF. Collectively, these findings demonstrated that LMWF exerts neuroprotection against TBI in the aged brain, which may be associated with the attenuation of mitochondrial dysfunction through Sirt3 activation.  相似文献   

9.
Oxidative stress is one of the major secondary injury mechanisms after traumatic brain injury (TBI). 2-[[(1,1-Dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (TBN), a derivative of the clinically used anti-stroke drug tetramethylpyrazine armed with a powerful free radical-scavenging nitrone moiety, has been demonstrated promising therapeutic efficacy in ischemic stroke and Parkinson’s models. The present study aims to investigate the effects of TBN on behavioral function and neuroprotection in rats subjected to TBI. TBN (90 mg/kg) was administered twice daily for 7 days by intravenous injection following TBI. TBN improved neuronal behavior functions after brain injury, including rotarod test and adhesive paper removal test. Compared with the TBI model group, TBN treatment significantly protected NeuN-positive neurons, while decreased glial fibrillary acidic protein (GFAP)-positive cells. The number of 4-hydroxynonenal (4-HNE)-positive and 8-hydroxy-2′-deoxyguanosine (8-OHdG)-positive cells around the damaged area after TBI were significantly decreased in the TBN treatment group. In addition, TBN effectively reversed the altered expression of Bcl-2, Bax and caspase 3, and the down-regulation of nuclear factor erythroid-derived 2-like 2 (Nrf-2) and hemeoxygenase-1 (HO-1) proteins expression stimulated by TBI. In conclusion, TBN improves neurobehavioral functions and protects neurons against TBI. This protective effect may be achieved by anti-neuronal apoptosis, alleviating oxidative stress damage and up-regulating Nrf-2 and HO-1 expression.  相似文献   

10.
Toll-like receptor 4 (TLR4) has been linked to various pathophysiological conditions, such as traumatic brain injury (TBI). It is reported that posttraumatic neuroinflammation is an essential event in the progression of brain injury after TBI. Recent evidences indicate that TLR4 mediates glial phagocytic activity and inflammatory cytokines production. Thus, TLR4 may be an important therapeutic target for neuroinflammatory injury post-TBI. This study was designed to explore potential effects and underlying mechanisms of TLR4 in rats suffered from TBI. TBI model was induced using a controlled cortical impact in rats, and application of TLR4 shRNA silenced TLR4 expression in brain prior to TBI induction. Elevated TLR4 was specifically observed in the hippocampal astrocytes and neurons posttrauma. Interestingly, TLR4 shRNA decreased the concentrations of interleukin (IL)-1β, IL-6, and tissue necrosis factor-α; alleviated hippocampal neuronal damage; reduced brain edema formation; and improved neurological deficits after TBI. Meanwhile, to further explore underlying molecular mechanisms of this neuroprotective effects of TLR4 knockdown, our results showed that TLR4 knockdown significantly inhibited the upregulation of autophagy-associated proteins caused by TBI. More importantly, an autophagy inducer, rapamycin pretreated, could partially abolish neuroprotective effects of TLR4 knockdown on TBI rats. Furthermore, TLR4 silencing markedly suppressed GFAP upregulation and improved cell hypertrophy to attenuate TBI-induced astrocyte activation. Taken together, these findings suggested that TLR4 knockdown ameliorated neuroinflammatory response and brain injury after TBI through suppressing autophagy induction and astrocyte activation.  相似文献   

11.
It has been suggested that oxidative stress plays an important role in the pathophysiology of traumatic brain injury (TBI). N-acetylcysteine (NAC) and selenium (Se) display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties although there is no report on oxidative stress, antioxidant vitamin, interleukin-1 beta (IL)-1β and IL-4 levels in brain and blood of TBI-induced rats. We investigated effects of NAC and Se administration on physical injury-induced brain toxicity in rats. Thirty-six male Sprague–Dawley rats were equally divided into four groups. First and second groups were used as control and TBI groups, respectively. NAC and Se were administrated to rats constituting third and forth groups at 1, 24, 48 and 72 h after TBI induction, respectively. At the end of 72 h, plasma, erythrocytes and brain cortex samples were taken. TBI resulted in significant increase in brain cortex, erythrocytes and plasma lipid peroxidation, total oxidant status (TOS) in brain cortex, and plasma IL-1β values although brain cortex vitamin A, β-carotene, vitamin C, vitamin E, reduced glutathione (GSH) and total antioxidant status (TAS) values, and plasma vitamin E concentrations, plasma IL-4 level and brain cortex and erythrocyte glutathione peroxidase (GSH-Px) activities decreased by TBI. The lipid peroxidation and IL-1β values were decreased by NAC and Se treatments. Plasma IL-4, brain cortex GSH, TAS, vitamin C and vitamin E values were increased by NAC and Se treatments although the brain cortex vitamin A and erythrocyte GSH-Px values were increased through NAC only. In conclusion, NAC and Se caused protective effects on the TBI-induced oxidative brain injury and interleukin production by inhibiting free radical production, regulation of cytokine-dependent processes and supporting antioxidant redox system.  相似文献   

