首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, the feasibility of using Escherichia coli for the heterologous biosynthesis of complex polyketides has been demonstrated. In this report, the development of a robust high-cell-density fed-batch procedure for the efficient production of complex polyketides is described. The effects of various physiological conditions on the productivity and titers of 6-deoxyerythronolide B (6dEB; the macrocyclic core of the antibiotic erythromycin) in recombinant cultures of E. coli were studied in shake flask cultures. The resulting data were used as a foundation to develop a high-cell-density fermentation procedure by building upon procedures reported earlier for recombinant protein production in E. coli. The fermentation strategy employed consistently produced approximately 100 mg of 6dEB per liter, whereas shake flask conditions generated between 1 and 10 mg per liter. The utility of an accessory thioesterase (TEII from Saccharopolyspora erythraea) for enhancing the productivity of 6dEB in E. coli was also demonstrated (increasing the final titer of 6dEB to 180 mg per liter). In addition to reinforcing the potential for using E. coli as a heterologous host for wild-type- and engineered-polyketide biosynthesis, the procedures described in this study may be useful for the production of secondary metabolites that are difficult to access by other routes.  相似文献   

2.
The medicinal value associated with complex polyketide and nonribosomal peptide natural products has prompted biosynthetic schemes dependent upon heterologous microbial hosts. Here we report the successful biosynthesis of yersiniabactin (Ybt), a model polyketide-nonribosomal peptide hybrid natural product, using Escherichia coli as a heterologous host. After introducing the biochemical pathway for Ybt into E. coli, biosynthesis was initially monitored qualitatively by mass spectrometry. Next, production of Ybt was quantified in a high-cell-density fermentation environment with titers reaching 67 ± 21 (mean ± standard deviation) mg/liter and a volumetric productivity of 1.1 ± 0.3 mg/liter-h. This success has implications for basic and applied studies on Ybt biosynthesis and also, more generally, for future production of polyketide, nonribosomal peptide, and mixed polyketide-nonribosomal peptide natural products using E. coli.  相似文献   

3.
Aims: Escherichia coli has emerged as a viable heterologous host for the production of complex, polyketide natural compounds. In this study, polyketide biosynthesis was compared between different E. coli strains for the purpose of better understanding and improving heterologous production. Methods and Results: Both B and K‐12 E. coli strains were genetically modified to support heterologous polyketide biosynthesis [specifically, 6‐deoxyerythronolide B (6dEB)]. Polyketide production was analysed using a helper plasmid designed to overcome rare codon usage within E. coli. Each strain was analysed for recombinant protein production, precursor consumption, by‐product production, and 6dEB biosynthesis. Of the strains tested for biosynthesis, 6dEB production was greatest for E. coli B strains. When comparing biosynthetic improvements as a function of mRNA stability vs codon bias, increased 6dEB titres were observed when additional rare codon tRNA molecules were provided. Conclusions: Escherichia coli B strains and the use of tRNA supplementation led to improved 6dEB polyketide titres. Significance and Impact of the Study: Given the medicinal potential and growing field of polyketide heterologous biosynthesis, the current study provides insight into host‐specific genetic backgrounds and gene expression parameters aiding polyketide production through E. coli.  相似文献   

