首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimerization of hypoxia-inducible factor-1 beta (HIF-1β) [aryl hydrocarbon receptor nuclear translocator (ARNT)] with HIF-1α is involved in various aspects of cancer biology, including proliferation and survival under hypoxic conditions. We investigated the in vitro mechanism by which silencing of HIF-1β leads to the suppression of tumor cell growth and cellular functions. Various hepatocellular carcinoma (HCC) cell lines (Huh-7, Hep3B, and HepG2) were transfected with small interfering RNA (siRNA) against HIF-1β (siHIF-1β) and cultured under hypoxic conditions (1% O2 for 24 h). The expression levels of HIF-1β, HIF-1α, and growth factors were examined by immunoblotting. Tumor growth was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and tumor activity was measured by terminal deoxynucleotidyl transferase dUTP nick end labeling, tumor cell invasion, and migration assays. Under hypoxic conditions, silencing of HIF-1β expression suppressed tumor cell growth and regulated the expression of tumor growth-related factors, such as vascular endothelial growth factor, epidermal growth factor, and hepatocyte growth factor. Suppression of tumor cell invasion and migration was also demonstrated in HIF-1β-silenced HCC cell lines. Silencing of HIF-1β expression may induce anti-tumor effects under hypoxic conditions in HCC cell lines.  相似文献   

2.
3.
MXR7 is a cell-surface protein and highly expressed in hepatocellular carcinoma(HCC). The aim of this study is to determine the expression profile of MXR7 in HCC and investigate the influence of MXR7 on invasion and metastasis of HCC cells. For this purpose, immunohistochemical assay was used to identify the differential expression of MXR7 in 94 HCC specimens. Expression of MXR7 in 4 pairs of HCC and portal vein tumor thrombus(PVTT) was also tested. The motility of HCC cells were characterized by transwell migration and matrigel invasion assays. In vivo metastasis potential was determined via tail vein injection assay.Moreover, compared with noninvasive HCC tumors or human HCC cell lines with low metastatic potential, invasive HCC samples and HCC cell lines with high metastatic potential exhibited higher MXR7 expression. Furthermore, forced expression of MXR7 in SMMC-7721 promoted cell proliferation, migration and invasion in vitro and accelerated tumor growth and metastasis in vivo. Conversely, knockdown of MXR7 expression in HuH7 cells inhibited proliferation and motility of cells. Mechanically,overexpression of MXR7 promoted epithelial-mesenchymal transition(EMT) progress, and MXR7 depletion repressed the EMT phenotype. In conclusion, MXR7 is a mediator of EMT and metastasis in HCC and may serve as a novel therapeutic target.  相似文献   

4.
5.
BackgroundHepatocellular carcinoma (HCC) is the most common type of liver cancer with high mortality and poor prognosis. Mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways have been implicated in promoting tumor cell proliferation and invasion of HCC cells.MethodsAs a potential inhibitor of tumor metastasis, the role of Raf kinase inhibitor protein (RKIP) in HCC development and the functional relevance with MAPK and NF-κB signaling pathways were investigated. The levels of RKIP expression were examined in human HCC tissues and correlated with tumor stages and metastatic status. Function of RKIP in cellular proliferation, migration, invasion and apoptosis was investigated in HCC cell lines by either overexpressing or knocking down RKIP expression. Mouse xenograft model was established to assess the effect of RKIP expression on tumor growth.ResultsOur results demonstrated decreased RKIP expression in HCC tissues and a strong correlation with tumor grade and distant metastasis. Manipulation of RKIP expression in HCCLM3 and HepG2 cells indicated that RKIP functioned to inhibit HCC cell motility and invasiveness, and contributed to tumor growth inhibition in vivo. Mechanistic studies showed that the function of RKIP was mediated through MAPK and NF-κB signaling pathways. However, cell type-dependent RKIP regulation on these two pathways was also suggested, indicating the complex nature of signaling network.ConclusionOur study provides a better understanding on the molecular mechanisms of HCC metastasis and sets the foundation for the development of targeted therapeutics for HCC.  相似文献   