12.
Stroke results in inflammation, brain edema, and neuronal death. However, effective neuroprotectants are not available. Recent studies have shown that high mobility group box-1 (HMGB1), a proinflammatory cytokine, contributes to ischemic brain injury. Aquaporin 4 (AQP4), a water channel protein, is considered to play a pivotal role in ischemia-induced brain edema. More recently, studies have shown that pannexin 1 channels are involved in cerebral ischemic injury and the cellular inflammatory response. Here, we examined whether the pannexin 1 channel inhibitor probenecid could reduce focal ischemic brain injury by inhibiting cerebral inflammation and edema. Transient focal ischemia was induced in C57BL/6J mice by middle cerebral artery occlusion (MCAO) for 1 h. Infarct volume, neurological score and cerebral water content were evaluated 48 h after MCAO. Immunostaining, western blot analysis and ELISA were used to assess the effects of probenecid on the cellular inflammatory response, HMGB1 release and AQP4 expression. Administration of probenecid reduced infarct size, decreased cerebral water content, inhibited neuronal death, and reduced inflammation in the brain 48 h after stroke. In addition, HMGB1 release from neurons was significantly diminished and serum HMGB1 levels were substantially reduced following probenecid treatment. Moreover, AQP4 protein expression was downregulated in the cortical penumbra following post-stroke treatment with probenecid. These results suggest that probenecid, a powerful pannexin 1 channel inhibitor, protects against ischemic brain injury by inhibiting cerebral inflammation and edema.  相似文献   

13.
Increasing evidence indicates that sterile inflammatory response contributes to secondary brain injury following traumatic brain injury (TBI). However, the specific mechanisms remain largely unknown, as is whether CD24, known as an important regulator in the non-infectious inflammatory response, plays a role in secondary brain injury after TBI. Here, the expression of CD24 was detected in samples from patients with TBI by quantitative real-time polymerase chain reaction (PCR), western blotting, immunohistochemistry and immunofluorescence. RNA interference was used to investigate the effects of CD24 on inflammatory response in a mouse model of TBI. Nuclear factor kappa B (NF-κB) DNA-binding activity was measured by electrophoretic mobility shift assay, and the levels of downstream pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and Interleukin 1β (IL-1β) were detected by real-time PCR. The results indicated that both the mRNA and protein levels of CD24 were markedly elevated after TBI in humans and mice, showing a time-dependent expression. The expression of CD24 could be observed in neurons, astrocytes and microglia in both humans and mice. Meanwhile, downregulation of CD24 significantly induced an increase of NF-κB DNA-binding activity and mRNA levels of TNF-α and IL-1β. These findings indicated that CD24 expression could negatively regulate the NF-κB/inflammatory factor pathway after experimental TBI in mice, thus providing a novel target for therapeutic intervention of TBI.  相似文献   

