首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moore AL  Gemel J  Randall DD 《Plant physiology》1993,103(4):1431-1435
The regulation of the pea (Pisum sativum) leaf mitochondrial pyruvate dehydrogenase complex by respiratory rate and oxidative phosphorylation has been investigated by measuring the respiratory activity, the redox poise of the quinone pool (Q-pool), and mitochondrial pyruvate dehydrogenase (mtPDC) activity under various metabolic conditions. It was found that, under state 4 conditions, mtPDC activity was unaffected by either the addition of succinate, 2-oxoglutarate, or glycine or the overall respiratory rate and redox poise of the Q-pool but was partially inhibited by NADH due to product inhibition. In the presence of ADP significant inactivation of PDC, which was sensitive to oligomycin, was observed with all substrates, apart from pyruvate, suggesting that inactivation was due to ATP formation. Inactivation of PDC by ADP addition was observed even in the presence of carboxyatractyloside, an inhibitor of the ATP/ADP translocator, suggesting that other mechanisms to facilitate the entry of adenylates, in addition to the adenylate carrier, must exist in plant mitochondria.  相似文献   

2.
The activity of the pyruvate dehydrogenase complex (PDC), as controlled by reversible phosphorylation, was studied in situ with mitochondria oxidizing dfifferent substrates. PDCs from both plant and animal tissues were inactivated when pyruvate became limiting. The PDC did not inactivate in the presence of saturating levels of pyruvate. Calcium stimulated reactivation of PDC in chicken heart but not pea (Pisum sativum L.) leaf mitochondria. With pea leaf mitochondria oxidizing malate, inactivation of PDC was pH dependent corresponding to the production of pyruvate via malic enzyme. When pea leaf mitochondria oxidized succinate or glycine, PDC was inactivated. This inactivation was reversed by the addition of pyruvate. Reactivation by pyruvate was enhanced by the addition of thiamine pyrophosphate, as previously observed with nonrespiring mitochondria. These results indicate a major role for pyruvate in regulating the covalent modification of the PDC.  相似文献   

3.
C. K. M. Rathnam 《Planta》1979,145(1):13-23
The potential for glycolate and glycine metabolism and the mechanism of refixation of photorespiratory CO2 in leaves of C4 plants were studied by parallel inhibitor experiments with thin leaf slices, different leaf cell types and isolated mitochondria of C3 and C4 Panicum species. CO2 evolution by leaf slices of P. bisulcatum, a C3 species, fed glycolate or glycine was light-independent and O2-sensitive. The C4 P. maximum and P. miliaceum leaf slices fed glycolate or glycine evolved CO2 in the dark but not in the light. In C4 species, dark CO2 evolution was abolished by the addition of phosphoenolpyruvate (PEP)4. The addition of maleate, a PEP carboxylase inhibitor, resulted in photorespiratory CO2 efflux by C4 leaf slices in the light also. However, PEP and maleate had no effect on either glycolate-dependent O2 uptake by the C4 leaf slices or on glycolate and glycine metabolism in C3 leaf slices. The rate of photorespiratory CO2 evolution in the C3 Panicum species was 3 times higher than that observed with the C4 species. The ratio of glycolate-dependent CO2 evolution to O2 uptake in both groups was 1:2. Isolated C4 mesophyll protoplasts or their mitochondria did not metabolize glycolate or glycine. However, both C3 mesophyll protoplasts and C4 bundle sheath strands readily metabolized glycolate and glycine in a light-independent, O2-sensitive manner, and the addition of PEP or maleate had no effect. C4 bundle sheath- and C3-mitochondria were capable of oxidizing glycine. This oxidation was linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport inhibitors. C4 bundle sheath- and C3-mitochondrial glycine decarboxylation was stimulated by oxaloacetate and NAD had no effect. In marked contrast, mitochondria isolated from C4 mesophyll cells were incapable of oxidizing or decarboxylating added glycine. The results suggest that in leaves of C4 plants bundle sheath cells are the primary site of O2-sensitive photorespiratory CO2 evolution and the PEP carboxylase present in the mesophyll cells has the Potential for efficiently refixing CO2 before it escapes out of the leaf. The relative role of the PEP carboxylase mediated CO2 pump and reassimilation of photorespiratory CO2 are discussed in relation to the apparent lack of photorespiration in leaves of C4 species.Abbreviations BSA bovine serum albumin - Chl chlorophyll - PEP phosphoenolpyruvate - Rbu-P 2 ribulose 1,5-bisphosphate - Rib-5-P ribose-5-phosphate - Ru-5-P ribuluse-5-phosphate - FCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone Journal Series Paper, New Jersey Agricultural Experiment Station  相似文献   