4.
5.
6‐Deoxyerythronolide B (6dEB) is the macrocyclic aglycone precursor of the antibiotic natural product erythromycin. Heterologous production of 6dEB in Escherichia coli was accomplished, in part, by designed over‐expression of a native prpE gene (encoding a propionyl‐CoA synthetase) and heterologous pcc genes (encoding a propionyl‐CoA carboxylase) to supply the needed propionyl‐CoA and (2S)‐methylmalonyl‐CoA biosynthetic substrates. Separate E. coli metabolism includes three enzymes, Sbm (a methylmalonyl‐CoA mutase), YgfG (a methylmalonyl‐CoA decarboxylase), and YgfH (a propionyl‐CoA:succinate CoA transferase), also involved in propionyl‐CoA and methylmalonyl‐CoA metabolism. In this study, the sbm, ygfG, and ygfH genes were individually deleted and over‐expressed to investigate their effect on heterologous 6dEB production. Our results indicate that the deletion and over‐expression of sbm did not influence 6dEB production; ygfG over‐expression reduced 6dEB production by fourfold while ygfH deletion increased 6dEB titers from 65 to 129 mg/L in shake flask experiments. It was also found that native E. coli metabolism could support 6dEB biosynthesis in the absence of exogenous propionate and the substrate provision pcc genes. Lastly, the effect of the ygfH deletion was tested in batch bioreactor cultures in which 6dEB titers improved from 206 to 527 mg/L. Biotechnol. Bioeng. 2010; 105: 567–573. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
The heterologous biosynthesis of 6-deoxyerythronolide B (6dEB), a key intermediate in the biosynthesis of erythromycin, has recently been achieved in Escherichia coli, but the experimental product yield remains low. In this study, in silico strategies were adopted to evaluate and improve the biosynthesis of 6dEB in this strain. The theoretical capability of E. coli to produce 6dEB was first evaluated by analyzing the maximum theoretical molar yield (MTMY) of 6dEB utilizing three carbon sources, glucose, propionate and glycerol. Although propionate is presently most often used experimentally, our results indicated that glucose would be the most feasible substrate for 6dEB production from economic and long-term standpoints. Compared with Saccharomyces cerevisiae and Bacillus subtilis, E. coli was found to be a better heterologous host for the biosynthesis of 6dEB due to the higher MTMY value under the same conditions. Two strategies, including a flux distribution comparison analysis (FDCA) and linear minimization of metabolic adjustment based (LMOMA-based) methods, were proposed and employed for in silico strain improvement of 6dEB production, which yielded several potential gene targets for future experimental validation. In a further analysis, increasing the specific growth rate (SGR) or the non-growth associated maintenance (NGAM) was found to decrease the MTMY; while increasing the specific oxygen uptake rate (SOUR) or the specific carbon source uptake rate (SCUR) increased the MTMY. Taken together, our findings identified key factors directly affecting the MTMY of 6dEB production, which will guide future experimental research or even the industrial production of 6dEB.  相似文献   

7.
The recent use of heterologous hosts to produce natural products has shown significant potential, although limitations still exist regarding optimal production titers. In this study, we utilize micro‐scale cultures and well‐defined screening methods to identify key medium components that influence the heterologous production of the complex polyketide 6‐deoxyerythronolide B (6dEB) through E. coli. It was determined that tryptone had a significant effect on 6dEB production and could supplement substrate requirements and improve recombinant protein levels of the essential deoxyerythronolide B synthase (DEBS) which catalyze 6dEB conversion. As a result, the study (1) demonstrates the feasibility of micro‐scale cultures to study E. coli 6dEB production and effectively model larger‐scale cultures; (2) identifies an enhanced medium which generates over 160 mg L?1 6dEB (a 22‐fold improvement over current culture media); and (3) provides new insight and understanding related to the heterologous production of 6dEB from E. coli. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

8.
Significant achievements in polyketide gene expression have made Escherichia coli one of the most promising hosts for the heterologous production of pharmacologically important polyketides. However, attempts to produce glycosylated polyketides, by the expression of heterologous sugar pathways, have been hampered until now by the low levels of glycosylated compounds produced by the recombinant hosts. By carrying out metabolic engineering of three endogenous pathways that lead to the synthesis of TDP sugars in E. coli, we have greatly improved the intracellular levels of the common deoxysugar intermediate TDP‐4‐keto‐6‐deoxyglucose resulting in increased production of the heterologous sugars TDP‐L‐mycarose and TDP‐d ‐desosamine, both components of medically important polyketides. Bioconversion experiments carried out by feeding 6‐deoxyerythronolide B (6‐dEB) or 3‐α‐mycarosylerythronolide B (MEB) demonstrated that the genetically modified E. coli B strain was able to produce 60‐ and 25‐fold more erythromycin D (EryD) than the original strain K207‐3, respectively. Moreover, the additional knockout of the multidrug efflux pump AcrAB further improved the ability of the engineered strain to produce these glycosylated compounds. These results open the possibility of using E. coli as a generic host for the industrial scale production of glycosylated polyketides, and to combine the polyketide and deoxysugar combinatorial approaches with suitable glycosyltransferases to yield massive libraries of novel compounds with variations in both the aglycone and the tailoring sugars.  相似文献   