14.
Alcohol-related traumatic brain injury (TBI) is a common condition in medical and forensic practice, and results in high prehospital mortality. We investigated the mechanism of chronic alcoholism-related mortality by examining the effects of alcohol on the synapses of the medulla oblongata in a rat model of TBI. Seventy adult male Sprague–Dawley rats were randomly assigned to either ethanol (EtOH) group, EtOH-TBI group, or control groups (water group, water-TBI group). To establish chronic alcoholism model, rats in the EtOH group were given EtOH twice daily (4 g/kg for 2 weeks and 6 g/kg for another 2 weeks). The rats also received a minor strike on the occipital tuberosity with an iron pendulum. Histopathologic and ultrastructure changes and the numerical density of the synapses in the medulla oblongata were examined. Expression of postsynaptic density-95 (PSD-95) in the medulla oblongata was measured by ELISA. Compared with rats in the control group, rats in the chronic alcoholism group showed: (1) minor axonal degeneration; (2) a significant decrease in the numerical density of synapses (p < 0.01); and (3) compensatory increase in PSD-95 expression (p < 0.01). Rats in the EtOH-TBI group showed: (1) high mortality (50 %, p < 0.01); (2) inhibited respiration before death; (3) severe axonal injury; and (4) decrease in PSD-95 expression (p < 0.05). Chronic alcoholism induces significant synapse loss and axonal impairment in the medulla oblongata and renders the brain more susceptible to TBI. The combined effects of chronic alcoholism and TBI induce significant synapse and axon impairment and result in high mortality.  相似文献   

15.
Sepsis is defined as the host's reaction to infection and characterised by a systemic inflammatory response with important clinical implications. Central nervous system dysfunction secondary to sepsis is associated with local generation of pro- and anti-inflammatory cytokines, impaired cerebral microcirculation, an imbalance of neurotransmitters, apoptosis and cognitive impairment. It's known that the IL-1β is one of the first cytokines to be altered. Thus, the objective of this study was to evaluate the role of IL-1β in cognitive parameters in brain tissue through the use of an IL-1β (IL-1ra) receptor antagonist up to 10 days and to assess blood–brain barrier permeability, cytokine levels, oxidative parameters and energetic metabolism up to 24 h, after sepsis induction. To this aim, we used sham-operated Wistar rats or submitted to the cecal ligation and perforation (CLP) procedure. Immediately after, the animals received one dose of 10 μg of IL-1ra. After 24 h, the rats were killed and were evaluated for biochemical parameters in the pre-frontal cortex, hippocampus and striatum. After 10 days, the animals were submitted to the habituation to the open field and step-down inhibitory avoidance task. We observed that the use of IL-1ra reverted the increase of blood–brain barrier permeability in the pre-frontal cortex, hippocampus and striatum; the increase of IL-1β, IL1-6 and TNF-α levels in the pre-frontal cortex and striatum; the decrease of complex I activity in the pre-frontal, hippocampus and striatum; the increase of oxidative parameters in pre-frontal cortex, hippocampus and striatum; and cognitive impairment. In conclusion, the results observed in this study reinforce the role of acute brain inflammatory response, in particular, the IL1β response, in the cognitive impairment associated with sepsis.  相似文献   

16.
Chen CC  Hung TH  Wang YH  Lin CW  Wang PY  Lee CY  Chen SF 《PloS one》2012,7(1):e30294

Background

Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. This study was undertaken to investigate the effects of wogonin, a flavonoid with potent anti-inflammatory properties, on functional and histological outcomes, brain edema, and toll-like receptor 4 (TLR4)- and nuclear factor kappa B (NF-κB)-related signaling pathways in mice following TBI.

Methodology/Principal Findings

Mice subjected to controlled cortical impact injury were injected with wogonin (20, 40, or 50 mg·kg−1) or vehicle 10 min after injury. Behavioral studies, histology analysis, and measurement of blood-brain barrier (BBB) permeability and brain water content were carried out to assess the effects of wogonin. Levels of TLR4/NF-κB-related inflammatory mediators were also examined. Treatment with 40 mg·kg−1 wogonin significantly improved functional recovery and reduced contusion volumes up to post-injury day 28. Wogonin also significantly reduced neuronal death, BBB permeability, and brain edema beginning at day 1. These changes were associated with a marked reduction in leukocyte infiltration, microglial activation, TLR4 expression, NF-κB translocation to nucleus and its DNA binding activity, matrix metalloproteinase-9 activity, and expression of inflammatory mediators, including interleukin-1β, interleukin-6, macrophage inflammatory protein-2, and cyclooxygenase-2.

