首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 969 毫秒
1.
In the present study, we investigated whether mesenchymal stem cells (MSCs) overexpressing integrin-linked kinase (ILK) might regulate ventricular remodeling and cardiac function in a porcine myocardial infarction model. ILK-modified MSCs (ILK-MSCs) (n = 8), MSCs (n = 8) or placebo (n = 8) were injected into peri-infarct myocardium 7 days after ligation of the left anterior descending coronary artery. ILK expression was confirmed by immunofluorescence, real-time PCR, Western blot analysis, and flow cytometry. In vitro assays indicated increased proliferation and reduced apoptosis of MSCs due to overexpression of ILK. Echocardiographic, single-photon emission computed tomography and positron emission tomography analyses demonstrated preserved cardiac function and myocardial perfusion. Reduced fibrosis, increased cardiomyocyte proliferation, and enhanced angiogenesis were observed in the ILK-MSC group. Reduced apoptosis, as demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling analysis, was also noted. In conclusion, ILK promotes MSC proliferation and suppresses apoptosis. ILK-MSC transplantation improves ventricular remodeling and cardiac function in pigs after MI. It is associated with increased angiogenesis, reduced apoptosis, and increased cardiomyocyte proliferation. This may represent a new approach to the treatment of post-infarct remodeling and subsequent heart failure.  相似文献   

2.
The maize mutant lilliputian is characterized by miniature seedling stature, reduced cell elongation, and aberrant root anatomy. Here, we document that root cells of this mutant show several defects in the organization of actin filaments (AFs). Specifically, cells within the meristem lack dense perinuclear AF baskets and fail to redistribute AFs during mitosis. In contrast, mitotic cells of wild-type roots accumulate AFs at plasma membrane-associated domains that face the mitotic spindle poles. Both mitotic and early postmitotic mutant cells fail to assemble transverse arrays of cortical AFs, which are characteristic for wild-type root cells. In addition, early postmitotic cells show aberrant distribution of endoplasmic AF bundles that are normally organized through anchorage sites at cross-walls and nuclear surfaces. In wild-type root apices, these latter AF bundles are organized in the form of symmetrically arranged conical arrays and appear to be essential for the onset of rapid cell elongation. Exposure of wild-type and cv. Alarik maize root apices to the F-actin drugs cytochalasin D and latrunculin B mimics the phenotype of lilliputian root apices. In contrast to AFs, microtubules are more or less normally organized in root cells of lilliputian mutant. Collectively, these data suggest that the LILLIPUTIAN protein, the nature of which is still unknown, impinges on plant development via its action on the actin cytoskeleton.  相似文献   

3.
To date, studies on mesenchymal tissue stem cells (MSCs) in the perichondrium have focused on in vitro analysis, and the dynamics of cartilage regeneration from the perichondrium in vivo remain largely unknown. We have attempted to apply cell and tissue engineering methodology for ear reconstruction using cultured chondrocytes. We hypothesized that by inducing angiogenesis with basic fibroblast growth factor (bFGF), MSCs or cartilage precursor cells would proliferate and differentiate into cartilage in vivo and that the regenerated cartilage would maintain its morphology over an extended period. As a result of a single administration of bFGF to the perichondrium, cartilage tissue formed and proliferated while maintaining its morphology for at least 3 months. By day 3 post bFGF treatment, inflammatory cells, primarily comprising mononuclear cells, migrated to the perichondrial region, and the proliferation of matrix metalloproteinase 1 positive cells peaked. During week 1, the perichondrium thickened and proliferation of vascular endothelial cells was noted, along with an increase in the number of CD44-positive and CD90-positive cartilage MSCs/progenitor cells. Neocartilage was formed after 2 weeks, and hypertrophied mature cartilage was formed and maintained after 3 months. Proliferation of the perichondrium and cartilage was bFGF concentration-dependent and was inhibited by neutralizing antibodies. Angiogenesis induction by bFGF was blocked by the administration of an angiogenesis inhibitor, preventing perichondrium proliferation and neocartilage formation. These results suggested that angiogenesis may be important for the induction and differentiation of MSCs/cartilage precursor cells in vivo, and that morphological changes, once occurring, are maintained.  相似文献   