9.
The formation of native disulfide bonds in complex eukaryotic proteins expressed in Escherichia coli is extremely inefficient. Tissue plasminogen activator (tPA) is a very important thrombolytic agent with 17 disulfides, and despite numerous attempts, its expression in an active form in bacteria has not been reported. To achieve the production of active tPA in E. coli, we have investigated the effect of cooverexpressing native (DsbA and DsbC) or heterologous (rat and yeast protein disulfide isomerases) cysteine oxidoreductases in the bacterial periplasm. Coexpression of DsbC, an enzyme which catalyzes disulfide bond isomerization in the periplasm, was found to dramatically increase the formation of active tPA both in shake flasks and in fermentors. The active protein was purified with an overall yield of 25% by using three affinity steps with, in sequence, lysine-Sepharose, immobilized Erythrina caffra inhibitor, and Zn-Sepharose resins. After purification, approximately 180 μg of tPA with a specific activity nearly identical to that of the authentic protein can be obtained per liter of culture in a high-cell-density fermentation. Thus, heterologous proteins as complex as tPA may be produced in an active form in bacteria in amounts suitable for structure-function studies. In addition, these results suggest the feasibility of commercial production of extremely complex proteins in E. coli without the need for in vitro refolding.  相似文献   

10.
The medicinal value associated with complex polyketide and nonribosomal peptide natural products has prompted biosynthetic schemes dependent upon heterologous microbial hosts. Here we report the successful biosynthesis of yersiniabactin (Ybt), a model polyketide-nonribosomal peptide hybrid natural product, using Escherichia coli as a heterologous host. After introducing the biochemical pathway for Ybt into E. coli, biosynthesis was initially monitored qualitatively by mass spectrometry. Next, production of Ybt was quantified in a high-cell-density fermentation environment with titers reaching 67 +/- 21 (mean +/- standard deviation) mg/liter and a volumetric productivity of 1.1 +/- 0.3 mg/liter-h. This success has implications for basic and applied studies on Ybt biosynthesis and also, more generally, for future production of polyketide, nonribosomal peptide, and mixed polyketide-nonribosomal peptide natural products using E. coli.  相似文献   

11.
Polyhydroxyalkanoates (PHAs) are microbial polyesters that can be used as completely biodegradable polymers, but the high production cost prevents their use in a wide range of applications. Recombinant Escherichia coli strains harboring the Ralstonia eutropha PHA biosynthesis genes have been reported to have several advantages as PHA producers compared with wild-type PHA-producing bacteria. However, the PHA productivity (amount of PHA produced per unit volume per unit time) obtained with these recombinant E. coli strains has been lower than that obtained with the wild-type bacterium Alcaligenes latus. To endow the potentially superior PHA biosynthetic machinery to E. coli, we cloned the PHA biosynthesis genes from A. latus. The three PHA biosynthesis genes formed an operon with the order PHA synthase, β-ketothiolase, and reductase genes and were constitutively expressed from the natural promoter in E. coli. Recombinant E. coli strains harboring the A. latus PHA biosynthesis genes accumulated poly(3-hydroxybutyrate) (PHB), a model PHA product, more efficiently than those harboring the R. eutropha genes. With a pH-stat fed-batch culture of recombinant E. coli harboring a stable plasmid containing the A. latus PHA biosynthesis genes, final cell and PHB concentrations of 194.1 and 141.6 g/liter, respectively, were obtained, resulting in a high productivity of 4.63 g of PHB/liter/h. This improvement should allow recombinant E. coli to be used for the production of PHB with a high level of economic competitiveness.  相似文献   

12.
Fermentation strategies for the production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes were developed. The pH-stat fed-batch cultures of E. coli CGSC 4401 harboring pJC4, a stable plasmid containing the A. latus PHA biosynthesis genes, were carried out with a concentrated whey solution containing 280 g of lactose equivalent per liter. Final cell and PHB concentrations of 119.5 and 96.2 g/liter, respectively, were obtained in 37.5 h, which resulted in PHB productivity of 2.57 g/liter/h.  相似文献   

13.
Heterologous biosynthesis offers a new way to capture the medicinal properties presented by complex natural products. In this study, production of 6‐deoxyerythronolide B (6dEB), the polyketide precursor to the antibiotic erythromycin, was used to probe the heterologous pathways needed for Escherichia coli‐derived biosynthesis. More specifically, the heterologous proteins responsible for 6dEB production were varied by adjusting their respective gene dosage levels. In this way, heterologous components required for posttranslational modification, 6dEB biosynthesis, and substrate provision were adjusted in expression levels to observe the relative effect each has on final heterologous biosynthesis. The results indicate that both the biosynthetic and substrate provision heterologous proteins impact 6dEB formation to a greater extent when compared with posttranslational modification and suggest these components for future protein and metabolic engineering.  相似文献   