6.
The aim of this study was to investigate the effect of vaccinia virus expressing IL‐37 (VV‐IL‐37) on cell proliferation, migration and invasion of hepatocellular carcinoma (HCC) and its possible underlying molecular mechanisms. In this study, we constructed a cancer‐targeted vaccinia virus carrying the IL‐37 gene knocked in the region of the viral thymidine kinase (TK) gene. Human HCC cell lines were assayed in vitro for cell proliferation, migration and invasion. Serum level, relative mRNA level and protein level of IL‐37 in HCC cell lines SMMC7721 and Bel7402 were tested by ELISA assay, qRT‐PCR and western blot, respectively. The levels of IL‐2, IFN‐γ and TNF‐α in HCC tumor tissues were also analyzed by ELISA. STAT3 and p‐STAT3 expression in tumor tissues were determined by western blot. Our results showed that VV‐IL‐37 efficiently infected and inhibited HCC cells proliferation, migration and invasion via decreasing STAT3 phosphorylation. In vivo, VV‐IL‐37 expressed IL‐37 at a high level in the transplanted tumor, reduced STAT3 activity, and eventually inhibited tumor growth. In conclusion, we demonstrate that VV‐IL‐37 promotes antitumor immune responses in HCC.  相似文献   

7.
The involvement of miR-204 in lung cancer development is unclear. In our study, we analyzed the expression of miR-204 in tumor- and adjacent-tissue samples from 141 patients with non-small cell lung cancer (NSCLC). MiR-204 expression was decreased in tumor samples compared with non-cancerous tissue-derived controls. Moreover, miR-204 expression negatively correlated with homeobox protein SIX1 expression, tumor size and metastasis. MiR-204 silencing in miR-204-positive NSCLC cell lines promoted cell invasion and proliferation. Concomitantly, MiR-204 overexpression resulted in reduced cell proliferation and invasion, upregulated E-cadherin and downregulated N-cadherin and Vimentin expression. SIX1 was identified as a potential target of miR-204, and SIX1 silencing partially compromised the invasive and proliferative capacity of miR-204-deficient cells. Thus, miR-204 may be involved in the NSCLC development.  相似文献   

8.
脂肪细胞增强子结合蛋白2(AEBP2)作为多梳抑制复合物2(PRC2)的组成蛋白质,参与多种肿瘤细胞的增殖和迁移,然而其在肝癌中的作用尚不清楚。本研究基于UALCAN和Kaplan-Meier Plotter数据库分析发现,AEBP2在肝癌组织中高表达,并且与患者的不良预后呈正相关。实时荧光定量PCR和蛋白质印迹结果证实,AEBP2在肝癌细胞中的表达高于正常肝细胞。在HepG2和Huh-7细胞中转染AEBP2 siRNA,平板克隆、CCK-8、流式细胞术、划痕愈合和Transwell结果显示,沉默AEBP2可以抑制肝癌细胞增殖、迁移和侵袭,并促进细胞凋亡(P<0.05)。免疫荧光检测和蛋白质印迹结果显示,沉默AEBP2能够抑制肝癌细胞上皮-间质转化(EMT)(P<0.05)。生物信息学分析结果表明,AEBP2参与调控PI3K/Akt信号通路。蛋白质印迹结果证实,沉默AEBP2能下调PI3K、p-AKT (S473)、mTOR、MMP-2和MMP-9的蛋白质表达水平(P<0.05)。此外,沉默AEBP2对HepG2细胞迁移和侵袭的影响可被PI3K/Akt通路激动剂胰岛素样生长因子1(IGF-1)部分逆转(P<0.01)。综上所述,AEBP2可能通过调节PI3K/Akt途径促进肝癌细胞增殖和迁移。本研究为AEBP2在肝癌中的作用提供理论依据。  相似文献   