4.
Actin filament (AF) organization was studied during the plasmolytic cycle in leaf cells of Chlorophyton comosum Thunb. In most cells the hyperosmotic treatment induced convex or concave plasmolysis and intense reorganization of the AF cytoskeleton. Thin cortical AFs disappeared and numerous cortical, subcortical and endoplasmic AFs arranged in thick and well-organized bundles were formed. Plasmolysed cells displayed a significant increase in the overall AF content compared with the control cells. Cortical AF bundles were preferentially localized in the shrunken protoplast areas, lining the detached plasmalemma regions. The endoplasmic AF bundles were mainly found in the perinuclear cytoplasm and on the tonoplast surface. AFs also traversed some of the Hechtian strands. AF disorganization after cytochalasin B (CB) treatment induced dramatic changes in the pattern of plasmolysis, which lasted for a longer time and led to a greater decrease of the protoplast volume compared to the untreated cells. In many of the above cells the protoplasts assumed an 'amoeboid' form and were often subdivided into sub-protoplasts. Soon after the removal of the plasmolytic solution both CB-treated and untreated cells were deplasmolysed, while the AF cytoskeleton gradually reassumed the organization observed in the control cells. The findings of this study revealed for the first time in angiosperm cells that plasmolysis triggers an extensive reorganization of the AF cytoskeleton, which is involved in the regulation of protoplast shape and volume. The probable mechanism(s) leading to AF reorganization as well as the function(s) of the atypical AF arrays in plasmolysed cells are discussed.  相似文献   

5.
Mobilized peripheral blood (MPB) bone marrow cells possess the potential to differentiate into a variety of mesenchymal tissue types and offer a source of easy access for obtaining stem cells for the development of experimental models with applications in tissue engineering. In the present work, we aimed to isolate by magnetic activated cell sorting CD90+ cells from MPB by means of the administration of Granulocyte-Colony Stimulating Factor and to evaluate cell proliferation capacity, after thawing of the in vitro culture of this population of mesenchymal stem cells (MSCs) in sheep. We obtained a median of 8.2 ± 0.6 million of CD90+ cells from the 20-mL MPB sample. After thawing, at day 15 under in vitro culture, the mean CD90+ cells determined by flow cytometry was 92.92 ± 1.29 % and cell duplication time determined by crystal violet staining was 47.59 h. This study describes for the first time the isolation, characterization, and post-in vitro culture thawing of CD90+ MSCs from mobilized peripheral blood in sheep. This population can be considered as a source of MSCs for experimental models in tissue engineering research.  相似文献   

6.
Summary The patterns of F-actin in relation to microtubule (Mt) organization in dividing root tip cells ofAdiantum capillus veneris were studied with rhodamine-phalloidin (RP) labelling and tubulin immunofluorescence. Interphase cells display a well organized network of cortical/subcortical, endoplasmic and perinuclear actin filaments (AFs), not particularly related to the interphase Mt arrays. The cortical AFs seem to persist during the cell cycle while the large subcortical AF bundles disappear by preprophase/prophase and reappear after cytokinesis is completed. In some but not all of the preprophase cells the cortical AFs tend to form a band (AF-PPB) coincident with the preprophase band of Mts (Mt-PPB). In metaphase and anaphase cells AFs are localized in the cell cortex, around the spindle and inside it coincidently with kinetochore Mt bundles. During cytokinesis AFs are consistently found in the phragmoplast. In oryzalin treated cells neither Mt-PPBs, spindles and phragmoplasts exist, nor such F-actin structures can be observed. In cells recovering from oryzalin, AF-PPBs, AF kinetochore bundles and AF phragmoplasts reform. They show the same pattern with the reinstating respective Mt arrays. In contrast, in cells treated with cytochalasin B (CB), AFs disappear but all categories of Mt arrays form normally.These observations show that F-actin organization in root tip cells ofA. capillus veneris differs from that of root tip cells of flowering plants examined so far. In addition, Mts seem to be crucial for F-actin organization as far as it concerns the PPB, the mitotic spindle, and the phragmoplast.Abbreviations AF actin filament - CB cytochalasin B - MBS m-male-imidobenzoyl-N-hydroxysuccinimide ester - MSB microtubule stabilizing buffer - Mt microtubule - PBS phosphate buffered saline - PPB preprophase band - RP rhodamine phalloidin  相似文献   

