首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelets produce platelet growth factors such as PDGF, IGF-1, EGF-, HGF, TGFβ, bFGF, and VEGF, which are crucial in regulating all stages of the wound healing process. The source of these substances is platelet-rich plasma (PRP). Over the past five decades, the interest and use of the regenerative properties of platelets have increased significantly in many different fields of medicine around the world. PRP and PRF plate preparations are used in: 1. Dentistry (they reduce bleeding, facilitate and accelerate soft tissue healing and bone regeneration - FGF 2, IGF-1, IGF-2, TGF-β1, and PDGF); 2. Sports medicine - IGF-1, IGF-2, TGF-β, VEGF, PDGF and bFGF, EGF); 3. dermatology and cosmetology (treatment of alopecia, hair reconstruction - FGF-7, HGF, acne scars, skin rejuvenation and regeneration, treatment of chronic and poorly healing wounds, burns, and acquired vitiligo); 4. Gynecology and reproductive medicine (treatment of infertility, erectile dysfunction - PDGF-β, TGF-β, IGF-1, in sexual dysfunction - PDGF, in vaginal atrophy); 5 Ophthalmology (in the healing of corneal epithelial wounds, in the treatment of dormant corneal ulcers, dry eye syndrome and the reconstruction of the corneal surface; 6. Neurology (regeneration of neurons, pain alleviation, and clinical symptoms - TGF-β 1, IGF-1, PDGF, VEGF) and FGF). Platelet-rich plasma therapy is a very interesting alternative and complement to traditional methods of treatment. However, the potential for using platelets is still not fully understood. The composition of platelet-rich plasma depends on many factors that may affect its use's efficacy and clinical benefits. Further research is necessary to standardize PRP delivery's preparation procedures and methods for a specific disease entity or clinical case.  相似文献   

2.
The tissue engineering technique using mesenchymal stem cells (MSCs) and scaffolds is promising. Transforming growth factor-β1 (TGF-β1) is generally accepted as an chondrogenic agent, but immunorejection and unexpected side effects, such as tumorigenesis and heterogeneity, limit its clinical application. Autogenous platelet-rich plasma (PRP), marked by low immunogenicity, easy accessibility, and low-cost, may be favorable for cartilage regeneration. In our study, the effect of PRP on engineered cartilage constructed by MSCs and collagen hydrogel in vitro and in vivo was investigated and compared with TGF-β1. The results showed that PRP promoted cell proliferation and gene and protein expressions of chondrogenic markers via the TGF-β/SMAD signaling pathway. Meanwhile, it suppressed the expression of collagen type I, a marker of fibrocartilage. Furthermore, PRP accelerated cartilage regeneration on defects with engineered cartilage, advantageous over TGF-β1, as evaluated by histological analysis and immunohistochemical staining. Our work demonstrates that autogenous PRP may substitute TGF-β1 as a potent and reliable chondrogenic inducer for therapy of cartilage defect.  相似文献   

3.
Transforming growth factor beta-1 (1GF-β) stimulated porcine satellite cell proliferation in basal serum-free medium by 25%, but inhibited growth in serumcontaining medium by 58%. The effect of TGF-β on cell proliferation in serumfree medium was examined in combination with the following human recombinant growth factors: platelet-derived growth factor-BB (PDGF), basic fibroblast growth factor (FGF), insulin-like growth factor I (IGF-I), and epidermal growth factor (EGF). TGF-β inhibited PDGF-stimulated proliferation, enhanced FGF-stimulated proliferation, and had no effect on proliferation stimulated by IGF-I. The response of satellite cells to EGF and TGF-β in serum-free medium was not different than TGF-β alone. TGF-β depressed proliferation stimulated by the following combinations of two growth factors: PDGF and IGF-I, PDGF and EGF, PDGF and FGF, and IGF-I and EGF. In combination with IGF-I and FGF, TGF-β did not affect proliferation. TGF-β inhibited proliferation stimulated by the combination of PDGF, EGF, and IGF-I, but had no effect on proliferation stimulated by combinations of three growth factors that included FGF. FGF stimulated proliferation in Minimum Essential Medium containing 10% porcine serum (MEM-10% PS) by 13% above control. When the combination of TGF-β and FGF was added to MEM-10% PS, a 78% increase in proliferation was observed. Polyclonal antihuman PDGF-AB (this form neutralizes PDGF-AA, AB, and BB) reduced proliferation in MEM-10% PS by 44%. The combination of TGF-β and anti-PDGF-AB reduced proliferation by 59%, indicating the effects were not additive. These data indicate that: (1) FGF and TGF-β interact to increase proliferation of clonally derived porcine satellite cells, and (2) the inhibitory effect of TGF-β on proliferation of clonally derived porcine satelite cells can be primarily attributed to a reduction in the mitogenic effects of PDGF. © 1993 Wiley-Liss, Inc.  相似文献   