4.
Inactivation of the pyruvate dehydrogenase complex catalyzed by pyruvate dehydrogenase kinase was studied using intact mitochondria purified from green leaf tissue of pea (Pisum sativum L.) and dialyzed mitochondrial extracts. Thiamine pyrophosphate was inhibitory in dialyzed extracts but not in intact mitochondria, except in the presence of high concentrations of Na+. NH4+, at concentrations as low as 20 micromolar, markedly stimulated inactivation in dialyzed extracts. K+ in the range 1 to 10 millimolar also enhanced inactivation. In contrast, Na+ was without affect at lower concentrations but was inhibitory at 10 to 100 millimolar levels. The effect of NH4+ is discussed in relation to a possible regulatory interaction between photorespiratory NH4+ production and the entry of carbon into the tricarboxylic acid cycle by way of the pyruvate dehydrogenase complex.  相似文献   

5.
The distribution of the glycolytic enzymes, phosphofructokinase, aldolase, triosephosphate isomerase, phosphoglycerate kinase, pyruvate kinase, and the oxidative pentose phosphate pathway enzymes, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, was determined in the leaf tissues of two C3-plants, pea and leek, and two C4-plants, maize and sorghum. All enzymes examined were found in epidermal tissue. In pea, maize, and sorghum leaves, the specific activities of these enzymes were usually higher in the nonphotosynthetic epidermal tissue than in the photosynthetic tissues of the leaves. In leek leaves, which were etiolated, specific activities were similar in both epidermal and mesophyll tissue. The distribution of the rate limiting enzymes of glycolysis and the oxidative pentose phosphate pathways probably reflects the capacity of each tissue to generate NADH, NADPH, and ATP from the oxidation of glucose. This capacity appears to be greater in leaf tissues unable to generate reducing equivalents and ATP by photosynthesis, that is, in epidermal tissues and etiolated mesophyll tissue.  相似文献   

6.
Protoplasts from barley (Hordeum vulgare), pea (Pisum sativum), wheat (Triticum aestivum), and spinach (Spinacia oleracea) leaves were fractionated into chloroplast- and mitochondrion-enriched fractions. Pyruvate dehydrogenase complex capacities in mitochondria (mtPDC) and chloroplasts (cpPDC) were measured in appropriate fractions under conditions optimal for each isozyme. The total cellular capacity of PDC was similar in barley and pea but about 50% lower in wheat and spinach. In pea a distribution of 87% mtPDC and 13% cpPDC was found on a cellular basis. In barley, wheat, and spinach the subcellular distribution was the opposite, with about 15% mtPDC and 85% cpPDC. cpPDC activity was constant at about 0.1 nmol cell-1 h-1 in cells from different regions along the developing barley leaf and showed no correlation with developmental patterns of photosynthetic parameters, such as increasing Chl and NADP-glyceraldehyde-3-phosphate dehydrogenase activity. Similarly, the capacity of the mitochondrial isoform did not change during barley leaf development and had a developmental pattern similar to that of citrate synthase and fumarase. Differences in subcellular distribution of PDCs in barley and pea are proposed to be due to differences in regulation, not to changes in isozyme proportions during leaf development or to species-specific differences in phosphorylation state of mtPDC after organelle separation.  相似文献   