7.
Umbilical cord (UC) is a rich source of rapidly proliferating mesenchymal stem cells (MSCs) that are easily cultured on a large-scale. Clinical applications of UC–MSCs include graft-versus-host disease, and diabetes mellitus types 1 and 2. UC–MSCs should be isolated and proliferated according to good manufacturing practice (GMP) with animal component-free medium, quality assurance, and quality control for their use in clinical applications. This study developed a GMP standard protocol for UC-MSC isolation and culture. UC blood and UC were collected from the same donors. Blood vasculature was removed from UC. UC blood was used as a source of activated platelet rich plasma (aPRP). Small fragments (1–2 mm2) of UC membrane and Wharton’s jelly were cut and cultured in DMEM/F12 medium containing 1 % antibiotic–antimycotic, aPRP (2.5, 5, 7.5 and 10 %) at 37 °C in 5 % CO2. The MSC properties of UC–MSCs at passage 5 such as osteoblast, chondroblast and adipocyte differentiation, and markers including CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, and HLA-DR were confirmed. UC–MSCs also were analyzed for karyotype, expression of tumorigenesis related genes, cell cycle, doubling time as well as in vivo tumor formation in NOD/SCID mice. Control cells consisted of UC–MSCs cultured in DMEM/F12 plus 1 % antibiotic–antimycotic, and 10 % fetal bovine serum (FBS). All UC-MSC (n = 30) samples were successfully cultured in medium containing 7.5 and 10 % aPRP, 92 % of samples grew in 5.0 % aPRP, 86 % of samples in 2.5 % aPRP, and 72 % grew in 10 % FBS. UC–MSCs in these four groups exhibited similar marker profiles. Moreover, the proliferation rates in medium with PRP, especially 7.5 and 10 %, were significantly quicker compared with 2.5 and 5 % aPRP or 10 % FBS. These cells maintained a normal karyotype for 15 sub-cultures, and differentiated into osteoblasts, chondroblasts, and adipocytes. The analysis of pluripotent cell markers showed UC–MSCs maintained the expression of the oncogenes Nanog and Oct4 after long term culture but failed to transfer tumors in NOD/SCID mice. Replacing FBS with aPRP in the culture medium for UC tissues allowed the successful isolation of UC–MSCs that satisfy the minimum standards for clinical applications.  相似文献   

8.
Although mesenchymal stem cells (MSCs) promote lung cancer growth in vivo, in vitro studies indicate that they inhibit the proliferation of lung cancer cells. Because malignant tumors contain a heterogeneous cell population with variable capacity for self-renewal, the aim of this study was to determine whether the inconsistencies between in vitro and in vivo studies are a result of differential effects of MSCs on the heterogeneous cell population within lung cancer cell lines. Human MSCs were isolated from the bone marrow, and their cell surface antigen expression and multi-lineage differentiation capacity was examined at passage 10. CD133+ cells were isolated from A549 and H446 cell lines using immunomagnetic separation. The effects of MSCs on the growth and microsphere formation of heterogeneous cell populations within two lung cancer cell lines (A549 and H446) were compared. MSCs inhibited the in vitro proliferation of both cell lines, but significantly accelerated tumor formation and stimulated tumor growth in vivo (P < 0.05). In CD133+ cells isolated from both A549 and H446 cells, co-culture with MSCs for 1–3 days significantly increased their proliferation (P < 0.05). MSCs also significantly increased microsphere formation in both cell lines (P < 0.05). Selective stimulation of CD133+ cell growth may account for the discrepant effects of MSCs on lung cancer progression.  相似文献   

