首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yuan G  Wang C  Ma C  Chen N  Tian Q  Zhang T  Fu W 《PloS one》2012,7(3):e34004
The Wnt/β-catenin signaling pathway plays important roles in the progression of colon cancer. DACT1 has been identified as a modulator of Wnt signaling through its interaction with Dishevelled (Dvl), a central mediator of both the canonical and noncanonical Wnt pathways. However, the functions of DACT1 in the WNT/β-catenin signaling pathway remain unclear. Here, we present evidence that DACT1 is an important positive regulator in colon cancer through regulating the stability and sublocation of β-catenin. We have shown that DACT1 promotes cancer cell proliferation in vitro and tumor growth in vivo and enhances the migratory and invasive potential of colon cancer cells. Furthermore, the higher expression of DACT1 not only increases the nuclear and cytoplasmic fractions of β-catenin, but also increases its membrane-associated fraction. The overexpression of DACT1 leads to the increased accumulation of nonphosphorylated β-catenin in the cytoplasm and particularly in the nuclei. We have demonstrated that DACT1 interacts with GSK-3β and β-catenin. DACT1 stabilizes β-catenin via DACT1-induced effects on GSK-3β and directly interacts with β-catenin proteins. The level of phosphorylated GSK-3β at Ser9 is significantly increased following the elevated expression of DACT1. DACT1 mediates the subcellular localization of β-catenin via increasing the level of phosphorylated GSK-3β at Ser9 to inhibit the activity of GSK-3β. Taken together, our study identifies DACT1 as an important positive regulator in colon cancer and suggests a potential strategy for the therapeutic control of the β-catenin-dependent pathway.  相似文献   

2.
Backgroundβ-Elemene is a natural agent extracted from the traditional Chinese herbal medicine Curcuma wenyujin that is a promising novel plant-derived drug with broad-spectrum anticancer activity. Our previous study identified an enhanced capacity for metastasis in multidrug resistant (MDR) gastric cancer and breast cancer cells. However, the anti-metastatic effects of β-Elemene on MDR cancer cells remain unknown.PurposeIn this study, we posit the hypothesis that β-elemene possesses antimetastatic effects on MDR cancer cells.MethodsCell viability assay was used to assess the resistance of SGC7901/ADR cells and the cytotoxic effects of β-Elemene. Wound healing, transwell assay and lung metastatic mice model were used to the anti-metastasis effects of β-Elemene. MicroRNA microarray analysis was used to explore potential regulated miRNAs. Luciferase reporter assay was used to identify the direct target. Human MMP antibody array, western blot, immunoprecipitation, qRT-PCR analyses and immunohistochemistry were conducted to investigate the underlying anti-metastasis mechanism of β-Elemene.ResultsIn this study, we found that β-Elemene significantly inhibited the metastatic capacity of MDR gastric cells in vivo and in vitro. Mechanistically, we found that β-Elemene regulated MMP-2/9 expression and reversed epithelial-mesenchymal transition. Further studies showed that β-Elemene upregulated Cbl-b expression, resulting in inhibition of the EGFR-ERK/AKT pathways, which regulate MMP-2/9. Additionally, we confirmed that β-Elemene upregulated Cbl-b by inhibiting miR-1323 expression. Finally, we found that numbers of metastatic tumor nodules were significantly decreased in the lungs of nude mice after β-Elemene treatment.ConclusionOur results suggested that β-Elemene inhibits the metastasis of MDR gastric cancer cells by modulating the miR-1323/Cbl-b/EGFR signaling axis.  相似文献   