4.
《Reproductive biology》2022,22(4):100705
Type I collagen is the most abundant extracellular matrix (ECM) protein in the mammalian ovary, and comprises two COL1A1 subunits and one COL1A2 subunit. Matrix metalloproteinase 1 (MMP1) is a typical collagenase of type I collagen, that can be detected in ovarian follicles and early corpus luteum. Previous studies demonstrated that MMP1-mediated degradation of type I collagen plays a functional role in regulating corpus luteum formation, and transforming growth factor β1 (TGF-β1) inhibits luteinization and progesterone production in granulosa cells (GCs). Whether TGF-β1 regulates the expression of MMP1, COL1A1, or the deposition of type I collagen during corpus luteum formation remains to be elucidated. This study aimed to investigate the molecular mechanisms through which TGF-β1 regulates MMP1 expression and type I collagen deposition in GCs. Our results show that TGF-β1 upregulates COL1A1 expressions and downregulates MMP1 expression. Inhibition approaches, including pharmacological inhibitors such as p38 inhibitor (SB203580), ERK1/2 inhibitor (U0126), AKT inhibitor (LY294002), and GSK-3β inhibitor (LiCl), as well as knockdown using siRNA specific to these genes, were used. Our results suggest that TGF-β1 decreases MMP1 production via an ALK5-mediated AKT/GSK-3β-dependent signaling pathway, and a decrease in MMP1 levels and an increase in COL1A1 levels synergistically promote type I collagen deposition in GCs. Collectively, these findings provide novel insights into the underlying molecular mechanisms by which TGF-β1 upregulates type I collagen deposition in GCs.  相似文献   

5.
Nanofibers(NFs)have been widely used in tissue engineering such as wound healing.In this work,the antibacterial ZnO quantum dots(ZnO QDs)have been incorporated into the biocompatible poly(ε-caprolactone)/collagen(PCL/Col)fibrous scaffolds for wound healing.The as-fabricated PCL-Col/ZnO fibrous scaffolds exhibited good swelling,antibacterial activity,and biodegradation behaviors,which were beneficial for the applications as a wound dressing.Moreover,the PCL-Col/ZnO fibrous scaffolds showed excellent cytocompatibility for promoting cell proliferation.The resultant PCL-Col/ZnO fibrous scaffolds containing vascular endothelial growth factor(VEGF)also exhibited promoted wound-healing effect through promoting expression of transforming growth factor-β(TGF-β)and the vascular factor(CD31)in tissues in the early stages of wound healing.This new electrospun fibrous scaffolds with wound-healing promotion and antibacterial property should be convenient for treating wound healing.  相似文献   

6.
Increased immature neovessels contribute to plaque growth and instability. Here, we investigated a method to establish functional and stable neovessel networks to increase plaque stability. Rabbits underwent aortic balloon injury and were divided into six groups: sham, vector and lentiviral transfection with vascular endothelial growth factor‐A (VEGF)‐A, fibroblast growth factor (FGF)‐2, platelet‐derived growth factor (PDGF)‐BB and FGF‐2 + PDGF‐BB. Lentivirus was percutaneously injected into the media‐adventitia of the abdominal aorta by intravascular ultrasound guidance, and plaque‐rupture rate, plaque‐vulnerability index and plaque neovessel density at the injection site were evaluated. Confocal microscopy, Prussian Blue assay, Evans Blue, immunofluorescence and transmission electron microscopy were used to assess neovessel function and pericyte coverage. To evaluate the effect of FGF‐2/PDGF‐BB on pericyte migration, we used the mesenchymal progenitor cell line 10T1/2 as an in vitro model. VEGF‐A‐ and FGF‐2‐overexpression increased the number of immature neovessels, which caused intraplaque haemorrhage and inflammatory cell infiltration, eventually resulting in the plaque vulnerability; however, FGF‐2/PDGF‐BB induced mature and functional neovessels, through increased neovessel pericyte coverage. Additionally, in vitro analysis of 10T1/2 cells revealed that FGF‐2/PDGF‐BB induced epsin‐2 expression and enhanced the VEGF receptor‐2 degradation, which negatively regulated pericyte function consistent with the in vivo data. These results showed that the combination of FGF‐2 and PDGF‐BB promoted the function and maturation of plaque neovessels, thereby representing a novel potential treatment strategy for vulnerable plaques.  相似文献   