9.
Mesenchymal stem cells (MSCs) have been designated as the most reliable cells in clinics to treat osteo-diseases because of their versatile nature. MSCs, isolated from long bone (Lb-MSCs) are rarely reported and named as RIA-MSCs because of the reamer–irrigator–aspirator (RIA) device. The potential of these cells in the treatment of non-union bone fractures made them the ideal candidates to be studied for clinical practices. In this work, effect of cryopreservation on the proliferation and differentiation capabilities of long bone MSCs (Lb-MSCs) has been studied. For this purpose, Lb-MSCs were isolated via RIA device and characterized using flow cytometry and differentiation assays. Cells were cryopreserved for 3, 6 and 12 months and thereafter were characterized using differentiation assays and genetic markers specific for osteogenic, chondrogenic, and adipogenic potential quantitatively by qRT-PCR. Lb-MSCs were found expressing MSC characteristic markers defining their identity. The population doubling time (PDT) was about 2.5 ± 0.5 days and colonies appeared after 7–10 days. Differentiation potential and gene expression of 3, 6 and 12 months cryopreserved Lb-MSCs were unaltered. The results show that cryopreservation did not have an effect on the differentiation potential of human Lb-MSCs. Therefore, our work offers Lb-MSCs as clinically cells for treating osteo-diseases.  相似文献   

10.
Objectives: We have investigated foetal mesenchymal stem cells (MSCs) obtained from first‐trimester chorionic villi (CV) and second‐trimester amniotic fluid (AF), comparing them to adult bone marrow‐derived MSCs. Materials and methods: We report on cell population growth in human allogeneic serum (HS) and platelet lysate (PL), immunophenotype, cytokine expression profile and immunoregulatory activity, of these foetal MSCs on stimulated peripheral blood mononuclear and lymphocyte subpopulations. Results: Chorionic villi cells grow rapidly in HS, with 20 populations doublings (PDs) after 59 days (six passages), and also in animal serum, with 27 PDs after 65 days (seven passages). PL allowed for expansion in 60% of the samples tested, although it was lower than in HS. HS supported an average of 40 PDs of expansion in 20% of AF cells after 90 days, whereas animal serum supported 28.5 PDs in 66 days. CV and AF cells inhibited proliferation of stimulated T lymphocytes, suppressing population growth of both CD4+ and CD8+ T subpopulations and sometimes also, CD19+ cells. Conclusions: Our results indicate that CV would be an optimal source of MSCs with high expansion potential in a HS propagation system and immunoregulatory capacity of T and B lymphocytes. More than 90% of CV samples achieved large‐scale expansion in HS, which is encouraging for potential clinical applications of these cells.  相似文献   

11.
Atrial fibrillation (AF) is the most common arrhythmia in the clinical setting and an independent risk factor for stroke. Approximately 10 million Chinese people are affected by AF, but the genetic basis is largely unknown. A recent genome-wide association study in Iceland identified association between SNP rs2200733 on 4q25 and AF; however, many independent replication studies are essential to unequivocally validate this association. To assess the association between rs2200733 and AF as well as that between rs2200733 and ischemic stroke in a mainland Chinese Han population, we carried out case–control association studies with 383 AF patients versus 851 non-AF controls and 811 ischemic stroke patients versus 688 non-stroke controls. Highly significant association was detected between rs2200733 and AF in a Chinese Han population (allelic P = 3.7 × 10?11 with OR = 1.81; genotypic P = 4.1 × 10?12 with a dominant model). When the AF cases were divided into lone AF (32.6%) and other types of AF (67.4%), significantly stronger association was found with lone AF (OR = 2.40, P = 1.3 × 10?9 compared to OR = 1.59, P = 6.2 × 10?7 for other types of AF; P = 0.02 for two ORs). No significant association was found between rs2200733 and ischemic stroke. Our results suggest that SNP rs2200733 confers a highly significant risk of AF, but not ischemic stroke, in a more representative Chinese Han population in the mainland China.  相似文献   