9.
It has been shown that bridging integrator 1 (BIN1) can interact with c-myelocytomatosis (c-Myc) oncoprotein in cancer. However, the role of BIN1 in hepatocellular carcinoma (HCC) is not clear. In the present study, we investigated the expression and prognostic role of BIN1 in primary HCC and evaluated the function of BIN1 in hepatocarcinogenesis. Using real-time polymerase chain reaction and Western blot analysis, we found significantly decreased expression of BIN1 in primary HCC tumor tissues (n = 42) compared with adjacent normal tissues and in HCC cell lines. Immunohistochemistry analysis also found decreased BIN1 expression in HCC tumor tissues (n = 117). In clinicopathological analysis, loss of BIN1 expression correlated significantly (P < 0.05) with differentiation scores and tumor size. Importantly, decreased expression of BIN1 in tumors was found to be closely associated with a poor prognosis, and we conclude that BIN1 was an independent prognostic factor in a multivariate analysis. In mechanistic studies, restoring BIN1 expression in BIN1-null HCC cells significantly inhibited cell proliferation and colony formation and induced apoptosis of HCC cells. Furthermore, we found that BIN1 overexpression could significantly suppress the motility and invasion of HCC cells in vitro. Our results indicate that BIN1 may function as a potential tumor suppressor and serve as a novel prognostic marker in HCC patients. The BIN1 molecule might play an important role in tumor growth, cell motility and invasion. Modulation of BIN1 expression may lead to clinical applications of this critical molecule in the control of hepatocellular carcinoma as well as in early and effective diagnosis of this aggressive tumor.  相似文献   

10.

Background

COMMD7 is a newly identified gene overexpressed in hepatocellular carcinoma (HCC) and associated with tumor invasion and poor prognosis. We aim to examine the biological function of COMMD7 in HCC by shRNA silencing.

Methods

COMMD7 expressions were examined in human HCC cell lines HepG2, Huh7, Hep3B, HLE, HLF, SK-Hep-1 and PLC/PRF/5 cells. Recombinant pGenesil-COMMD7-shRNA was transfected into COMMD7-abundant HepG2 cells to silence COMMD7 expression. The effects of COMMD7 silencing on HepG2 cell proliferation in vitro and xenograft tumor growth in vivo were evaluated. Flow cytometry profiling was used to detect the presence of apoptosis in COMMD7-silenced HepG2 cells and to differentiate cell cycle distribution. Electrophoretic mobility shift assay and luciferase reporter assays to examine the activities of nuclear factor-kappaB (NF-κB) signaling pathways in response to tumor necrosis factor (TNF)-α in COMMD7-silenced HepG2 cells.

Results

COMMD7 expression level was abundance in HepG2 and SK-Hep-1 cells. COMMD7 was aberrantly overexpressed in HepG2 cells, whilst pGenesil-COMMD7-shRNA exhibited a maximal inhibition rate of 75%. COMMD7 silencing significantly reduced HepG2 cell proliferation and colony formation. The knockdown of COMMD7 resulted in an increased apoptosis and cell cycle arrest at S-phase. COMMD7 knockdown also exhibited an antineoplastic effect in vivo, which manifested as tumor xenograft growth retardation. COMMD7 silencing also suppressed the responsiveness of NF-κB signaling pathway to the stimulation with TNF-α in vitro. Moreover, the similar suppressive effects of COMMD7 silence on SK-Hep-1 cells were also observed.

Conclusions

COMMD7 contributes to HCC progression by reducing cell apoptosis and overcoming cell cycle arrest. The proliferative and antiapoptotic effects of COMMD7 may be mediated by NF-κB signaling pathway.  相似文献   

11.
Zhao JJ  Pan K  Li JJ  Chen YB  Chen JG  Lv L  Wang DD  Pan QZ  Chen MS  Xia JC 《PloS one》2011,6(10):e26608

Background

LZAP was isolated as a binding protein of the Cdk5 activator p35. LZAP has been highly conserved during evolution and has been shown to function as a tumor suppressor in various cancers. This study aimed to investigate LZAP expression and its prognostic value in hepatocellular carcinoma (HCC). Meanwhile, the function of LZAP in hepatocarcinogenesis was further investigated in cell culture models and mouse models.