7.
Fluorofenidone (FD) is a novel pyridone agent with significant antifibrotic effects in vitro. The purpose of this study is to investigate the effects of FD on renal interstitial fibrosis in rats with obstructive nephropathy caused by unilateral ureteral obstruction (UUO). With pirfenidone (PD, 500 mg/kg/day) and enalapril (10 mg/kg/day) as the positive treatment controls, the rats in different experimental groups were administered with FD (500 mg/kg/day) from day 4 to day 14 after UUO. The tubulointerstitial injury, interstitial collagen deposition, and expression of type I and type III collagen, transforming growth factor-β(1) (TGF-β(1)), connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), α-smooth muscle actin (α-SMA), and tissue inhibitor of metalloproteinase-1 (TIMP-1) were assessed. FD treatment significantly attenuated the prominently increased scores of tubulointerstitial injury, interstitial collagen deposition, and protein expression of type I and type III collagen in ureter-obstructed kidneys, respectively. As compared with untreated rats, FD also significantly reduced the expression of α-SMA, TGF-β(1), CTGF, PDGF, and inhibitor of TIMP-1 in the obstructed kidneys. Fluorofenidone attenuates renal interstitial fibrosis in the rat model of obstructive nephropathy through its regulation on fibrogenic growth factors, tubular cell transdifferentiation, and extracellular matrix.  相似文献   

8.
Choroidal neovascularization (CNV), a characteristic of age-related macular degeneration, is an underlying cause of severe vision loss among elderly patients. Fibroblast growth factor (FGF) is suggested to exert an important role in the pathogenesis of CNV. However, the molecular mechanisms governing this event are not fully elucidated. Herein, we identified the potential role of FGF7 in CNV. To examine the roles of FGF7 in the progression of CNV, rat CNV models were established and treated with small interfering RNA (siRNA) against FGF7 or FGF7 overexpression, followed by identification of expression of FGF7 in the CNV modeled rats. Next, proliferation and migration, and in vitro tube formation of human umbilical vein endothelial cells, as well as expression of vascular endothelial growth factor (VEGF) and transforming growth factor-beta 2 (TGF-β2) were evaluated. CNV led to upregulated FGF7 expression. Cells in the presence of FGF7 siRNA showed suppressed proliferation, migration, and tube formation, along with downregulated VEGF and TGF-β2 expression. Taken together, functional suppression of FGF7 inhibited the onset of CNV, ultimately highlighting a novel therapeutic target for suppressing CNV progression.  相似文献   

9.
Xenografted tumours were produced in nude mice by injection of HCT-8 human colon tumour cells. At average volumes of about 750 mm3, animals were injected with fast green vital dye, and 20 min later, tumours were excised and dissected into viable (stained) and necrotic portions (unstained). Viable and necrotic regions were then examined for cell yields, colony forming efficiencies, and levels of basic fibroblast growth factor (FGF-2), transforming growth factors-β1 and -α (TGF-β1, TGF-α), platelet derived growth factor (PDGF), and vascular endothelial growth factor (VEGF) using enzyme-linked immunoassay (ELISA) procedures. Levels in the viable and necrotic regions were compared to levels in unseparated tumours. The average extent of necrosis in HCT-8 tumours of this size was 64%. The data for cell yields, colony forming efficiencies FGF-2, VEGF, TGF-β1 and TGF-α indicated that values determined in the unseparated tumours could be understood on the basis of the weighted average between viable and necrotic tissue, with the higher values occurring in the viable tissue. Low levels of FGF-2 and VEGF were found in the necrotic portions of the tumour while no measurable levels of TGF-β1 and TGF-α could be determined. PDGF levels were, however, equivalent in both the viable and necrotic regions indicating that necrotic tissue could be an important reservoir for this growth factor.  相似文献   

10.
Spinal cord-derived growth factor (SCDGF)/platelet-derived growth factor (PDGF)-C/fallotein has a unique two-domain structure, as it contains two regions homologousto CUB and PDGF/vascular endothelial growth factor (VEGF) domains. In this study, we isolateda novel gene homologous to SCDGF/PDGF-C/fallotein, and named SCDGF-B. The culture supernatant of CHO-K1 cells stably transfected with SCDGF-B showed mitogenic activity as SCDGF/PDGF-C/fallotein did. Although SCDGF-B and SCDGF/PDGF-C/fallotein might be the members of the PDGF/VEGF superfamily of growth factors, they were categorized into a new subfamily in addition to PDGF and VEGF subfamilies.  相似文献   