7.
The use of mesophyll protoplast extracts from various C4 species has provided an effective method for studying light-and substrate-dependent formation of oxaloacetate, malate, and asparate at rates equivalent to whole leaf C4 photosynthesis. Conditions regulating the formation of the C4 acids were studied with protoplast extracts from Digitaria sanguinalis, an NADP-malic enzyme C4 species, Eleusineindica, an NAD-malic enzyme C4 species, and Urochloa panicoides, a phosphoenolpyruvate (PEP) carboxykinase C4 species. Light-dependent induction of CO2 fixation by the mesophyll extracts of all three species was relatively low without addition of exogenous substrates. Pyruvate, alanine and α-ketoglutarate, or 3-phosphoglycerate induced high rates of CO2 fixation in the mesophyll extracts with oxaloacetate, malate, and aspartate being the primary products. In all three species, it appears that pyruvate, alanine, or 3-phosphoglycerate may serve as effective precursors to the formation of PEP for carboxylation through PEP-carboxylase in C4 mesophyll cells. Induction by pyruvate or alanine and α-ketoglutarate was light-dependent, whereas 3-phosphoglycerate-induced CO2 fixation was not.  相似文献   

8.
Using the principle described by R McC Lilley, M Stitt, G Mader, HW Heldt (1982 Plant Physiol 70: 965-970), an apparatus for rapid fractionation of barley leaf (Hordeum vulgare) protoplasts by membrane filtration was built. From studies of ATP/ADP ratios, it is concluded that the quenching of metabolic reactions is very fast, making it possible to use the method for studies on metabolic interactions between different compartments in plant cells. The fractionation method was used to study the influence of photorespiration on ATP/ADP ratios in the chloroplasts, mitochondria, and cytosol of barley leaf protoplasts. The cytosolic ATP/ADP ratio was higher under photorespiratory conditions than under nonphotorespiratory conditions. Aminoacetonitrile, an inhibitor of the photorespiratory conversion of glycine to serine, had a very small effect on the ATP/ADP ratios in the different subcellular compartments during photosynthesis in nonphotorespiratory conditions (saturating CO2). In photorespiratory conditions (limiting CO2), on the other hand, aminoacetonitrile increased the ATP/ADP ratio in the chloroplasts and decreased the ATP/ADP ratios in the mitochondria and the cytosol. These results are consistent with the hypothesis, that during photorespiration glycine oxidation is coupled to oxidative phosphorylation to provide ATP to the cytosol.  相似文献   

9.
Three allelic mutants of Arabidopsis thaliana which lack mitochondrial serine transhydroxymethylase activity due to a recessive nuclear mutation have been characterized. The mutants were shown to be deficient both in glycine decarboxylation and in the conversion of glycine to serine. Glycine accumulated as an end product of photosynthesis in the mutants, largely at the expense of serine, starch, and sucrose formation. The mutants photorespired CO2 at low rates in the light, but this evolution of photorespiratory CO2 was abolished by provision of exogenous NH3. Exogenous NH3 was required by the mutants for continued synthesis of glycine under photorespiratory conditions. These and related results with wild-type Arabidopsis suggested that glycine decarboxylation is the sole site of photorespiratory CO2 release in wild-type plants but that depletion of the amino donors required for glyoxylate amination may lead to CO2 release from direct decarboxylation of glyoxylate. Photosynthetic CO2 fixation was inhibited in the mutants under atmospheric conditions which promote photorespiration but could be partially restored by exogenous NH3. The magnitude of the NH3 stimulation of photosynthesis indicated that the increase was due to the suppression of glyoxylate decarboxylation. The normal growth of the mutants under nonphotorespiratory atmospheric conditions indicates that mitochondrial serine transhydroxymethylase is not required in C3 plants for any function unrelated to photorespiration.  相似文献   

10.
Glycine supports in vivo reduction of nitrate in barley leaves   总被引:1,自引:0,他引:1       下载免费PDF全文
Kumar PA  Nair TV  Abrol YP 《Plant physiology》1988,88(4):1486-1488
Glycine, a photorespiratory intermediate, enhanced the in vivo reduction of nitrate in barley (Hordeum vulgare L.) leaf slices, when included in the assay medium. Isonicotinyl hydrazide, an inhibitor of glycine oxidation, partially reduced NO2 production. The enhancement caused by glycine treatment was reversed by isonicotinyl hydrazide when both were present together in the medium. Similar effects were observed when the excised leaves were preincubated with the metabolite and the inhibitor. Glycine also partially relieved the inhibition of nitrate reduction caused by malonate, an inhibitor of the tricarboxylic acid cycle. The results support the hypothesis that glycine decarboxylation activity is a source of NADH for nitrate reductase activity.  相似文献   