Methods

Real-time quantitative PCR, western blot and immunohistochemistry were used to explore LZAP expression in HCC cell lines and primary HCC clinical specimens. The functions of LZAP in the proliferation, colony formation, cell cycle, migration, invasion and apoptosis of HCC cell lines were also analyzed by infecting cells with an adenovirus containing full-length LZAP. The effect of LZAP on tumorigenicity in nude mice was also investigated.

Results

LZAP expression was significantly decreased in the tumor tissues and HCC cell lines. Clinicopathological analysis showed that LZAP expression was significantly correlated with tumor size, histopathological classification and serum α-fetoprotein (AFP). The Kaplan–Meier survival curves revealed that decreasing LZAP expression was associated with poor prognosis in HCC patients. LZAP expression was an independent prognostic marker of overall HCC patient survival in a multivariate analysis. The re-introduction of LZAP expression in the HepG2 and sk-Hep1 HCC cell lines significantly inhibited proliferation and colony formation in the HCC cells and induced G1 phase arrest and apoptosis of the HCC cells in vitro. Restoring LZAP expression in the HCC cell lines also inhibited migration and invasion. In addition, experiments with a mouse model revealed that LZAP overexpression could suppress HCC tumorigenicity in vivo.

Conclusions

Our data suggest that LZAP may play an important role in HCC progression and could be a potential molecular therapy target for HCC.  相似文献   

12.
The regulation of cell migration is a highly complex process that is often compromised when cancer cells become metastatic. The microtubule cytoskeleton is necessary for cell migration, but how microtubules and microtubule-associated proteins regulate multiple pathways promoting cell migration remains unclear. Microtubule plus-end binding proteins (+TIPs) are emerging as important players in many cellular functions, including cell migration. Here we identify a +TIP, GTSE1, that promotes cell migration. GTSE1 accumulates at growing microtubule plus ends through interaction with the EB1+TIP. The EB1-dependent +TIP activity of GTSE1 is required for cell migration, as well as for microtubule-dependent disassembly of focal adhesions. GTSE1 protein levels determine the migratory capacity of both nontransformed and breast cancer cell lines. In breast cancers, increased GTSE1 expression correlates with invasive potential, tumor stage, and time to distant metastasis, suggesting that misregulation of GTSE1 expression could be associated with increased invasive potential.  相似文献   

13.
Expression of MACC1 (metastasis-associated in colon cancer-1) protein is associated with metastasis of various human cancers. This study analyzed MACC1 protein expression in hepatocellular carcinoma (HCC) tissue specimens and then investigated the effects of MACC1 knockdown on HCC cell migration and invasion, and gene expression levels. Sixty pairs of HCC and adjacent normal liver tissues from HCC patients were analyzed for MACC1 expression immunohistochemically. The HCC cell lines Hep3B, Huh7, MHCC97H, SMMC-7721, Bel-7402, and HepG2 and the normal liver cell line LO2 were used to assess expressions of MACC1 mRNA and MACC1 protein using qRT-PCR and western blot, respectively. MACC1 short hairpin RNA (shRNA) was used to knockdown MACC1 protein expression in Huh7 cells. Changes in the tumor phenotype of these cells were analyzed with wound healing assay and invasion assays, and differences in gene expression were evaluated via western blot. Immunofluorescence was used to locate MACC1 protein in the above cell lines. MACC1 was highly expressed in HCC tissues and the nuclear expression of MACC1 protein was associated with poor tumor differentiation and intrahepatic metastasis or portal invasion. Moreover, MACC1 mRNA and MACC1 protein was also expressed in HCC cell lines. Immunostaining showed that MACC1 protein was localized in both nuclei and cytoplasm of HCC cell lines and the nuclear localization of MACC1 protein was associated with increased aggressiveness of HCC in cell lines. Knockdown of MACC1 expression using MACC1-shRNA reduced Huh7 cell migration and invasion abilities, which was associated with downregulation of MMP2, MMP9, and c-Met proteins in Huh7 cells. Localization of MACC1 protein to the nucleus may predict HCC progression. Knockdown of MACC1 expression using MACC1 shRNA warrants further evaluation as a novel therapeutic strategy for control of HCC.  相似文献   

