首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Musculoskeletal allografts are typically disinfected using antibiotics, irradiation or chemical methods but protocols vary significantly between tissue banks. It is likely that different disinfection protocols will not have the same level of microorganism kill; they may also have varying effects on the structural integrity of the tissue, which could lead to significant differences in terms of clinical outcome in recipients. Ideally, a disinfection protocol should achieve the greatest bioburden reduction with the lowest possible impact on tissue integrity. A systematic review of three databases found 68 laboratory and clinical studies that analyzed the microbial bioburden or contamination rates of musculoskeletal allografts. The use of peracetic acid–ethanol or ionizing radiation was found to be most effective for disinfection of tissues. The use of irradiation is the most frequently published method for the terminal sterilization of musculoskeletal allografts; it is widely used and its efficacy is well documented in the literature. However, effective disinfection results were still observed using the BioCleanse? Tissue Sterilization process, pulsatile lavage with antibiotics, ethylene oxide, and chlorhexidine. The variety of effective methods to reduce contamination rate or bioburden, in conjunction with limited high quality evidence provides little support for the recommendation of a single bioburden reduction method.  相似文献   

2.
The use of skin allografts to temporarily replace lost or damaged skin is practiced worldwide. Naturally occurring contamination can be present on skin or can be introduced at recovery or during processing. This contamination can pose a threat to allograft recipients. Bacterial culture and disinfection of allografts are mandated, but the specific practices and methodologies are not dictated by standards. A systematic review of literature from three databases found 12 research articles that evaluated bioburden reduction processes of skin grafts. The use of broad spectrum antibiotics and antifungal agents was the most frequently identified disinfection method reported demonstrating reductions in contamination rates. It was determined that the greatest reduction in the skin allograft contamination rates utilized 0.1 % peracetic acid or 25 kGy of gamma irradiation at lower temperatures.  相似文献   

3.
One of the most important risks to be controlled in tissue banking is the infection associated with the clinical use of auto- and allografts. Thus, tissue disinfection protocols are used, in addition to processing in controlled environments. For this purpose, combinations of antibiotics are designed to ensure a broad spectrum of antimicrobial activity. This type of protocol is usually validated by testing its antimicrobial efficacy. In this work, we have studied the effect of several factors on the potential of an antibiotic mixture: container, freezing, storage at 4 °C, storage at ??30 °C and storage at ??80 °C. The molecular stability of the compounds has also been tested, additionally to their efficacy. Our findings show that storage conditions affect the molecular stability of Fungizone and Tobramycin (only in case of frozen storage for the last one). Nevertheless, the solution retains its antimicrobial activity for several weeks. The availability of stored aliquots of disinfectant solution and defining expiry dates for different storage conditions can help to schedule tissue bank tasks.  相似文献   

4.
Bacterial contamination of tissues retrieved from cadaveric donors is a common feature worldwide, and every tissue bank, albeit using different methods, conducts decontamination to guarantee safe tissues suitable for clinical use. The effectiveness of the methods used to eradicate pathogens differs. In order to reduce the tissue bioburden at retrieval, we have introduced a new method involving rinsing tissues in a sodium hypochlorite solution. To test its effectiveness we analyzed two comparable groups of tissues: Group A: 1881 tissues, all rinsed with isotonic saline solution after retrieval, and Group B: 1968 tissues immersed in an isotonic saline solution containing sodium hypochlorite (final concentration 0.1 %) for different lengths of time and subsequently rinsed with isotonic saline. The rinsing solution of each tissue was then sampled for microbiological cultures in both groups. The resultant overall contamination rate was 40.5 % for Group A and 6.7 % for Group B, with an 82.8 % difference in the reduction of contamination between the two groups. This was especially the case for commensal skin bacteria in musculoskeletal tissue, which accounted for over half the overall contamination. Our data highlighted that decontamination with sodium hypochlorite was helpful in reducing the bacterial bioburden in tissues retrieved from cadaveric donors.  相似文献   

5.
As part of the donor assessment protocol, bioburden assessment must be performed on allograft musculoskeletal tissue samples collected at the time of tissue retrieval. Swab samples of musculoskeletal tissue allografts from cadaveric donors are received at the microbiology department of the South Eastern Area Laboratory Services (Australia) to determine the presence of bacteria and fungi. This study will review the isolation rate of organisms from solid agar and broth culture of swab samples of cadaveric allograft musculoskeletal tissue over a 6-year period, 2006–2011. Swabs were inoculated onto horse blood agar (anaerobic, 35 °C) and chocolate agar (CO2, 35 °C) and then placed into a cooked meat broth (aerobic, 35 °C). A total of 1,912 swabs from 389 donors were received during the study period. 557 (29.1 %) swabs were culture positive with the isolation of 713 organisms, 249 (34.9 %) from solid agar culture and an additional 464 (65.1 %) from broth culture only. This study has shown that the broth culture of cadaveric allograft musculoskeletal swab samples recovered a greater amount of organisms than solid agar culture. Isolates such as Clostridium species and Staphylococcus aureus would not have been isolated from solid agar culture alone. Broth culture is an essential part of the bioburden assessment protocol of swab samples of cadaveric allograft musculoskeletal tissue in this laboratory.  相似文献   