11.
The importance of the mitochondrial electron transport chain in photosynthesis was studied using the tobacco (Nicotiana sylvestris) mutant CMSII, which lacks functional complex I. Rubisco activities and oxygen evolution at saturating CO(2) showed that photosynthetic capacity in the mutant was at least as high as in wild-type (WT) leaves. Despite this, steady-state photosynthesis in the mutant was reduced by 20% to 30% at atmospheric CO(2) levels. The inhibition of photosynthesis was alleviated by high CO(2) or low O(2). The mutant showed a prolonged induction of photosynthesis, which was exacerbated in conditions favoring photorespiration and which was accompanied by increased extractable NADP-malate dehydrogenase activity. Feeding experiments with leaf discs demonstrated that CMSII had a lower capacity than the WT for glycine (Gly) oxidation in the dark. Analysis of the postillumination burst in CO(2) evolution showed that this was not because of insufficient Gly decarboxylase capacity. Despite the lower rate of Gly metabolism in CMSII leaves in the dark, the Gly to Ser ratio in the light displayed a similar dependence on photosynthesis to the WT. It is concluded that: (a) Mitochondrial complex I is required for optimal photosynthetic performance, despite the operation of alternative dehydrogenases in CMSII; and (b) complex I is necessary to avoid redox disruption of photosynthesis in conditions where leaf mitochondria must oxidize both respiratory and photorespiratory substrates simultaneously.  相似文献   

12.
Pyruvate dehydrogenase complex activity from spinach leaf mitochondria was inhibited up to 90% within 2 min of incubation with 1 mm ATP at 27 °C. The inhibition was time, temperature and ATP concentration dependent. The inhibition was partially prevented with 3.0 mm dichloroacetate, a known inhibitor of mammalian pyruvate dehydrogenase kinases. Optimum pH for ATP-dependent inactivation was between 8.0 and 9.0 The inactivated complex was reactivated with 10 to 20 mm MgCl2. Complete reactivation occurs within 10 min after MgCl2 addition. Reactivation was inhibited by fluoride, a known inhibitor of mammalian pyruvate dehydrogenase phosphatase. Optimum pH for Mg2+-dependent reactivation was 8.0. It is concluded that the inactivation and reactivation process of pyruvate dehydrogenase complex from spinach leaf mitochondria is due to phosphorylation and dephosphorylation.  相似文献   

13.
NADP-malate dehydrogenase, a light-modulated enzyme of C4 photosynthesis, was purified to homogeneity from leaves of corn. The pure enzyme was activated by thioredoxin m that was reduced either photochemically (with ferredoxin and ferredoxin-thioredoxin reductase) or chemically (with dithiothreitol). Unactivated corn leaf NADP-malate dehydrogenase had a molecular weight of 50,000 to 60,000 and was chromophorefree. The enzyme appeared to have a high content of serine and glycine and to contain both S—S and SH groups. Consequently, NADP-malate dehydrogenase seems to be capable of undergoing reversible oxidation/reduction during its photoregulation.  相似文献   

14.
Aminoacetonitrile (AAN), a specific inhibitor of glycine oxidation in the photorespiratory glycolate pathway, did not inhibit photosynthetic CO2 fixation, but inhibited the apparent photosynthesis of rice leaves under high photosynthetic conditions. However, under such low photosynthetic conditions as low light intensity or senescent leaves, the apparent photosynthesis was not inhibited by AAN. The application of AAN to the leaves led to a greater accumulation of glycine under a high photosynthetic condition like strong light intensity.