14.
Long noncoding RNAs (lncRNAs) have been recognized as cancer-associated biological molecules, favoring hepatocellular carcinoma (HCC) progression. This study was conducted to elucidate the effects lncRNA lymphoid enhancer-binding Factor 1 antisense RNA (LEF1-AS1) on the pathological development of HCC, along with the crosstalk involving microRNA-136-5p (miR-136-5p) and with-no-K (lysine) kinase 1 (WNK1). The study recruited primary HCC tissues and their corresponding nonneoplastic liver tissues. The gain- and loss-of-function studies were performed in HCC cells HuH-7 and tumor xenografts in nude mice. The dual luciferase reporter gene assay system, RNA pull-down, and radioimmunoprecipitation assays were applied to detect their interactions among lncRNA LEF1-AS1, miR-136-5p, and WNK1. 5-Ethynyl-2′-deoxyuridine staining, scratch test, Transwell assays, and in vitro tube formation assays were conducted to examine HCC cell proliferation, migration, and invasion and HUVEC angiogenesis. HCC tissues and cells contained high lncRNA LEF1-AS1 expression. LncRNA LEF1-AS1 upregulation triggered markedly increased HCC cell proliferation, migration, and invasion and human umbilical vein endothelial cell angiogenesis. In vivo silencing lncRNA LEF1-AS1 resulted in reduced tumor cell vitality and matrix metalloproteinase-9 and the vascular endothelial growth factor expression. Additionally, the role of lncRNA LEF1-AS1 was found to be largely dependent on WNK1. Association of lncRNA LEF1-AS1 with WNK1 blocked the inhibitory effect of miR-136-5p on WNK1, which was confirmed by in vivo experiments. Altogether, our results revealed an important role of lncRNA LEF1-AS1 in regulating the HCC progression by regulating WNK1, providing a potential biomarker for the therapeutic modalities regarding HCC.  相似文献   

15.
Emerging evidence have discovered that circular RNAs (circRNAs) may serve as diagnostic or tumor promising biomarkers. This study aimed to investigate how circular RNA ADAMTS14 (circADAMTS14) regulates microRNA-572/ regulator of calcineurin 1(miR-572/ RCAN1) in hepatocellular carcinoma (HCC). The expression profiles of circRNA/microRNA (mRNA) between HCC tissues and paired adjacent tissues were analyzed via microarray analysis. The expressions of circADAMTS14, miR-572, and RCAN1 were measured by real-time polymerase chain reaction (PCR). The protein expression level of RCAN1 in HCC cells was detected by western blot. The viability and apoptosis levels of HCC cell lines were measured by the cell counting Kit-8 (CCK-8) assay and fluorescence-activated cell sorter. The invasiveness and migration of cells were detected based on the transwell and wound-healing assay, respectively. The dual-luciferase reporter assays were used to reveal circADAMTS14 and RCAN1 as a potential target of miR-572, which was predicted by TargetScan and miRBase. The effect of circADAMTS14 on HCC cells was demonstrated by tumor formation in nude mice in vivo. CircADAMTS14 and RCAN1 were lowly expressed in HCC clinical specimens and cell lines using microarrays and qRT-PCR, but miR-572 inversely. Our study further verified the direct interaction between circADAMTS14 and RCAN1 with miR-572 via the dual-luciferase reporter gene assay. Overexpressed circADAMTS14 and RCAN1 induced apoptosis of HCC cells and inhibited cell proliferation and invasion. But overexpressed miR-572 could decrease apoptosis of HCC cells and promote proliferation and invasion. In vivo, circADAMTS14 inhibited the tumor growth, correlated positively with the protein expression levels of RCAN1. Our results demonstrated that circADAMTS14 might suppress HCC progression through regulating miR-572/ RCAN1 as the competing endogenous RNA.  相似文献   