6.
All cardiac allograft tissues are under potential contamination, requiring a validated terminal sterilization process or a minimal bioburden. The bioburden calculation is important to determine the bacterial burden and further decontamination and disinfection strategies for the valve processing. The aim of this study was to determine the bioburden from transport solution (TS) of heart valves obtained from non-heart-beating and heart-beating donors in different culture methods. The bioburden from TS was determined in 20 hearts donated for valve allograft tissue using membrane filter (MF) and direct inoculation. Tryptic soy agar and Sabouraud plates were incubated and colonies were counted. Ninety-five percent of samples from this study were obtained from heart-beating donors. The warm ischemic time period for heart was 1.06?±?0.74 h and the cold ischemic time period was 25.66?±?11.16 h. The mean TS volume was 232.68?±?96.67 mL (48.5–550 mL). From 20 samples directly inoculated on TSA agar plates, 2 (10%) were positive. However, when MF was used, from 20 samples in TSA, 13 (65%) were positive with a mean count of 1.36?±?4.04 CFU/mL. In Sabouraud plates, the direct inoculation was positive in 5 samples (25%) with a mean count of 0.24?±?0.56 CFU/mL. The use of MF increased the positivity to 50% (10 samples from a total of 20) with a mean of 0.28?±?0.68 CFU/mL. The positivity was superior using MF in comparison with direct inoculation (p?<?0.05). The bioburden of TS is low and MF is the technique of choice due to higher positivity.  相似文献   

7.
A quantitative method was developed and validated to assess bioburden on tissue from human donors and to compare bioburden determination results to swab culture results from the same donor. An initial study with allograft tissue from 101 donors showed a wide range of bioburden levels; values from no colony-forming units (CFU) detected to?>28,000?CFU were observed. Tissues from donors that had swab cultures negative for objectionable microorganisms generally had lower bioburden than tissues from donors where objectionable microorganisms were recovered by swab culturing. In a follow-up study with 1,445 donors, a wide range of bioburden levels was again observed on tissues from donors that were swab culture negative for objectionable microorganisms. Tissues from 885 (61%) of these donors had no recoverable bioburden (<2?CFU). Importantly, tissues from 560 (39%) of the donors had recoverable bioburden which ranged from 1 to?>24,000?CFU. Identification of bioburden isolates showed a diversity of genera and species. In compliance with the recent revision of the American Association of Tissue Banks K2.210 Standard, the quantitative bioburden determination method was validated with a composite tissue sample that contains bone and soft tissue sections tested together in one extraction vessel. A recovery efficiency of 68% was validated and the composite sample was shown to be representative of all of the tissues recovered from a donor. The use of the composite sample in conjunction with the quantitative bioburden determination method will facilitate an accurate assessment of the numbers and types of contaminating microorganisms on allografts prior to disinfection/sterilization. This information will ensure that disinfection/sterilization processes are properly validated and the capability of the overall allograft process is understood on a donor by donor basis.  相似文献   

8.
Fifteen species of marine invertebrate commonly occurring in the near-shore environment of Rothera base, Antarctica, were used to test tissue sample storage protocols with regard to preservation of RNA integrity. After animal collection, the tissues were either immediately extracted for RNA or stored at −80°C after having been, either directly flash frozen in liquid nitrogen or preserved in a commercial RNA storage solution, for extraction in the UK. In four cases, direct flash freezing produced enhanced RNA integrity compared with samples in the commercial storage solution. A subset of samples were further tested for the preferred temperature of storage in the commercial reagent. RNA integrity was well preserved at both +4 and −20°C over periods of 2 months, but degradation was rapid in tissues stored at room temperature. Eight out of the fifteen species only produced a single ribosomal band on gel electrophoresis. This survey provides a guide for tissue transport of Polar cold water marine invertebrates.  相似文献   

9.
The bioburden screening process of allograft musculoskeletal tissue samples received at the South Eastern Area Laboratory Services includes the routine use of solid agar and cooked meat (CM) broth media. CM has been routinely sub-cultured onto solid agar plates after aerobic incubation at 35 °C. This study will evaluate whether a visual assessment of CM can replace sub-culture by an in vitro inoculation and a prospective study. Eight challenge organisms were serially diluted and inoculated into CM. The average inoculum of 0.5–5.5 CFU produced visible turbidity of CM after 24-h incubation for 7 of the challenge organisms with one organism producing turbidity after 48-h incubation. The prospective study evaluated 222 CM of which 213 were visually clear and no-growth on sub-culture and 9 turbid CM which were culture positive. Broth cultures are an integral part of the bioburden screening process of allograft musculoskeletal tissue and swab samples and visual assessment of CM can replace sub-culture.  相似文献   

