首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurotrophins, including the brain-derived neurotrophic factor (BDNF), are essential for regulating neuronal differentiation in developing brains. BDNF and its receptor tyrosine kinase receptor B (TrkB) are involved in neuronal signaling, survival and plasticity. Cyclosporine A (CsA) is a potent immunosuppressive agent which prevents allograft rejection in organ transplantation and various immunological diseases. We investigated whether chronic administration of CsA decreases BDNF gene expression in rats, and the influence of CsA on mRNA levels of TrkB receptors was also examined. For 30 days of CsA (10 mg/kg/day) administration, the expression of BDNF and TrkB mRNA was significantly decreased in the hippocampus and midbrain, but there was no significant difference in the cortex. CsA (0, 1, 5 10, 15 ug/ml) down-regulated BDNF and TrkB gene expression through cultured SH-SY5Y cells, as did all-trans retinoic acid (ATRA), and there was no effect on cell viability. These experimental results indicate that suppression of the BDNF and TrkB mRNA, protein level of BDNF expression in the hippocampus and midbrain may be related to altered behavior observed following chronic administration of CsA. A common mechanism of adverse effects of CsA induced depressive symptoms may involve neurotoxicity mediated by down-regulation of brain BDNF and TrkB.  相似文献   

2.
The present study was undertaken to examine whether NKH477, a novel and potent water-soluble forskolin derivative, stimulates adenylyl cyclase and regulates brain-derived neurotrophic factor (BDNF) and TrkB expression in the rat brain. Administration of NKH477 at a dose of 1.0 mg/kg, but not 0.1 mg/kg, increased levels of cyclic AMP (cAMP) in a time-dependent manner in frontal cortex and hippocampus. Repeated administration of NKH477 (1.0 mg/kg) for 7 or 14 days also increased levels of cAMP in these two brain regions, indicating that the response does not desensitize with chronic treatment. In addition, administration of NKH477 at the 1 mg/kg dose increased the expression of BDNF and TrkB mRNA in frontal cortex and hippocampus. This effect was observed after single, as well as repeated (7 or 14 days), administration of NKH477. These results demonstrate that NKH477 administration rapidly increases cAMP levels in brain and provides evidence that stimulation of this second messenger system increases the expression of BDNF and TrkB mRNA.  相似文献   

3.
Brain-derived neurotrophic factor (BDNF) signaling has been implicated in the onset of depression and in antidepressant efficacy, although the exact role of this neurotrophin in the pathophysiology of depression remains to be elucidated. Also, the interaction between chronic stress, which may precede depression, corticosteroids and BDNF is not fully understood. The present study aimed at investigating whether long-lasting, recurrent tethering of sows during a period of 1.5 or 4.5 years leads to enduring effects on measures that may be indicative of chronic stress, compared with animals kept in a group housing system ('loose' sows). Immediately after slaughter, the frontal cortex, dorsal and ventral hippocampus were dissected and protein levels of BDNF and its receptors were analyzed and compared with plasma cortisol levels and adrenal weights. Results indicate that tethering stress reduced BDNF protein levels in the dorsal hippocampus and the frontal cortex, but not in the ventral hippocampus. In addition, levels of TrkB, the high affinity receptor for BDNF, were increased in the dorsal hippocampus. Plasma cortisol levels and adrenal weight were increased after tethering. These stress effects on BDNF levels were more pronounced after 4.5 years of recurrent tethering and negatively correlated in particular in the frontal cortex with cortisol levels and adrenal weight. This suggests that the stress effect of tethered housing on neurotrophin levels may be mediated via cortisol. Taken together, these data indicate that recurrent tethering stress in sows over 4.5 years results in a loss of neurotrophic support by BDNF, mediated by an overactive neuroendocrine system.  相似文献   

4.
《Life sciences》1993,52(22):PL245-PL249
The hypothesis that an arginine-nitric oxide (NO) synthase-NO system mediates the morphine abstinence syndrome was tested in adult male rats implanted subcutaneosly for 3 days with one morphine (75 mg) pellet followed by naloxone-precipitated withdrawal (0.5 mg/kg). Injection with a NO synthase inhibitor, NG-nitro-L-arginine methyl ester (NAME, 100 mg/kg subcutaneous), shortly before naloxone-induced withdrawal significantly inhibited abstinence signs by 25–80%. Continuous infusion of NAME via subcutaneous osmotic pumps during the development of morphine physical dependence and during naloxone-precipitated withdrawal also inhibited morphine abstinence signs. In addition, treatment with isosorbide dinitrate, a NO donor, induced a quasi morphine-abstinence syndrome (QMAS) that was significantly suppressed by implantation of a morphine pellet 3 days before isosorbide dinitrate treatment. These results indicate that NO mediates part of the expression of the morphine abstinence syndrome.  相似文献   