12.
To investigate the functions of triple point-mutants of hypoxia-inducible factor 1α (HIF1α) in angiogenesis in bone defect regions under normoxic conditions. 1. Triple point-mutations (in amino acids 402, 564, and 803) in the HIF1α coding sequence (CDS) were induced by polymerase chain reaction. The triple mutant HIF1α (402/564/803) was inserted into the adenovirus pAdEasy-1 system for complete viral packaging and titer measurements. 2. For the in vitro experiment, rabbit bone marrow mesenchymal stem cells (MSCs) were divided into four experimental groups. The efficiency of infection was observed by the expression of human renilla reniformis green fluorescent protein (hrGFP). The HIF1α mRNA, protein and VEGF protein expression levels in infected cells in each experimental group were measured. 3. As in the in vivo experiment, the MSCs were divided into four groups and infected with the viral solutions from each complementary in vitro group and cultured under normoxic conditions. The MSCs were used as seed cells and transplanted into an apatite–wollastonite magnetic bioactive glass–ceramic (AW MGC) vector to construct artificial tissue-engineering scaffolds that were then implanted into the in vivo rabbit radial bone defect model. The animals from each group were killed 8 weeks after the surgery, and the tissues from the implantation region were harvested for the evaluation of the angiogenesis. 1. The 402,564, and 803 amino acids in CDS area were point mutated into alanine; three types of recombinant adenovirus were successfully constructed, packaged, and characterized. 2. The expression levels of HIF1α mRNA in A and B groups were significantly higher than those in the C and D groups (P < 0.05). The HIF1α and VEGF protein expression levels in A group were significantly higher than those in the other three groups (P < 0.05). 3. There was prominent angiogenesis in bone defect regions in group A animals. 1. Triple point-mutants of HIF1α efficiently expressed functional proteins under normoxic conditions. 2. Triple point-mutants HIF1α effectively promoted in vivo angiogenesis in bone defect regions.  相似文献   

13.
Research involving mesenchymal multipotent/stem/progenitor/stromal/marrow cells (MSCs) have translated to clinical trials at an extraordinary pace. By the time of this review, the public clinical trials database (http://clinicaltrials.gov) has 394 clinical trials listed using MSCs for a very wide range of therapeutic applications. Unexpectedly, the explanation for the increase in clinical trials using MSCs does not lie on a well-defined therapeutic mechanism – dramatic results have been demonstrated in a variety of studies involving different animal models of diseases, often describing discrete therapeutic mechanisms exerted by MSCs. This review will focus on recent data suggesting the involvement of hyaluronic acid (HA) in the beneficial effects of MSCs, evaluate the potential of MSC as modulators of HA and the implications of this modulation for disease therapy.  相似文献   

14.
In vitro cellular proliferation and the ability to undergo multilineage differentiation make bone marrow-derived multipotent stromal cells (MSCs) potentially useful for clinical applications. Several methods have been described to isolate a homogenous bone marrow-derived MSCs population; however, none has been proven most effective, mainly due to their effects on proliferation and differentiation capability of the isolated cells. It is hypothesized that our newly established total cell pooling method may provide a better alternative as compared to the standard isolation method (density gradient centrifugation method). For the total cell pooling method, MSCs were isolated from rabbit bone marrow and were subsequently cultured in the growth medium without further separation as in the standard isolation method. The total cell pooling method was 65 min faster than the standard isolation method in completing cell isolation. Nevertheless, both methods did not differ significantly in the number of primary viable cells and population doubling time in the cultures (p?>?0.05). The isolated cells from both methods expressed CD29 and CD44 markers, but not CD45 markers. Furthermore, they displayed multilineage differentiation characteristics of chondroblasts, osteoblasts, and adipocytes. In conclusion, both methods provide similar efficiency in the isolation of rabbit bone marrow-derived MSCs; however, the total cell pooling method is technically simpler and more cost effective than the standard isolation method.  相似文献   