10.
11.
The shelf-life of fresh-cut tomatoes mainly depends on loss of tissue integrity and firmness that occurs also in intact fruits after long-term cold storage due to chilling injury. Round-fruit tomatoes (Solanum lycopersicum L.) cv. Jama were stored in 1.1-L plastic (polyethylene) fresh-cut produce containers as 10.0-mm-thick tomato slices and as intact tomatoes at 4 ± 0.5 °C. The aim of this work was to study the loss of membrane integrity and biochemical processes involved in membrane disruption. Electrolyte leakage and lipid peroxidation were studied at different stages of maturity: mature green, pink (PK), fully ripe and two different storage temperatures: 4 and 15 °C. The tomato slices of PK stage stored at 4 °C did not show changes for both parameters, while significant increase in membrane leakage and lipid peroxidation was observed at 15 °C, especially after 24 h of storage. The enzymes showed a simultaneous increase in their activities with a rise in electrolyte leakage and lipid peroxidation after 7 days of storage. Finally, phospholipase C (PLC) and phospholipase D (PLD) were investigated for intact fruit and tomato slices stored at 4 °C. The PLC had higher activity compared with PLD. In conclusion, the loss of membrane integrity in fresh-cut tomatoes is mainly affected by ripening stages, storage temperature and duration. The wounds enhance the PLC and PLD activities and they play a role late during storage.  相似文献   

12.
13.
14.
In this study, we investigated the temporal post-mortem limits, within which there will be guarantees of obtaining living cells from several tissues of sheep and cattle and the effect of vitrification on the ability of cells from tissue stored at different times. Muscle tissue and auricular cartilage were stored at 4°C for 5, 48, 72, 96 and 216 h post-mortem (hpm). Tissue samples were sorted into two groups: one group was in vitro cultured immediately after storage and the other was vitrified after storage and then in vitro cultured. In cattle and sheep, no differences in subconfluence rates were observed between the two experimental groups. At the same time, no significant differences were observed in the number of days required in culture to reach confluence between non-vitrified and vitrified groups when tissues were stored at 4°C for different times. In sheep, while the population doubling times (PDT) were similar in cartilage cells from vitrified and non-vitrified tissues and stored at 4°C for 5 and 216 hpm, PDT of muscle cells were longer in 216 hpm stored groups than in 5 hpm stored groups. In bovine, although the PDT of muscle cells were similar for 5 and 216 hpm and both vitrified and non-vitrified tissues and the PDT were longer in cartilage cells from vitrified than from non-vitrified tissues. In conclusion, although storage times and vitrification have different effects on tissues from cattle and sheep, this study showed that living cells could be obtained from all groups. Therefore, cartilage and muscle tissues can be stored at 4°C for 216 hpm and used for cyrobanking.  相似文献   

15.
Human amniotic membrane (HAM) is used as an allograft in regenerative medicine or as a source of pluripotent cells for stem cell research. Various decontamination protocols and solutions are used to sterilize HAM before its application, but little is known about the toxicity of disinfectants on HAM cells. In this study, we tested two decontamination solutions, commercial (BASE·128) and laboratory decontamination solution (LDS), with an analogous content of antimycotic/antibiotics for their cytotoxic effect on HAM epithelial (EC) and mesenchymal stromal cells (MSC). HAM was processed in a standard way, placed on nitrocellulose scaffold, and decontaminated, following three protocols: (1) 6 h, 37 °C; (2) 24 h, room temperature; (3) 24 h, 4 °C. The viability of EC was assessed via trypan blue staining. The apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). The mean % (±SD) of dead EC (%DEC) from six fresh placentas was 12.9 ± 18.1. Decontamination increased %DEC compared to culture medium. Decontamination with BASE·128 for 6 h, 37 °C led to the highest EC viability (81.7%). Treatment with LDS at 24 h, 4 °C resulted in the lowest EC viability (55.9%) in the set. MSC were more affected by apoptosis than EC. Although the BASE·128 expresses lower toxicity compared to LDS, we present LDS as an alternative decontamination solution with a satisfactory preservation of cell viability. The basic formula of LDS will be optimised by enrichment with nutrient components, such as glucose or vitamins, to improve cell viability.  相似文献   