14.
Chikungunya, a mosquito-borne viral disease caused by Chikungunya virus (CHIKV), has drawn substantial attention after its reemergence causing massive outbreaks in tropical regions of Asia and Africa. The recombinant envelope 2 (rE2) protein of CHIKV is a potential diagnostic as well as vaccine candidate. Development of cost-effective cultivation media and appropriate culture conditions are generally favorable for large-scale production of recombinant proteins in Escherichia coli. The effects of medium composition and cultivation conditions on the production of recombinant Chikungunya virus E2 (rCHIKV E2) protein were investigated in shake flask culture as well as batch cultivation of Escherichia coli. Further, the fed-batch process was also carried out for high cell density cultivation of E. coli expressing rE2 protein. Expression of rCHIKV E2 protein in E. coli was induced with 1 mM isopropyl-beta-thiogalactoside (IPTG) at ~23 g dry cell weight (DCW) per liter of culture and yielded an insoluble protein aggregating to form inclusion bodies. The final DCW after fed-batch cultivation was ~35 g/l. The inclusion bodies were isolated, solubilized in 8 M urea and purified through affinity chromatography to give a final product yield of ~190 mg/l. The reactivity of purified E2 protein was confirmed by Western blotting and enzyme-linked immunosorbent assay. These results show that rE2 protein of CHIKV may be used as a diagnostic reagent or for further prophylactic studies. This approach of producing rE2 protein in E. coli with high yield may also offer a promising method for production of other viral recombinant proteins.  相似文献   

15.
Escherichia coli BL21 strains were found to excrete a large amount of outer membrane protein F (OmpF) into culture medium during high-cell-density cultivation. From this interesting phenomenon, a novel and efficient OmpF fusion system was developed for the excretion of recombinant proteins by E. coli. The ompF gene of E. coli BL21(DE3) was first knocked out by using the red operon of bacteriophage λ to construct E. coli MBEL-BL101. For the excretion of human β-endorphin as a model protein, the β-endorphin gene was fused to the C terminus of the E. coli ompF gene by using a linker containing the Factor Xa recognition site. To develop a fed-batch culture condition that allows efficient production of OmpF-β-endorphin fusion protein, three different feeding strategies, an exponential feeding strategy and two pH-stat strategies with defined and complex nutrient feeding solutions, were examined. Among these, the pH-stat feeding strategy with the complex nutrient feeding solution resulted in the highest productivity (0.33 g of protein per liter per h). Under this condition, up to 5.6 g of OmpF-β-endorphin fusion protein per liter was excreted into culture medium. The fusion protein was purified by anion-exchange chromatography and cleaved by Factor Xa to yield β-endorphin, which was finally purified by reverse-phase chromatography. From 2.7 liters of culture supernatant, 545.4 mg of β-endorphin was obtained.  相似文献   

16.
A predictive and feedback glucose feed controller, previously developed for nutrient-sufficient growth of Escherichia coli to high cell densities, was used to produce large quantities of a heterologous, cyanobacterial recombinant hexadecameric (L8S8) protein, ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) in E. coli. Culture and plasmid stability conditions were optimized to yield the production of approximately 1 g of soluble, active recombinant RubisCO per liter. Recombinant RubisCO also was produced in lactose-induced high-cell-density fermentation of E. coli K-12.  相似文献   

17.
Malonyl-coenzyme A is an important precursor metabolite for the biosynthesis of polyketides, flavonoids and biofuels. However, malonyl-CoA naturally synthesized in microorganisms is consumed for the production of fatty acids and phospholipids leaving only a small amount available for the production of other metabolic targets in recombinant biosynthesis. Here we present an integrated computational and experimental approach aimed at improving the intracellular availability of malonyl-CoA in Escherichia coli. We used a customized version of the recently developed OptForce methodology to predict a minimal set of genetic interventions that guarantee a prespecified yield of malonyl-CoA in E. coli strain BL21 Star™. In order to validate the model predictions, we have successfully constructed an E. coli recombinant strain that exhibits a 4-fold increase in the levels of intracellular malonyl-CoA compared to the wild type strain. Furthermore, we demonstrate the potential of this E. coli strain for the production of plant-specific secondary metabolites naringenin (474 mg/L) with the highest yield ever achieved in a lab-scale fermentation process. Combined effect of the genetic interventions was found to be synergistic based on a developed analysis method that correlates genetic modification to cell phenotype, specifically the identified knockout targets (ΔfumC and ΔsucC) and overexpression targets (ACC, PGK, GAPD and PDH) can cooperatively force carbon flux towards malonyl-CoA. The presented strategy can also be readily expanded for the production of other malonyl-CoA-derived compounds like polyketides and biofuels.  相似文献   