5.
6.
Impaired fear memory extinction (Ext) is one of the hallmark symptoms of post‐traumatic stress disorder (PTSD). However, since the precise mechanism of impaired Ext remains unknown, effective interventions have not yet been established. Recently, hippocampal‐prefrontal brain‐derived neurotrophic factor (BDNF) activity was shown to be crucial for Ext in naïve rats. We therefore examined whether decreased hippocampal‐prefrontal BDNF activity is also involved in the Ext of rats subjected to a single prolonged stress (SPS) as a model of PTSD. BDNF levels were measured by enzyme‐linked immunosorbent assay (ELISA), and phosphorylation of TrkB was measured by immunohistochemistry in the hippocampus and medial prefrontal cortex (mPFC) of SPS rats. We also examined whether BDNF infusion into the ventral mPFC or hippocampus alleviated the impaired Ext of SPS rats in the contextual fear conditioning paradigm. SPS significantly decreased the levels of BDNF in both the hippocampus and mPFC and TrkB phosphorylation in the ventral mPFC. Infusion of BDNF 24 hours after conditioning in the infralimbic cortex (ILC), but not the prelimbic cortex (PLC) nor hippocampus, alleviated the impairment of Ext. Since amelioration of impaired Ext by BDNF infusion did not occur without extinction training, it seems the two interventions must occur consecutively to alleviate impaired Ext. Additionally, BDNF infusion markedly increased TrkB phosphorylation in the ILC of SPS rats. These findings suggest that decreased BDNF signal transduction might be involved in the impaired Ext of SPS rats, and that activation of the BDNF‐TrkB signal might be a novel therapeutic strategy for the impaired Ext by stress.  相似文献   

7.
Brain-derived neurotrophic factor (BDNF) plays a role in mediating molecular, cellular, and behavioral adaptations underlying drug addiction. Here, we examined the influence of withdrawal from repeated morphine treatment on the expression of BDNF mRNA in the ventral tegmental area (VTA) and locus coeruleus (LC) of the rat brain. We also studied whether alternations in mRNA levels of BDNF in these tissues are associated with histone modifications around promoters II and III of the BDNF gene. Thus, chromatin immunoprecipitation (CHIP) and quantitative (q)-PCR were employed to assess acetylation of histone H3 at K9/K14 and trimethylation of histone H3 at K9. Results of qRT-PCR showed that levels of BDNF mRNA in both VTA and LC were significantly increased 7 days rather than 2 h or 24 h following the last injection of morphine. Consistently, CHIP and qPCR analysis revealed that on day 7 of morphine abstinence, both VTA and LC levels of histone methylation at BDNF promoters II and III of morphine treated rats were significantly lower than control animals. Morphine withdrawal caused only a significant increase in H3 acetylation at the promoter II in the LC. These data demonstrate the involvement of histone H3 methylation in the regulation of gene expression in the VTA and LC of rats during forced abstinence of morphine.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (trkB) influence neuronal survival, differentiation, synaptogenesis, and maintenance. Using in situ hybridization we examined the spatial and temporal expression of mRNAs encoding these proteins during diverse stages of life in the human hippocampus and inferior temporal cortex. We examined six postnatal time points: neonatal (1-3 months), infant (4-12 months), adolescent (14-18 years), young adult (20-24 years), adult (34-43 years), and aged (68-86 years). Within the hippocampus, levels of BDNF mRNA did not change significantly with age. However, levels of both the full-length form of trkB (trkB TK+) mRNA and the truncated form of trkB (trkB TK-) decreased over the life span (p < 0.05). In the temporal cortex, BDNF and trkB TK+ mRNA levels were highest in neonates and decreased with age (r = -0.4 and r = -0.7, respectively, both p < 0.05). In contrast, TrkB TK- mRNA levels remained constant across the life span in the temporal cortex. The peak in both BDNF and trkB TK+ mRNA expression in the neonate temporal cortex differs from that previously described for the frontal cortex where both mRNAs peak in expression during young adulthood. The increase in BDNF and trkB TK+ mRNA in the temporal cortex of the neonate suggests that neurotrophin signaling is important in the early development of the temporal cortex. In addition, since BDNF and both forms of its high affinity receptor are expressed throughout the development, maturation, and aging of the human hippocampus and surrounding neocortex they are likely to play roles not only in early growth but also in maintenance of neurons throughout life.  相似文献   