Conclusions/Significance

Our results show that post-injury wogonin treatment improved long-term functional and histological outcomes, reduced brain edema, and attenuated the TLR4/NF-κB-mediated inflammatory response in mouse TBI. The neuroprotective effects of wogonin may be related to modulation of the TLR4/NF-κB signaling pathway.  相似文献   

17.
Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage.  相似文献   

18.
Citicoline, a natural compound that functions as an intermediate in the biosynthesis of cell membrane phospholipids, is essential for membrane integrity and repair. It has been reported to protect brain against trauma. This study was designed to investigate the protective effects of citicoline on closed head injury (CHI) in rats. Citicoline (250 mg/kg i.v. 30 min and 4 h after CHI) lessened body weight loss, and improved neurological functions significantly at 7 days after CHI. It markedly lowered brain edema and blood–brain barrier permeability, enhanced the activities of superoxide dismutase and the levels of glutathione, reduced the levels of malondialdehyde and lactic acid. Moreover, citicoline suppressed the activities of calpain, and enhanced the levels of calpastatin, myelin basic protein and αII-spectrin in traumatic tissue 24 h after CHI. Also, it attenuated the axonal and myelin sheath damage in corpus callosum and the neuronal cell death in hippocampal CA1 and CA3 subfields 7 days after CHI. These data demonstrate the protection of citicoline against white matter and grey matter damage due to CHI through suppressing oxidative stress and calpain over-activation, providing additional support to the application of citicoline for the treatment of traumatic brain injury.  相似文献   

19.
In addition to immediate brain damage, traumatic brain injury (TBI) initiates a cascade of pathophysiological events producing secondary injury. The biochemical and cellular mechanisms that comprise secondary injury are not entirely understood. Herein, we report a substantial deregulation of cerebral sphingolipid metabolism in a mouse model of TBI. Sphingolipid profile analysis demonstrated increases in sphingomyelin species and sphingosine concurrently with up-regulation of intermediates of de novo sphingolipid biosynthesis in the brain. Investigation of intracellular sites of sphingosine accumulation revealed an elevation of sphingosine in mitochondria due to the activation of neutral ceramidase (NCDase) and the reduced activity of sphingosine kinase 2 (SphK2). The lack of change in gene expression suggested that post-translational mechanisms are responsible for the shift in the activities of both enzymes. Immunoprecipitation studies revealed that SphK2 is complexed with NCDase and cytochrome oxidase (COX) subunit 1 in mitochondria and that brain injury hindered SphK2 association with the complex. Functional studies showed that sphingosine accumulation resulted in a decreased activity of COX, a rate-limiting enzyme of the mitochondrial electron transport chain. Knocking down NCDase reduced sphingosine accumulation in mitochondria and preserved COX activity after the brain injury. Also, NCDase knockdown improved brain function recovery and lessened brain contusion volume after trauma. These studies highlight a novel mechanism of secondary TBI involving a disturbance of sphingolipid-metabolizing enzymes in mitochondria and suggest a critical role for mitochondrial sphingosine in promoting brain injury after trauma.  相似文献   

20.
Molecular mechanisms in the pathogenesis of traumatic brain injury   总被引:15,自引:0,他引:15  
Traumatic brain injury (TBI) is a serious neurodisorder commonly caused by car accidents, sports related events or violence. Preventive measures are highly recommended to reduce the risk and number of TBI cases. The primary injury to the brain initiates a secondary injury process that spreads via multiple molecular mechanisms in the pathogenesis of TBI. The events leading to both neurodegeneration and functional recovery after TBI are generalized into four categories: (i) primary injury that disrupts brain tissues; (ii) secondary injury that causes pathophysiology in the brain; (iii) inflammatory response that adds to neurodegeneration; and (iv) repair-regeneration that may contribute to neuronal repair and regeneration to some extent following TBI. Destructive multiple mediators of the secondary injury process ultimately dominate over a few intrinsic protective measures, leading to activation of cysteine proteases such as calpain and caspase-3 that cleave key cellular substrates and cause cell death. Experimental studies in rodent models of TBI suggest that treatment with calpain inhibitors (e.g., AK295, SJA6017) and neurotrophic factors (e.g., NGF, BDNF) can prevent neuronal death and dysfunction in TBI. Currently, there is still no precise therapeutic strategy for the prevention of pathogenesis and neurodegeneration following TBI in humans. The search continues to explore new therapeutic targets and development of promising drugs for the treatment of TBI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号