From these results, it can be postulated that the inhibition of apparent photosynthesis by AAN was due to the accumulation of intermediate metabolites in the photorespiratory glycolate pathway which was induced by AAN treatment.  相似文献   

15.
In order to purify the lipoamide dehydrogenase associated with the glycine decarboxylase complex of pea leaf mitochondria, the activity of free lipoamide dehydrogenase has been separated from those of the pyruvate and 2-oxoglutarate dehydrogenase complexes under conditions in which the glycine decarboxylase dissociates into its component subunits. This free lipoamide dehydrogenase which is normally associated with the glycine decarboxylase complex has been further purified and the N-terminal amino acid sequence determined. Positive cDNA clones isolated from both a pea leaf and embryo lambda gt11 expression library using an antibody raised against the purified lipoamide dehydrogenase proved to be the product of a single gene. The amino acid sequence deduced from the open reading frame included a sequence matching that determined directly from the N terminus of the mature protein. The deduced amino acid sequence shows good homology to the sequence of lipoamide dehydrogenase associated with the pyruvate dehydrogenase complex from Escherichia coli, yeast, and humans. The corresponding mRNA is strongly light-induced both in etiolated pea seedlings and in the leaves of mature plants following a period of darkness. The evidence suggests that the mitochondrial enzyme complexes: pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, and glycine decarboxylase all use the same lipoamide dehydrogenase subunit.  相似文献   

16.
In contrast to the pyruvate dehydrogenase complex (PDC) from animal mitochondria, our in situ and in vitro studies indicate that the ATP:ADP ratio has little or no effect in regulating the mitochondrial pyruvate dehydrogenase complex from green pea seedlings. Pyruvate was a competitive inhibitor of ATP-dependent inactivation (Ki = 59 microM), while the PDC had a Km for pyruvate of microM. Thiamine pyrophosphate, the coenzyme for the pyruvate dehydrogenase (PDH) component of the complex, did not inhibit ATP-dependent inactivation when used alone but it enhanced inhibition by pyruvate. As such, thiamine pyrophosphate was a competitive inhibitor (Ki = 130 nM) of ATP-dependent inactivation. A model is proposed for the pyruvate plus thiamine pyrophosphate inhibition of ATP-dependent inactivation of the pyruvate dehydrogenase complex in which pyruvate exerts its inhibition of inactivation by altering or protecting the protein substrate from phosphorylation and not by directly inhibiting PDH kinase.  相似文献   

17.
N. J. Walton  H. W. Woolhouse 《Planta》1986,167(1):119-128
A comparative study is presented of the activities of enzymes of glycine and serine metabolism in leaves, germinated cotyledons and root apices of pea (Pisum sativum L.). Data are given for aminotransferase activities with glyoxylate, hydroxypyruvate and pyruvate, for enzymes associated with serine synthesis from 3-phosphoglycerate and for glycine decarboxylase and serine hydroxymethyltransferase. Aminotransferase activities differ between the tissues in that, firstly, appreciable transamination of serine, hydroxypyruvate and asparagine occurs only in leaf extracts and, secondly, glyoxylate is transaminated more actively than pyruvate in leaf extracts, whereas the converse is true of extracts of cotyledons and root apices. Alanine is the most active amino-group donor to both glyoxylate and hydroxypyruvate. 3-Phosphoglycerate dehydrogenase and glutamate: O-phosphohydroxypyruvate aminotransferase have comparable activities in all three tissues, except germinated cotyledons, in which the aminotransferase appears to be undetectable. Glycollate oxidase is virtually undetectable in the non-photosynthetic tissues and in these tissues the activity of glycerate dehydrogenase is much lower than that of 3-phosphoglycerate dehydrogenase. Glycine decarboxylase activity in leaves, measured in the presence of oxaloacetate, is equal to about 30–40% of the measured rate of CO2 fixation and is therefore adequate to account for the expected rate of photorespiration. The activity of glycine decarboxylase in the non-photosynthetic tissues is calculated to be about 2–5% of the activity in leaves and has the characteristics of a pyridoxal-and tetrahydrofolate-dependent mitochondrial reaction; it is stimulated by oxaloacetate, although not by ADP. In leaves, the measured activity of serine hydroxymethyltransferase is somewhat lower than that of glycine decarboxylase, whereas in root apices it is substantially higher. Differential centrifugation of extracts of root apices suggests that an appreciable proportion of serine hydroxymethyltransferase activity is associated with the plastids.Abbreviation GOGAT l-Glutamine:2-oxoglutarate aminotransferase  相似文献   