9.
为了探讨SSRI联合抗精神病药物对脑源性神经营养因子(brain derived neurotrophic factor, BDNF)-cAMP反应元件结合蛋白(cAMP response element binding, CREB)信号通路的影响,本研究将SD大鼠随机分成5组,每组10只,各组大鼠分别腹腔注射阿立哌唑(5 mg·kg-1·d-1,阿立哌唑组)、舍曲林(5 mg·kg-1·d-1,舍曲林组)、阿立哌唑+舍曲林(5 mg·kg-1·d-1+5 mg·kg-1·d-1,联合组),奥氮平(5 mg·kg-1·d-1,奥氮平组)和不含药物的溶液(对照组),连续注射3周。研究显示,联合组显著增加大鼠的海马区BDNF平均荧光强度和蛋白水平,但在其他组未观察到对BDNF水平的影响。另外,不同组处理对额皮质中的BDNF水平没有影响。联合组显著增加了海马和额皮质的CREB磷酸化,而单独药物处理对CREB磷酸化无影响。联合组显著增加大鼠的海马和额皮质中CREB和TrkB (BDNF受体)的mRNA表达水平,以及AKT的磷酸化。综上所述,舍曲林联合抗精神病药(阿立哌唑)可显著上调大鼠脑部的CREB和BDNF水平,并且参与调节BDNF-CREB-AKT信号通路及相关分子。  相似文献   

10.
It is know that repeated exposure to opiates impairs spatial learning and memory and that the hippocampus has important neuromodulatory effects after drug exposure and withdrawal symptoms. Thus, the aim of this investigation was to assess hippocampal levels of BDNF, oxidative stress markers associated with cell viability, and TNF-α in the short, medium and long term after repeated morphine treatment in early life. Newborn male Wistar rats received subcutaneous injections of morphine (morphine group) or saline (control group), 5 μg in the mid-scapular area, starting on postnatal day 8 (P8), once daily for 7 days, and neurochemical parameters were assessed in the hippocampus on postnatal days 16 (P16), 30 (P30), and 60 (P60). For the first time, we observed that morphine treatment in early life modulates BDNF levels in the medium and long term and also modulates superoxide dismutase activity in the long term. In addition, it was observed effect of treatment and age in TNF-α levels, and no effects in lactate dehydrogenase levels, or cell viability. These findings show that repeated morphine treatment in the neonatal period can lead to long-lasting neurochemical changes in the hippocampus of male rats, and indicate the importance of cellular and intracellular adaptations in the hippocampus after early-life opioid exposure to tolerance, withdrawal and addiction.  相似文献   

11.
Activity of nitric oxide synthase (NOS) and concentrations of nitrate/nitrites (NO x ? ) were measured in brain regions of rats during spontaneous morphine withdrawal, which was modeled in male Wistar rats. The animals were injected with the increasing intraperitoneal doses (10–100 mg/kg, twice a day) of morphine hydrochloride for 6 days. Thirty six hours after the last injection the severity of the spontaneous morphine withdrawal syndrome was determined by specific autonomic and locomotor indices The withdrawal was accompanied by the increase of both NOS activity and NO x ? levels in the midbrain and hippocampus, the decrease of these parameters in striatum and hypothalamus, and lack of changes in cerebral cortex and brain stem. In cerebellum NOS activity decreased whereas NO x ? concentrations remained unchanged. In the cerebral cortex, striatum, midbrain, and cerebellum activity of NOS and NO x ? concentrations correlated with the withdrawal syndrome severity and also with the specific signs of abstinence.  相似文献   

12.
Epileptogenesis is the process whereby a normal brain becomes epileptic. We hypothesized that the neurotrophin brain-derived neurotrophic factor (BDNF) activates its receptor, TrkB, in the hippocampus during epileptogenesis and that BDNF-mediated activation of TrkB is required for epileptogenesis. We tested these hypotheses in Synapsin-Cre conditional BDNF(-/-) and TrkB(-/-) mice using the kindling model. Despite marked reductions of BDNF expression, only a modest impairment of epileptogenesis and increased hippocampal TrkB activation were detected in BDNF(-/-) mice. In contrast, reductions of electrophysiological measures and no behavioral evidence of epileptogenesis were detected in TrkB(-/-) mice. Importantly, TrkB(-/-) mice exhibited behavioral endpoints of epileptogenesis, tonic-clonic seizures. Whereas TrkB can be activated, and epileptogenesis develops in BDNF(-/-) mice, the plasticity of epileptogenesis is eliminated in TrkB(-/-) mice. Its requirement for epileptogenesis in kindling implicates TrkB and downstream signaling pathways as attractive molecular targets for drugs for preventing epilepsy.  相似文献   