3.
ABSTRACT

KHC-4 is a 2-phenyl-4-quinolone analogue that exhibits anticancer activity. Aberrant activation of β-catenin signaling contributes to prostate cancer development and progression. Therefore, targeting β-catenin expression could be a useful approach to treating prostate cancer. We found that KHC-4 can inhibit β-catenin expression and its signaling pathway in DU145 prostate cancer cells. Treatment with KHC-4 decreased total β-catenin expression and concomitantly decreased β-catenin levels in both the cytoplasm and nucleus of cells. KHC-4 treatment also inhibited β-catenin expression and that of its target proteins, PI3K, AKT, GSK3β and TBX3. We monitored the stability of β-catenin with the proteasomal inhibitor, MG132, in DU145 cells and found that MG132 reversed KHC-4-induced proteasomal β-catenin degradation. We verified CDK1/β-catenin expression in KHC-4 treated DU145 cells. We found that roscovitine treatment reversed cell proliferation by arresting the cell cycle at the G2/M phase and β-catenin expression caused by KHC-4 treatment. We suggest that KHC-4 inhibits β-catenin signaling in DU145 prostate cancer cells.  相似文献   

4.

Background

Knockdown of Akt1 promotes Epithelial-to-Mesenchymal Transition in breast cancer cells. However, the mechanisms are not completely understood.

Methods

Western blotting, immunofluorescence, luciferase assay, real time PCR, ELISA and Matrigel invasion assay were used to investigate how Akt1 inhibition promotes breast cancer cell invasion in vitro. Mouse model of lung metastasis was used to measure in vivo efficacy of Akt inhibitor MK2206 and its combination with Gefitinib.

Results

Knockdown of Akt1 stimulated β-catenin nuclear accumulation, resulting in breast cancer cell invasion. β-catenin nuclear accumulation induced by Akt1 inhibition depended on the prolonged activation of EGFR signaling pathway in breast cancer cells. Mechanistic experiments documented that knockdown of Akt1 inactivates PIKfyve via dephosphorylating of PIKfyve at Ser318 site, resulting in a decreased degradation of EGFR signaling pathway. Inhibition of Akt1 using MK2206 could induce an increase in the expression of EGFR and β-catenin in breast cancer cells. In addition, MK2206 at a low dosage enhance breast cancer metastasis in a mouse model of lung metastasis, while an inhibitor of EGFR tyrosine kinase Gefitinib could potentially suppress breast cancer metastasis induced by Akt1 inhibition.

Conclusion

EGFR-mediated β-catenin nuclear accumulation is critical for Akt1 inhibition-induced breast cancer metastasis.
  相似文献   

5.
In the present study, we aim to elucidate the role of caveolin-1 (Cav-1) in modulating oligodendroglial differentiation of neural progenitor cells (NPCs) in vivo and in vitro. For in vivo experiments, we investigated oligodendroglial differentiation by detecting the expressions of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) and β-catenin in the brains of wild type mice and Cav-1 knockout mice. Cav-1 knockout mice revealed more oligodendroglial differentiation, but lower levels of β-catenin expression than wild type mice. For in vitro experiments, we observed the potential roles of Cav-1 in modulating β-catenin expression and oligodendroglial differentiation in isolated cultured NPCs by manipulating Cav-1 expression with Cav-1 scaffolding domain peptide and Cav-1 RNA silencing approach. In the differentiating NPCs, Cav-1 scaffolding domain peptide markedly inhibited oligodendroglial formation, but up-regulated the expression of β-catenin. In contrast, the knockdown of Cav-1 promoted oligodendroglial differentiation of NPCs, but down-regulated the expression of β-catenin. Taken together, these results directly prove that caveolin-1 can inhibit oligodendroglial differentiation of NPCs through modulating β-catenin expression.  相似文献   