15.
Mesenchymal stromal cells (MSCs) are considered to be an excellent source in regenerative medicine. They contain several cell subtypes, including multipotent stem cells. MSCs are of particular interest as they are currently being tested using cell and gene therapies for a number of human diseases. They represent a rare population in tissues; for this reason, they require, before being transplanted, an in vitro amplification. This process may induce replicative senescence, thus affecting differentiation and proliferative capacities. Increasing evidence suggests that MSCs from fetal tissues are significantly more plastic and grow faster than MSCs from bone marrow. Here, we compare amniotic fluid mesenchymal stromal cells (AF‐MSCs) and bone marrow mesenchymal stromal cells (BM‐MSCs) in terms of cell proliferation, surface markers, multidifferentiation potential, senescence, and DNA repair capacity. Our study shows that AF‐MSCs are less prone to senescence with respect to BM‐MSCs. Moreover, both cell models activate the same repair system after DNA damage, but AF‐MSCs are able to return to the basal condition more efficiently with respect to BM‐MSCs. Indeed, AF‐MSCs are better able to cope with genotoxic stress that may occur either during in vitro cultivation or following transplantation in patients. Our findings suggest that AF‐MSCs may represent a valid alternative to BM‐MSCs in regenerative medicine, and, of great relevance, the investigation of the mechanisms involved in DNA repair capacity of both AF‐MSCs and BM‐MSCs may pave the way to their rational use in the medical field.  相似文献   

16.
We develop “autologous bone marrow cell infusion (ABMi) therapy” for the treatment of human decompensated liver cirrhosis and confirm the efficacy and safety of this treatment in multicenter clinical studies. With the goal of further expanding the applications of ABMi, we first cultured human bone marrow cells and then determined whether a cell fraction found to be effective in improving liver fibrosis can be amplified. Cells harvested after two passages (P2 cells) consistently contained approximately 94 % mesenchymal stem cells (MSCs); conversely, the cells harvested after only medium change (P0 cells) contained many macrophages. MSCs (2.8?×?108) in P2 cells were harvested from 3.8?×?108 bone marrow-derived mononuclear cells after 22 days. DNA-chip analysis also showed during the culturing step that bone marrow-derived cells decreased with macrophage phenotype. The infused 5?×?105 P2 cells significantly improved liver fibrosis in the nonobese diabetic/severe combined immunodeficient (NOD-SCID) mouse carbon tetrachloride (CCl4) liver cirrhosis model and induced the expression of matrix metalloproteinase (MMP)-9 and suppressed expressions of alpha smooth muscle actin (αSMA), tumor necrosis factor alpha (TNFα) and transforming growth factor beta (TGFβ) in the liver. Cultured human bone marrow-derived cells (P2 cells) significantly inhibited liver fibrosis. The increase of MMP-9 and suppressed activation of hepatic stellate cells (HSCs) through the regulation of humoral factors (TNFα and TGFβ) contribute to the improvement of liver fibrosis by MSCs comprising about 94 % of P2 cells. MSCs in cultured human bone marrow-derived mono-nuclear cells (BM-MNCs) proliferate sufficiently in cell therapy, so we believe our cultured bone marrow-derived cell therapy can lead to expanded clinical applications and enable outpatient therapy.  相似文献   