13.
Binding of the neurotrophin brain-derived neurotrophic factor (BDNF) to the TrkB receptor is a major survival mechanism during embryonic development. In the aged brain, however, BDNF levels are low, suggesting that if TrkB is to play a role in survival at this stage additional mechanisms must have developed. We here show that TrkB activity is most robust in the hippocampus of 21-d-old BDNF-knockout mice as well as in old, wild-type, and BDNF heterozygous animals. Moreover, robust TrkB activity is evident in old but not young hippocampal neurons differentiating in vitro in the absence of any exogenous neurotrophin and also in neurons from BDNF −/− embryos. Age-associated increase in TrkB activity correlated with a mild yet progressive loss of cholesterol. This, in turn, correlated with increased expression of the cholesterol catabolic enzyme cholesterol 24-hydroxylase. Direct cause–effect, cholesterol loss–high TrkB activity was demonstrated by pharmacological means and by manipulating the levels of cholesterol 24-hydroxylase. Because reduced levels of cholesterol and increased expression of choleseterol-24-hydroxylase were also observed in the hippocampus of aged mice, changes in cellular cholesterol content may be used to modulate receptor activity strength in vivo, autonomously or as a way to complement the natural decay of neurotrophin production.  相似文献   

14.
Brain-derived neurotrophic factor (BDNF) is known to have trophic effects on various neurons, throughout the brain and spinal cord, via its high-affinity tyrosine kinase receptor TrkB. It has been reported that the mRNA for this neurotrophin is reduced in Alzheimer's disease (AD) brain. We have examined, by Western blotting, the catalytic (p145) and noncatalytic or truncated (p95) forms of TrkB and find that, in both the temporal and frontal cortex, there is a selective loss of immunoreactive-positive staining for the catalytic or kinase form compared with the truncated form. This may have important consequences for the neurotrophic support of vulnerable neurons in AD.  相似文献   

15.
16.
Opiate addiction is accompanied by long-term structural and functional changes in brain regions persisting during abstinence, this status being an experimental model of the aberrant neuroplasticity. Nitric oxide is known to be involved in mechanisms of psychopathological events during opiate abstinence. In this study, indices of a nitregic system (nitric synthase activity--NOS, nitrites and nitrates concentration--NOx-) were measured in the rat brain region during morphine abstinence. Prior to this, the rats were tested for anxiety in an elevated plus maze. NOS activity increased in hippocampus 3 days after morphine withdrawal, while NOx--6 days after withdrawal. No changes of the nitrergic system could be revealed in other brain regions under study. Six days (but not 3 days) after morphine withdrawal, rats visited the open arms of the plus maze more frequently and spent more time in these arms as compared with respective controls. The data suggest that nitrergic system changes in the hippocampus may be involved in molecular mechanisms of behavioural alteration during morphine abstinence in rats.  相似文献   

17.
Abundant studies have shown possible links between low levels of brain-derived neurotrophic factor (BDNF) and neurological diseases such as Alzheimer's disease, Parkinson's disease, and depression, as well as stress and anxiety; therefore, BDNF could be a therapeutic target for neurological disorders. In the present study, a positional scanning-synthetic peptide combinatorial library was utilized to identify a peptide modulator of BDNF expression in the hippocampal neuronal cell line, H19-7. A novel tripeptide (Neuropep-1) induced a significant increase of BDNF mRNA and protein levels in H19-7 cells. Pre-treatment of TrkB inhibitor (K252a) did not block Neuropep-1-induced BDNF up-regulation. These results indicate that Neuropep-1 may up-regulate BDNF expression that might be independent of the TrkB receptor pathway. Tail vein injection of Neuropep-1 significantly up-regulated BDNF expression, TrkB phosphorylation, and its downstream signals including activation of Akt, ERK, and cAMP response element binding in the rat hippocampus. To evaluate improvement of spatial learning and memory (SLM) by Neuropep-1-induced BDNF up-regulation, the Y-maze and Morris water maze tests were performed. These results showed Neuropep-1 injection improved SLM performance with increase of BDNF and TrkB expression, activation of TrkB downstream signals in rat hippocampus compared with the control group. However, phosphorylation levels of TrkB were not changed when it was normalized to the level of TrkB expression. The difference on TrkB phosphorylation in Neuropep-1-injected rats may be affected by behavioral tests. These results suggest that Neuropep-1 may improve SLM via activation of the BDNF/TrkB signaling pathway in the rat hippocampus. Therefore, our findings represent that Neuropep-1 might be a potential candidate for treatment of learning and memory disorders as well as neurological diseases involving the abnormal expression of BDNF.  相似文献   