11.
It is recognized that Wnt3a affects bone metabolism via the canonical Wnt/β-catenin signalling pathway. We have previously shown that transforming growth factor-β (TGF-β) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TGF-β-stimulated VEGF synthesis in these cells. Wnt3a, which alone had little effect on the VEGF levels, significantly enhanced the TGF-β-stimulated VEGF release. Lithium chloride and SB216763, inhibitors of glycogen synthase kinase 3β, markedly amplified the TGF-β-stimulated VEGF release. Wnt3a failed to affect the TGF-β-induced phosphorylation of Smad2, p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. Wnt3a and lithium chloride strengthened the VEGF mRNA expression induced by TGF-β. These results strongly suggest that Wnt3a upregulates VEGF synthesis stimulated by TGF-β via activation of the canonical pathway in osteoblasts.  相似文献   

12.
The purpose of this study is to differentiate roles of several growth factors and cytokines in proliferation and differentiation of pulp cells during development and repair. In human pulp cell cultures, laminin and type I collagen levels per cell remained almost constant during the whole culture period (22 days). On the other hand, secreted protein, acidic and rich in cysteine (SPARC/osteonectin) and alkaline phosphatase (ALPase) levels markedly increased after the cultures reached confluence. Laminin and type I collagen, as well as fibronectin, stimulated the spreading of pulp cells within 1 h. Adding transforming growth factor-β (TGF-β) decreased laminin and ALPase levels, whereas it increased SPARC and fibronectin levels 3- to 10-fold. Western and Northern blots showed that TGF-β enhanced SPARC synthesis at the protein and mRNA levels. Basic fibroblast growth factor (bFGF) decreased type I collagen, laminin, SPARC, and ALPase levels without changing the fibronectin level. Platelet-derived growth factor (PDGF) selectively decreased laminin, SPARC, and ALPase levels. Epidermal growth factor (EGF) also decreased SPARC and ALPase levels. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) decreased type I collagen and laminin levels, and abolished SPARC and ALPase syntheses. Of these peptides, bFGF and PDGF showed the greatest stimulation of [3H]thymidine incorporation into DNA. TGF-β, EGF, and TNF-α had less effect on DNA synthesis, whereas IL-1β inhibited DNA synthesis. These findings demonstrated that TGF-β, bFGF, EGF, PDGF, TNF-α, and IL-1β have characteristically different patterns of actions on DNA, laminin, type I collagen, fibronectin, ALPase, and SPARC syntheses by pulp cells. J. Cell. Physiol. 174:194–205, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
14.
While platelet derived growth factor (PDGF) did not induce any platelet aggregation nor secretion, it modified the polyphosphoinositide metabolism of human platelets prelabeled with 32P-orthophosphate. We found a decrease of 32P associated with phosphatidylinositol 4,5 bisphosphate after 3 min, with parallel increase of 32P-phosphatidylinositol 4 phosphate and 32P-phosphatidylinositol using 100 ng/ml of PDGF. This modification was PDGF concentration dependent. PDGF inhibited thrombin and collagen induced platelet aggregation and 14C-serotonin release in a dose dependent manner, but was without effect when arachidonic acid was used. These results suggest that PDGF (i) stimulated the hydrolysis of polyphosphoinositides (ii) and could exert a negative feedback control on platelet activation induced by thrombin or collagen.  相似文献   

15.
Connective tissue growth factor (CCN2) is a multifunctional matricellular protein, which is frequently overexpressed during organ fibrosis. CCN2 is a mediator of the pro-fibrotic effects of TGF-β in cultured cells, but the specific function of CCN2 in the fibrotic process has not been elucidated. In this study we characterized the CCN2-dependent signaling pathways that are required for the TGF-β induced fibrogenic response. By depleting endogenous CCN2 we show that CCN2 is indispensable for the TGF-β-induced phosphorylation of Smad1 and Erk1/2, but it is unnecessary for the activation of Smad3. TGF-β stimulation triggered formation of the CCN2/β(3) integrin protein complexes and activation of Src signaling. Furthermore, we demonstrated that signaling through the α(v)β(3) integrin receptor and Src was required for the TGF-β induced Smad1 phosphorylation. Recombinant CCN2 activated Src and Erk1/2 signaling, and induced phosphorylation of Fli1, but was unable to stimulate Smad1 or Smad3 phosphorylation. Additional experiments were performed to investigate the role of CCN2 in collagen production. Consistent with the previous studies, blockade of CCN2 abrogated TGF-β-induced collagen mRNA and protein levels. Recombinant CCN2 potently stimulated collagen mRNA levels and upregulated activity of the COL1A2 promoter, however CCN2 was a weak inducer of collagen protein levels. CCN2 stimulation of collagen was dose-dependent with the lower doses (<50 ng/ml) having a stimulatory effect and higher doses having an inhibitory effect on collagen gene expression. In conclusion, our study defines a novel CCN2/α(v)β(3) integrin/Src/Smad1 axis that contributes to the pro-fibrotic TGF-β signaling and suggests that blockade of this pathway may be beneficial for the treatment of fibrosis.  相似文献   