16.
目的探讨慢病毒介导的靶向SIRTlshRNA对肝癌细胞生长和凋亡的影响。方法Western印迹分析SIRT1在多个肝癌细胞系中的表达;通过慢病毒介导的shRNA干扰技术靶向沉默SIRT1的表达,并通过Western印迹验证SIRTl基因的沉默效果。台盼蓝排斥实验分析SIRT1基因沉默对肝癌细胞生长的影响;流式细胞术和Western印迹检测PARP蛋白的剪切物观察细胞凋亡状态。结果SIRT1在多个肝癌细胞系中表达水平明显上调;慢病毒介导的shRNA能显著抑制细胞中SIRT1的表达。流式细胞术及Western印迹结果均显示SIRT1表达沉默显著诱导了肝癌细胞的凋亡。结论慢病毒介导的靶向SIRT1shRNA显著地抑制SIRT1的表达;SIRT1基因沉默抑制肝癌细胞生长并促进了细胞凋亡。  相似文献   

17.
Fluvastatin, a lipophilic statin, was known to inhibit proliferation and induce apoptosis in many cancer cells. Its potential anticancer was evaluated in three hepatocellular carcinoma (HCC) cell lines (HepG2, SMMC-7721 and MHCC-97H). Cells were treated with fluvastatin in vitro and its effect on cell proliferation, cell cycle, invasion and apoptosis was determined. Mechanism of apoptosis induced by fluvastatin on HCC cell lines was also investigated through western blotting and mitochondrial membrane potential (MMP) analysis. It was observed that fluvastatin inhibited proliferation of HCC cells by inducing apoptosis and G2/M phase arrest in a dose-dependent manner. The results of cell invasion assay revealed that fluvastatin significantly decreased the invasion potency of HCC cells. A mitochondria-operated mechanism for fluvastatin induced apoptosis might be involved and was supported by Western blotting and MMP analysis. After fluvastatin treatment, expression of Bcl-2 and procaspase-9 were downregulated, cytochrome c (cytosolic extract), Bax and cleaved-caspase-3 protein expression were increased. Furthermore, a breakdown of MMP in HCC cells was observed. To conclude, these results have provided a rationale for clinical investigations of fluvastatin in future as a potential anticancer reagent for growth control of HCC.  相似文献   

18.
19.
20.
Several protein-coding genes have been identified to play essential roles in cancer biology, and they are dysregulated in many tumors. Transmembrane protein 106C (TMEM106C) is differentially expressed in several human and porcine diseases; however, the expression and biological functions of TMEM106C in hepatocellular carcinoma (HCC) are not clear. In our study, we obtained paired tissue samples from patients undergoing resection for HCC and public databases, which were analyzed for TMEM106C expression using quantitative real-time polymerase chain reaction (qRT-PCR). We further conducted in vitro and in vivo experiments in HCC cell lines and nude mice, respectively, in which TMEM106C was overexpressed or knocked down. Cell-Counting Kit-8 and colony formation experiments were used to determine the influence of TMEM106C on cell proliferation, flow cytometric assays were used to detect the influence on cell cycle distribution and apoptosis, and transwell assays were used for detecting changes in cell migration and invasion. TMEM106C levels were significantly elevated in HCC tissues and cell lines from public databases and our collected specimens from patients. Moreover, higher TMEM106C expression levels predicted a poor prognosis in HCC patients in survival analysis. Overexpression of TMEM106C in HCC cells accelerated cell growth, migration, and invasion, but it inhibited cell apoptosis by targeting forkhead box O-1 (FOXO1) and FOXO3. Conversely, TMEM106C knockdown impeded cell proliferation and metastasis, whereas it enhanced the rate of apoptosis. More important, knockdown of the expression of TMEM106C in HCC cells inhibited the growth of xenograft tumors in vivo. Collectively, these results suggest that TMEM106C acts as an oncogene and can serve as a potential therapeutic target for HCC in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号