16.
This work evaluated the effect of magnetic hyperthermia (MH) on planktonic cells and biofilms of a major food spoilage bacterium Pseudomonas fluorescens and its performance compared to a conventional direct heating (DH) technique. The results showed that MH had a greater and faster bactericidal effect, promoting a significant reduction in cell viability (≥3 Log CFU) in planktonic and biofilm cells, and leading to a complete eradication of planktonic cells at 55 °C (after only ~8 min). Accordingly, when comparing the same final temperatures, MH was more harmful to the integrity of cell membranes than DH, as observed in confocal laser scanning microscope images. Additionally, scanning electron microscope images revealed that exposure to MH had promoted modifications of the bacterial cell surface as well as of the structure of the biofilm. These results present the possibility of using MH out of the biomedical field as a potential disinfection method in food-related environments.  相似文献   

17.
Recent advances in tissue engineering have led to potential new strategies, especially decellularization protocols from natural tissues, for the repair, replacement, and regeneration of intervertebral discs. This study aimed to validate our previously reported method for the decellularization of annulus fibrosus (AF) tissue and to quantify potentially antigenic α-Gal epitopes in the decellularized tissue. Porcine AF tissue was decellularized using different freeze–thaw temperatures, chemical detergents, and incubation times in order to determine the optimal method for cell removal. The integrity of the decellularized material was determined using biochemical and mechanical tests. The α-Gal epitope was quantified before and after decellularization. Decellularization with freeze–thaw in liquid nitrogen, an ionic detergent (0.1% SDS), and a 24 h incubation period yielded the greatest retention of GAG and collagen relative to DNA reduction when tested as single variables. Combined, these optimal decellularization conditions preserved more GAG while removing the same amount of DNA as the conditions used in our previous study. Components and biomechanical properties of the AF matrix were retained. The decellularized AF scaffold exhibited suitable immune-compatibility, as evidenced by successful in vivo remodeling and a decrease in the α-Gal epitope. Our study defined the optimal conditions for decellularization of porcine AF tissues while preserving the biological composition and mechanical properties of the scaffold. Under these conditions, immunocompatibility was evidenced by successful in vivo remodeling and reduction of the α-Gal epitope in the decellularized material. Decellularized AF scaffolds are potential candidates for clinical applications in spinal surgery.  相似文献   

18.
Copper has been used as a disinfectant since ancient times and recent research has demonstrated that antimicrobial copper surfaces may have practical applications in healthcare and related areas. The present study was carried out to establish the effects of temperature and pH on inactivation and sub-lethal injury of Escherichia coli in water stored in a copper vessel, to determine the operational limits of the process in terms of these variables. To investigate the effects of temperature, a bacterial suspension at pH 7.0 was stored for up to 48 h in copper vessels at 5, 15, 25 and 35°C. For pH, a bacterial suspension was stored at 30°C for up to 48 h in copper vessels at pH 6.0, 7.0, 8.0 and 9.0. Both temperature and pH had substantial effects on inactivation and injury, with the fastest inactivation observed at elevated temperature and at pH values furthest from neutrality, while the greatest amount of sub-lethal injury, manifest as sensitivity to conventional aerobic enumeration, was observed at a temperature of 35°C. These findings have important implications for the practical application of copper-based water disinfection methods, in terms of their likely efficacy under environmental conditions.  相似文献   

19.
Madin Darby bovine kidney cells were stored at ?80°C using trehalose. Trehalose was loaded into the cells by fluid-phase endocytosis that was facilitated by heat shock at 40°C for 1 h. Loaded cells were gradually frozen and stored at ?80°C. Revival of cells was done by quick thawing and immediately seeded in the tissue culture flasks. The membrane integrity of cells was measured at different times post-storage by trypan blue dye exclusion method. It was estimated to be 96.23, 73.84, 57.33, 54.36, 25.47, 50.53 and 46.86% at 0, 7, 60, 90, 120, 160 and 180-day post-storage, respectively. Cryostorage of cells at ?80°C may help to reduce the use of liquid nitrogen.  相似文献   

20.
With climate change threatening the future of coral reefs, there is an urgent need for effective coral tissue preservation and repositories from which DNA can be extracted. Most collections use 95 % ethanol as the storage medium, but its efficacy for long-term storage for short-fragment DNA use remains poorly documented. We conducted an accelerated DNA aging trial on three species of coral to ascertain whether ethanol-stored tissue and skeleton samples could yield fit-for-purpose DNA at time scales of 100+ yrs. We conclude that even using a crude DNA extraction technique, samples kept at 40 °C for 20 months yielded DNA of sufficient quality for Symbiodinium and coral host genotyping. If stored at ?20 °C, these samples are likely to still yield useable DNA after 100 yrs. Ethanol-stored samples compared favorably in terms of DNA quality, quantity and sample integrity with those stored in an analogue of the commercial storage buffer RNAlater ®.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号