16.
17.
18.
Angiogenesis is essential for transplantation of mesenchymal stem cells (MSCs). Vascular endothelial growth factor (VEGF) is one of the most potent angiogenic factors identified to date. Elevated VEGF levels in MSCs correlate with the potential of MSCs transplantation. As an indirect angiogenic agent, transforming growth factor-β1 (TGF-β1) plays a pivotal role in the regulation of vasculogenesis and angiogenesis. However, the effect of TGF-β1 on VEGF synthesis in MSCs is still unknown. Besides, the intracellular signaling mechanism by which TGF-β1 stimulates this process remains poorly understood. In this article, we demonstrated that exposure of MSCs to TGF-β1 stimulated the synthesis of VEGF. Meanwhile, TGF-β1 stimulated the phosphorylation of Akt and extracellular signal-regulated kinase 1/2 (ERK1/2). Moreover, Ly 294002, a specific inhibitor of phosphatidylinositol-3-kinase (PI3K)/Akt significantly attenuated the VEGF synthesis stimulated by TGF-β1. Additionally, U0126, a specific inhibitor of ERK1/2, also significantly attenuated the TGF-β1-stimulated VEGF synthesis. These results indicated that TGF-β1 enhanced VEGF synthesis in MSCs, and the Akt and ERK1/2 activation were involved in this process.  相似文献   

19.
BackgroundThe vascular pathology of peripheral artery disease (PAD) encompasses abnormal microvascular architecture and fibrosis in response to ischemia-reperfusion (I/R) cycles. We aimed to investigate the mechanisms by which pathological changes in the microvasculature direct fibrosis in the context of I/R.MethodsPrimary human aortic endothelial cells (ECs) were cultured under cycles of normoxia-hypoxia (NH) or normoxia-hypoxia-hyperoxia (NHH) to mimic I/R. Primary human aortic smooth muscle cells (SMCs) were cultured and treated with media from the ECs.FindingsThe mRNA and protein expression of the pro-fibrotic factors platelet derived growth factor (PDGF)-BB and connective tissue growth factor (CTGF) were significantly upregulated in ECs undergoing NH or NHH cycles. Treatment of SMCs with media from ECs undergoing NH or NHH cycles led to significant increases in TGF-β1, TGF-β pathway signaling intermediates, and collagen expression. Addition of neutralizing antibodies against PDGF-BB and CTGF to the media blunted the increases in TGF-β1 and collagen expression. Treatment of SMCs with PAD patient-derived serum also led to increased TGF-β1 levels.InterpretationIn an in-vitro model of I/R, which recapitulates the pathophysiology of PAD, increased secretion of PDGF-BB and CTGF by ECs was shown to be predominantly driving TGF-β1-mediated expression by SMCs. These cell culture experiments help elucidate the mechanism and interaction between ECs and SMCs in microvascular fibrosis associated with I/R. Thus, targeting these pro-fibrotic factors may be an effective strategy to combat fibrosis in response to cycles of I/R.FundingNational Institute on Aging at the National Institutes of Health grant number R01AG064420.Research in contextEvidence before this study: Previous studies in gastrocnemius biopsies from peripheral artery disease (PAD) patients showed that transforming growth factor beta 1 (TGF-β1), the most potent inducer of pathological fibrosis, is increased in the vasculature of PAD patients and correlated with collagen deposition. However, the exact cellular source of TGF-β1 remained unclear. Added value of this study: Exposing cells to cycles of normoxia-hypoxia-hyperoxia (NHH) resulted in pathological changes that are consistent with human PAD. This supports the idea that the use of NHH may be a reliable, novel in vitro model of PAD useful for studying associated pathophysiological mechanisms. Furthermore, pro-fibrotic factors (PDGF-BB and CTGF) released from endothelial cells were shown to induce a fibrotic phenotype in smooth muscle cells. This suggests a potential interaction between these cell types in the microvasculature that drives increased TGF-β1 expression and collagen deposition. Thus, targeting these pro-fibrotic factors may be an effective strategy to combat fibrosis in response to cycles of ischemia-reperfusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号