6.
7.
8.
Gastric cancer is a common malignancy with high mortality. Long noncoding RNA (lncRNA) zinc finger antisense (ZFAS)1 is upregulated in gastric cancer specimens compared with the para-carcinoma tissues. The silencing of ZFAS1 inhibited the growth, proliferation, cell cycle progress, migration, invasion and epithelial-mesenchymal transition (EMT), and enhanced the sensitivity to cis-platinum or paclitaxel in SGC7901 cells, as evidenced by the expression changes of proliferating cell nuclear antigen, Cyclin D1, Cyclin E, Cyclin B1, E-cadherin, N-cadherin, vimentin, matrix metalloproteinase (MMP)-2 and MMP-14. The ZFAS1 also activated the Wnt/β-catenin signaling. Subsequently, the ZFAS1 knockdown-induced the inhibition of migration, invasion, EMT and resistance to chemotherapeutic reagens was reversed by the overexpression of β-catenin. In summary, the silencing of ZFAS1 inhibited the growth, proliferation, cell cycle progress, migration, invasion, EMT and chemotherapeutic tolerance by blocking the Wnt/β-catenin signaling in gastric cancer cells.  相似文献   

9.
10.
BackgroundMetastasis is a critical step in tumor development; however, its specific molecular mechanism is still not fully understood. SETDB1 overexpression is associated with tumor progression and poor prognosis. Here, we explored a novel mechanism by which SETDB1 promotes tumor metastasis in colorectal cancer.MethodsWe conducted database and clinical specimen analysis to determine the expression level of SETDB1 in colorectal cancer, as well as the prognosis of colorectal cancer with overexpressed SETDB1. We used wound healing assays, Transwell assays, and animal studies to study the effect of SETDB1 on colorectal cancer. We performed western blotting, qRT–PCR, immunofluorescence, and co-immunoprecipitation to explore the underlying associations between SETDB1 and β-catenin. We further used wound healing assays, Transwell assays, and animal studies to verify the relationship between SETDB1 and Wnt/β-catenin.ResultsSETDB1 expression was upregulated in colorectal cancer and correlated with poor prognosis. Low expression of SETDB1 decreased invasion and metastasis in colorectal cancer. Low-expression of SETDB1 in colorectal tumor cells decreased β-catenin expression and its nuclear import. We also found that SETDB1 can bind and directly methylate β-catenin, Lastly, we discovered that this metastatic ability could be decreased by activating the Wnt/β-catenin pathway with SETDB1 knock-down.ConclusionSETDB1 is highly expressed in colorectal cancer and plays an important role in the invasion and metastasis through the Wnt/β-catenin pathway. It does so by direct methylation of β-catenin. This novel SETDB1/Wnt/β-catenin pathway provides a new strategy for the treatment of colorectal cancer.  相似文献   

11.
12.
13.
Bone is one of the most frequent targets of small cell lung cancer (SCLC) metastasis, but the molecular mechanism remains unclear. β3-integrin plays an important role in invasion of various kinds of tumors. Yet, its role in bone-metastasis of SCLC is still unknown. In this study, we first examined the expression of β3-integrin in SBC-5 and SBC-3 cells by real-time PCR, western blot and immunofluorescence. We found that, compared to none bone-metastatic SBC-3 cells, β3-integrin was highly expressed in SBC-5 cells, a specific bone-metastatic SCLC cells line characterized in our previous study. We next constructed β3-integrin siRNA and transfected SBC-5 cell line, and found that β3-integrin siRNA significantly down-regulated the β3-integrin mRNA level and protein expression in SBC-5 cell line. We further found that inhibition of β3-integrin significantly reduced tumor cell proliferation and induced apoptosis. In addition, the β3-integrin down-regulated cells presented significant decrease in cell adhesion, migration and invasion activity. Our results suggest the β3-integrin has an essential effect on tumor cell proliferation and progression, and may be a potential therapeutic target for the prevention of skeletal metastases of lung cancer.  相似文献   