18.
There is a need to develop renewable fuels and chemicals that will help meet global demands for energy and synthetic chemistry feedstock, without contributing to climate change or environmental degradation. Isoprene (C5H8) is one such key chemical ingredient, required for the production of synthetic rubber or plastic products, and a potential biofuel. Enabling a sustainable microbial fermentation for the production of isoprene is an attractive alternative to a petroleum origin. This work demonstrates transgenic expression of the Pueraria montana (kudzu vine) isoprene synthase gene (kIspS) and heterologous isoprene production in Escherichia coli. Enhancements in the amount of E. coli isoprene production were achieved upon over-expression of the native 2-C-methyl-d-erythritol-4-phosphate (MEP) biosynthetic pathway and, independently, upon heterologous over-expression of the entire mevalonic acid (MVA) pathway. A direct comparison of the efficiency of cellular organic carbon flux through the MEP and MVA pathways is provided, under conditions when these are expressed in the same host using the same plasmid, and same ribosome-binding sites (RBS). These alternative isoprenoid biosynthetic pathways were assembled in and expressed through a superoperon, suitable for transformation of E. coli. Introduction of specific RBS and nucleotide spacers between individual genes in the superoperon structure enabled maximal expression in E. coli batch cultures and translated to an improved production from 0.4?mg isoprene per liter of culture (control) to 5?mg isoprene per liter of culture (MEP superoperon transformants) and up to 320?mg isoprene per liter of culture (MVA superoperon transformants). This 800-fold increase in isoprene concentration from the MVA transformants and the attendant isoprene-to-biomass 0.78:1 carbon partitioning ratio suggested that the engineered MVA pathway introduces a bypass in the flux of endogenous substrate in E. coli to isopentenyl-diphosphate and dimethylallyl-diphosphate, thus overcoming flux limitations imposed upon the regulation of the native MEP pathway by the cell.  相似文献   

19.
Genistin is one of the bioactive isoflavone glucosides found in legumes, which have great nutraceutical and pharmaceutical significance. The market available isoflavones are currently produced by direct plant extraction. However, its low abundance in plant and structural complexity hinders access to this phytopharmaceutical via plant extraction or chemical synthesis. Here, the E. coli cell factory for sustainable production of genistin from glycerol was constructed. First, we rebuilt the precursor genistein biosynthesis pathway in E. coli, and its titer was then increased by 668% by identifying rate-limiting steps and applying an artificial protein scaffold system. Then de novo production of genistin from glycerol was achieved by functional screening and introduction of glycosyl-transferases, UDP-glucose pathway and specific genistin efflux pumps, and 48.1 mg/L of genistin was obtained. A further engineered E. coli strain equipped with an improved malonyl-CoA pathway, alternative glycerol-utilization pathways, acetyl-CoA carboxylase (ACC), and CRISPR interference (CRISPRi) mediated regulation produced up to 137.8 mg/L of genistin in shake flask cultures. Finally, 202.7 mg/L genistin was achieved through fed-batch fermentation in a 3-L bioreactor. This study represents the de novo genistin production from glycerol for the first time and will lay the foundation for low-cost microbial production of glucoside isoflavones. In addition, the multiphase workflow may provide a reference for engineering the biosynthetic pathways in other microbial hosts as well, for green manufacturing of complex natural products.  相似文献   

20.
We present protocols for high-level expression of isotope-labelled proteins in E. coli in cost-effective ways. This includes production of large amounts of unlabeled proteins and 13C-methyl methionine labeling in rich media, where yields of up to a gram of soluble protein per liter of culture are reached. Procedures for uniform isotope labeling of 2H, 13C and 15N using auto-induction or isopropyl-β-d-1-thiogalactopyranoside-induction are described, with primary focus on minimal isotope consumption and high reproducibility of protein expression. These protocols are based on high cell-density fermentation, but the key procedures are easily transferred to shake flask cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号