18.
Reddy AR  Suhasini M  Das VS 《Plant physiology》1987,84(4):1447-1450
Cut shoots of guayule (Parthenium argentatum Gray) were treated with four inhibitors of the glycolate pathway (α-hydroxypyridinemethanesulfonic acid; isonicotinic acid hydrazide, glycine hydroxamate, and amino-oxyacetate, AOA) in order to evaluate the role of photorespiratory intermediates in providing precursors for the biosynthesis of rubber. Photorespiratory CO2 evolution in guayule leaves was severely inhibited by AOA. Application of each of the four inhibitors has resulted in a significantly decreased incorporation of 14C into rubber fractions suggesting that the glycolate pathway is involved in the biosynthesis of rubber in guayule. However, the application of each of the glycolate pathway inhibitors showed no significant effect on photosynthetic CO2 fixation in the leaves. The inhibitors individually also reduced the incorporation of labeled glycolate, glyoxylate, and glycine into rubber, while the incorporation of serine and pyruvate was not affected. The effective inhibition of incorporation of glycolate pathway intermediates in the presence of AOA was due to an inhibition of glycine decarboxylase and serine hydroxymethyltransferase. It is concluded that serine is a putative photorespiratory intermediate in the biosynthesis of rubber via pyruvate and acetyl coenzyme A.  相似文献   

19.
Brennan T 《Plant physiology》1980,66(5):815-817
Dark activation of light-inactivated glucose-6-phosphate dehydrogenase was inhibited by catalase in a broken pea chloroplast system. Partially purified glucose-6-phosphate dehydrogenase from pea leaf chloroplasts can be inactivated in vitro by dithiothreitol and thioredoxin and reactivated by H2O2. The in vitro activation by H2O2 was not enhanced by horseradish peroxidase, and dark activation in the broken chloroplast system was only slightly inhibited by NaCN. These results indicate that the dark activation of glucose-6-phosphate dehydrogenase may involve oxidation by H2O2 of SH groups on the enzyme which were reduced in the light by the light effect mediator system.  相似文献   

20.
Yoshimura Y  Kubota F  Ueno O 《Planta》2004,220(2):307-317
In C4 plants, photorespiration is decreased relative to C3 plants. However, it remains unclear how much photorespiratory capacity C4 leaf tissues actually have. We thoroughly investigated the quantitative distribution of photorespiratory organelles and the immunogold localization of the P protein of glycine decarboxylase (GDC) in mesophyll (M) and bundle sheath (BS) cells of various C4 grass species. Specific differences occurred in the proportions of mitochondria and peroxisomes in the BS cells (relative to the M cells) in photosynthetic tissues surrounding a vein: lower in the NADP-malic enzyme (NADP-ME) species having poorly formed grana in the BS chloroplasts, and higher in the NAD-malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PCK) species having well developed grana. In all C4 species, GDC was localized mainly in the BS mitochondria. When the total amounts of GDC in the BS mitochondria per unit leaf width were estimated from the immunogold labeling density and the quantity of mitochondria, the BSs of NADP-ME species contained less GDC than those of NAD-ME or PCK species. This trend was also verified by immunoblot analysis of leaf soluble protein. There was a high positive correlation between the degree of granal development (granal index) in the BS chloroplasts and the total amount of GDC in the BS mitochondria. The variations in the structural and biochemical features involved in photorespiration found among C4 species might reflect differences in the O2/CO2 partial pressure and in the potential photorespiratory capacity of the BS cells.Abbreviations BS Bundle sheath - GDC Glycine decarboxylase - M Mesophyll - NAD-ME NAD-malic enzyme - NADP-ME NADP-malic enzyme - PCK Phosphoenolpyruvate carboxykinase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号