17.
Bone marrow mesenchymal stem cells (MSCs) transplantation improved cardiac function and reduced myocardial fibrosis in both ischemic and non-ischemic cardiomyopathies. We evaluated the effects of repeated peripheral vein injection of MSCs on collagen network remodeling and myocardial TGF-β1, AT1, CYP11B2 (aldosterone synthase) gene expressions in a rat model of doxorubicin (DOX)-induced dilated cardiomyopathy (DCM). Thirty-eight out of 53 SD rats survived at 10 weeks post-DOX injection (2.5 mg/kg/week for 6 weeks, i.p.) were divided into DCM blank (without treatment, n = 12), DCM placebo (intravenous tail injection of 0.5 mL serum-free culture medium every other day for ten times, n = 13), and DCM plus MSCs group (intravenous tail injection of 5 × 106 MSCs dissolved in 0.5 mL serum-free culture medium every other day for 10 times, n = 13). Ten untreated rats served as normal controls. At 20 weeks after DOX injection, echocardiography, myocardial collagen content, myocardial expressions of types I and III collagen, TGF-β1, AT1, and CYP11B2 were compared among groups. At 20 weeks post-DOX injection, 8 rats (67 %) survived in DCM blank group, 9 rats (69 %) survived in DCM placebo group while 13 rats (100 %) survived in DCM plus MSCs group. Left ventricular end-diastolic diameter was significantly higher and ejection fraction was significantly lower in DCM blank and DCM placebo groups compared to normal control rats, which were significantly improved in DCM plus MSCs group (all p < 0.05 vs. DCM blank and DCM placebo groups). Moreover, myocardial collagen volume fraction, types I and III collagen, myocardial mRNA expressions of TGF-β1, AT1, CYP11B2, and collagen I/III ratio were all significantly lower in DCM plus MSCs group compared to DCM blank and DCM placebo groups (all p < 0.05). Repeated intravenous MSCs transplantation could improve cardiac function by attenuating myocardial collagen network remodeling possibly through downregulating renin–angiotensin–aldosterone system in DOX-induced DCM rats.  相似文献   

18.
The aims of the current work were to evaluate the hepatoprotective effect of calendula flowers and/or thyme leave extracts on aflatoxins (AFs)-induced oxidative stress, genotoxicity and alteration of p53 bax and bcl2 gene expressions. Eighty male Sprague–Dawley rats were divided into eight equal groups including: the control group, the group fed AFs-contaminated diet (2.5 mg/kg diet) for 5 weeks, the groups treated orally with thyme and/or calendula extract (0.5 g/kg b.w) for 6 weeks and the groups pretreated orally with thyme and/or calendula extract 1 week before and during AFs treatment for further 5 weeks. Blood, liver and bone marrow samples were collected for biochemical analysis, gene expression, DNA fragmentation and micronucleus assay. The results showed that AFs induced significant alterations in oxidative stress markers, increased serum AFP and inflammatory cytokine, percentage of DNA fragmentation, the expression of pro-apoptotic gene p53 and bax accompanied with a decrease in the expression of bcl2. Animals treated with the extracts 1 week before AFs treatment showed a significant decrease in oxidative damage markers, micronucleated cells, DNA fragmentation and modulation of the expression of pro-apoptotic genes. These results suggested that both calendula and thyme extracts had anti-genotoxic effects due to their higher content of total phenolic compounds.  相似文献   

19.
The purpose of this study was to examine the telomerase activity, population doubling time (PDT), morphological alterations, and the cell cycle status with activity of senescence-associated-ß-galactosidase in porcine mesenchymal stem cells (MSCs) and fibroblasts during an extended in vitro culture. MSCs and fibroblasts were isolated from bone marrow and ear skin of a miniature pig, respectively, and cultured up to 20 passages. The analysis was carried out in MSCs and fibroblasts at 1, 5, 10, 15, and 20 passages. Relative telomerase activity (RTA) levels were significantly (P < 0.05) higher in MSCs than in fibroblasts at all the passages. The PDT and cellular size slightly increased in MSCs at later passages. In contrast, fibroblasts had significantly (P < 0.05) increased PDT and cellular size, and the morphology revealed senescent-like abnormal type after passage 10. Further, the high incidence of ß-galactosidase stained cells was observed in fibroblasts compared to that of MSCs at passage 15, and cell cycle stage at G0 / G1 phase was significantly (P < 0.05) increased in the fibroblasts at 15 and 20 passages compared to that of MSCs. Based on these observations, we concluded that porcine MSCs possessed more tolerance against senescence and aging compared to fibroblasts following prolonged in vitro culture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号