14.
15.
Wang X  Sun W  Zhang C  Ji G  Ge Y  Xu Y  Zhao Y 《Gene》2011,485(2):160-166
Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine that regulates cell growth, differentiation, migration, apoptosis and extracellular matrix remodeling. TGF-β1 transduces signals from the cell membrane to the cell nucleus through serine/threonine kinase receptors and their downstream effectors, Smad molecules. Although many studies have been focused on TGF-β1-Smad signaling pathway, the role of TGF-β1/Smad in tongue squamous cell carcinoma is not fully understood. In the present study, we used a series of cell function assays to examine the role of TGF-β-Smad4 signaling in tongue squamous cell carcinoma. We observed the effects of TGF-β1 on the growth and metastatic potential of the tongue squamous cell carcinoma cell line Ts, which expresses lower level of Smad4 protein. We found that Smad4 could decrease TGF-β1-induced cell proliferation, and that Smad4 overexpression promoted Ts cell apoptosis. In Ts vector control cells, TGF-β1 increased the expression of TβRII, as well as MMP-2, and enhanced cell invasion through the basement membrane, and then induced cell metastasis. However in Ts cells stably expressing Smad4, Smad4 mediated TGF-β1-induced p21 expression promoted cell apoptosis and inhibited cell proliferation, delayed MMP-2 expression, and decreased cell metastasis. Therefore, TGF-β1 plays distinct roles in the Smad4-dependent and -independent signaling pathways.  相似文献   

16.
Metastatic melanoma accounts for 60% of death for skin cancer. Although great efforts have been made to treat the disease, effective drugs against metastatic melanoma still lack at the clinical setting. In the current study, we found that lycorine, a small molecule of isoquinoline alkaloid, significantly suppressed melanoma cell migration and invasion in vitro, and decreased the metastasis of melanoma cells to lung tissues in tumor-bearing mice, resulting in significant prolongation of the survival of the mice without obvious toxicity. Molecular mechanistic studies revealed that lycorine significantly reduced intracellular levels of β-catenin protein through degradation of the protein via the ubiquitin–proteasome pathway, and decreased the expression of β-catenin downstream prometastatic matrix metallopeptidase 9 and Axin2 genes. Collectively, our findings support the notion that targeting the oncogenic β-catenin by lycorine is a new option to inhibit melanoma cell metastasis, providing a good drug candidate potential for development novel therapeutics against metastatic melanoma.  相似文献   

17.
18.
Silibinin is a polyphenolic flavonoid isolated from the milk thistle (Silybum marianum) and is reported to exhibit anticancer properties. Recently, it has been reported that silibinin inhibits hypoxia-inducible factor-1α (HIF-1α) expression in cancer cells. However, the precise mechanism by which silibinin decreases HIF-1 expression is not fully understood. In this study, silibinin inhibited basal and hypoxia induced expression levels of HIF-1α protein in LNCaP and PC-3 prostate cancer cells, while the rate of HIF-1α protein degradation and mRNA levels were not affected. We found that the decrease in HIF-1 protein by silibinin correlated with suppression of de novo synthesis of HIF-1α protein. Silibinin inhibited global protein synthesis coincided with reduction of eIF4F complex formation and induction of phosphorylation of the translation initiation factor 2α (eIF-2α) which can cause inhibition of general protein synthesis. These results suggest that silibinin’s activity to inhibit HIF-1α protein expression is associated with the suppression of global protein translation.  相似文献   

19.
20.
It has been reported that Topoisomerase II alpha (TOP2A) could induce tumor development and progression in many cancer types. Herein, through analysis of different independent cohorts, we found TOP2A was up-regulated in pancreatic cancer as compared with non-tumor tissues. Moreover, the up-regulation of TOP2A was significantly correlated with tumor metastasis and shorter survival in patients with pancreatic cancer. Knockdown of TOP2A in pancreatic cancer cell lines inhibited cell proliferation and migration. Furthermore, bioinformatics analysis revealed TOP2A activatesβ-catenin pathway in pancreatic cancer. Mechanistically, we demonstrated TOP2A acts as a co-activator ofβ-catenin and activates EMT process. Further investigation showed TOP2A was a direct target of mir-139, which was validated by dual-luciferase reporter gene assay. The effects of mir-139 on pancreatic cancer were also mechanistically, functionally and clinically investigated. Taken together, our research identified a novel miR-139\TOP2A\β-catenin axis driving the malignant progression of pancreatic cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号