18.
Brain-derived neurotropic factor (BDNF) plays an important role in mechanisms of depression. Precursor protein of this factor (proBDNF) can initiate apoptosis in the brain, while the mature form of BDNF is involved in neurogenesis. It is known that chronic alcoholization leads to the activation of apoptotic processes, neurodegeneration, brain injury, and cognitive dysfunction. In this work, we have studied the influence of long-term ethanol exposure on the proBDNF and BDNF protein levels, as well as on the expression of genes that encode these proteins in the brain structures of ASC mice with genetic predisposition to depressive-like behavior and in mice from parental nondepressive CBA strain. It was shown that chronic alcoholization results in a reduction of the BDNF level in the hippocampus and an increase in the amount of TrkB and p75 receptors in the frontal cortex of nondepressive CBA mice. At the same time, the long-term alcoholization of depressive ASC mice results in an increase of the proBDNF level in the frontal cortex and a reduction in the p75 protein level in the hippocampus. It has also been shown that, in depressive ASC mice, proBDNF and BDNF levels are significantly lower in the hippocampus and the frontal cortex compared with nondepressive CBA strain. However, no significant differences in the expression of genes encoding the studied proteins were observed. Thus, changes in the expression patterns of proBDNF, BDNF, and their receptors under the influence of alcoholization in the depressive ASC strain and nondepressive CBA strain mice are different.  相似文献   

19.
Epidemiological studies suggest sex differences in attention deficit and hyperactivity disorder (ADHD) symptomatology. The potential benefits of caffeine have been reported in the management of ADHD, but its effects were not properly addressed with respect to sex differences. The present study examined the effects of caffeine (0.3 g/L) administered since childhood in the behavior and brain-derived neurotrophic factor (BDNF) and its related proteins in both sexes of a rat model of ADHD (spontaneously hypertensive rats—SHR). Hyperlocomotion, recognition, and spatial memory disturbances were observed in adolescent SHR rats from both sexes. However, females showed lack of habituation and worsened spatial memory. Although caffeine was effective against recognition memory impairment in both sexes, spatial memory was recovered only in female SHR rats. Besides, female SHR rats showed exacerbated hyperlocomotion after caffeine treatment. SHR rats from both sexes presented increases in the BDNF, truncated and phospho-TrkB receptors and also phospho-CREB levels in the hippocampus. Caffeine normalized BDNF in males and truncated TrkB receptor at both sexes. These findings provide insight into the potential of caffeine against fully cognitive impairment displayed by females in the ADHD model. Besides, our data revealed that caffeine intake since childhood attenuated behavioral alterations in the ADHD model associated with changes in BDNF and TrkB receptors in the hippocampus.  相似文献   

20.
While astrocytes throughout the CNS share many common traits, they exhibit significant differences in function and number among brain regions. The aim of the present study is to assess the effect of region-specificity and number of astrocytes on the survival of dopaminergic neurons under stress, and to understand the possible mechanism by which these astrocytes extend neuroprotection to dopaminergic neurons. Purified astrocytes obtained from forebrain, midbrain, and hindbrain region were characterized through FACS and immunofluorescence. Co-culture experiments (using trans-wells) were then performed to measure the effect of region-specificities and numbers of astrocytes on primary midbrain culture under 6-OHDA stress. Cell survival augmented with an increase in astrocyte seeding number and total cell survival was comparable among the different region-specific astrocytes for all numbers. However, striking differences were observed in dopaminergic neuronal (TH) cell survival in the presence of midbrain astrocytes in comparison to forebrain and hindbrain astrocytes at all seeding numbers. At 75 μM 6-OHDA insult, while cell survival was comparable in purified astrocytes from the different brain regions, a distinct increase in BDNF secretion (significantly higher than its constitutive release) was noted for midbrain astrocytes compared to forebrain and hindbrain astrocytes. The TH immunopositive population decreased when TrkB inhibitor was added to the co-culture under 6-OHDA toxicity, suggesting that BDNF released by co-cultured astrocytes plays a key role in the survival of dopaminergic neurons. This BDNF release decreased in presence of NO inhibitor and increased in the presence of NO donor (DETA/NO). We conclude that the BDNF released from astrocytes under 6-OHDA toxicity is mediated through NO release through both autocrine and paracrine signaling, and this BDNF release is primarily responsible for the differential effect of region-specific astrocytes on TH neuron survival under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号