首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizobium trifolii T37 contains at least three plasmids with sizes of greater than 250 megadaltons. Southern blots of agarose gels of these plasmids probed with Rhizobium meliloti nif DNA indicated that the smallest plasmid, pRtT37a, contains the nif genes. Transfer of the Rhizobium leguminosarum plasmid pJB5JI, which codes for pea nodulation and the nif genes and is genetically marked with Tn5, into R. trifolii T37 generated transconjugants containing a variety of plasmid profiles. The plasmid profiles and symbiotic properties of all of the transconjugants were stably maintained even after reisolation from nodules. The transconjugant strains were placed into three groups based on their plasmid profiles and symbiotic properties. The first group harbored a plasmid similar in size to pJB5JI (130 megadaltons) and lacked a plasmid corresponding to pRtT37a. These strains formed effective nodules on peas but were unable to nodulate clover and lacked the R. trifolii nif genes. This suggests that genes essential for clover nodulation as well as the R. trifolii nif genes are located on pRtT37a and have been deleted. The second group harbored hybrid plasmids formed from pRtT37a and pJB5JI which ranged in size from 140 to ca. 250 megadaltons. These transconjugants had lost the R. leguminosarum nif genes but retained the R. trifolii nif genes. Strains in this group nodulated both peas and clover but formed effective nodules only on clover. The third group of transconjugants contained a hybrid plasmid similar in size to pRtT37b. These strains contained the R. trifolii and R. leguminosarum nif genes and formed N2-fixing nodules on both peas and clover.  相似文献   

2.
Ten independently generated mutants of Rhizobium leguminosarum biovar phaseoli CFN42 isolated after Tn5 mutagenesis formed nonmucoid colonies on all agar media tested and lacked detectable production of the normal acidic exopolysaccharide in liquid culture. The mutants were classified into three groups. Three mutants harbored Tn5 insertions on a 3.6-kilobase-pair EcoRI fragment and were complemented to have normal exopolysaccharide production by cosmids that shared an EcoRI fragment of this size from the CFN42 genome. The Tn5 inserts of five other mutants appeared to be located on a second, slightly smaller EcoRI fragment. Attempts to complement mutants of this second group with cloned DNA were unsuccessful. The mutations of the other two mutants were located in apparently adjacent EcoRI fragments carried on two cosmids that complemented those two mutants. The latter two mutants also lacked O-antigen-containing lipopolysaccharides and induced underdeveloped nodules that lacked nitrogenase activity on bean plants. The other eight mutants had normal lipopolysaccharides and wild-type symbiotic proficiencies on bean plants. Mutants in each of these groups were mated with R. leguminosarum strains that nodulated peas (R. leguminosarum biovar viciae) or clovers (R. leguminosarum biovar trifolii). Transfer of the Tn5 mutations resulted in exopolysaccharide-deficient R. leguminosarum biovar viciae or R. leguminosarum biovar trifolii transconjugants that were symbiotically deficient in all cases. These results support earlier suggestions that successful symbiosis with peas or clovers requires that rhizobia be capable of acidic exopolysaccharide production, whereas symbiosis with beans does not have this requirement.  相似文献   

3.
J W Lamb  J A Downie  A W Johnston 《Gene》1985,34(2-3):235-241
In Rhizobium phaseoli strain 8002, a large indigenous plasmid, pRP2JI, had previously been shown to carry many of the genes necessary for the induction of nitrogen-fixing nodules on Phaseolus beans. A cosmid clone library was constructed using DNA from strain 8002. From this library, two overlapping recombinant plasmids (pIJ1097 and pIJ1098) were isolated which spanned about 43 kb of pRP2JI DNA. These plasmids could restore nodulation to some, but not all nodulation-deficient strains of R. phaseoli, indicating that the nodulation genes were not clustered within one small region of pRP2JI. The cloned R. phaseoli nodulation region shared extensive DNA homology with the nodulation genes of R. leguminosarum, and on the basis of DNA hybridization, the nitrogenase genes were found to be within 10 kb of the R. phaseoli nodulation genes. Close to the nodulation genes of R. phaseoli was located a sequence that was repeated on pRP2JI but which was not present elsewhere in the genome of strain 8002.  相似文献   

4.
5.
Summary Mutants of Rhizobium leguminosarum which failed to fix nitrogen within nodules on peas were isolated following the insertion of the transposon Tn5 into pRL1JI, a Rhizobium plasmid known to carry the genes for nitrogenase. The sites of the Tn5 insertions were identified by restriction endonuclease mapping of cloned fragments of DNA from the mutant strains. One group of mutants was located within 4 kilobases of the structural genes for nitrogenase and another was located about 30 kilobases from this region. Two mutants from the first group, one of which appeared to be affected in a nitrogenase gene, induced nodules that contained bacterioids, but the number of plant cells containing bacteroids was less than in a normal nodule. Another group of mutants, which was located about 30 kilobases from the nitrogenase genes failed to form bacterioids. Electron microscopy of the nodules induced by these mutants indicated that there was a defect in their release from infection threads.  相似文献   

6.
7.
A system which allows direct selection for curing of plasmids in Gram-negative bacteria was used to generate derivatives of Rhizobium leguminosarum VF39 cured of each of six plasmids present in this strain. Phenotypes could be correlated with the absence of five of the six plasmids. The smallest plasmid, pRleVF39a, carries genes for the production of a melanin-like pigment as has been previously reported. Plasmid pRleVF39d carries nodulation and nitrogen fixation genes. Curing of the plasmids pRleVF39c and pRleVF39e gave rise to strains which formed Fix- nodules on peas, lentils, and faba beans. The nodules formed by the strains cured of pRleVF39c contained few, if any, bacteria. Analysis of washed cells by SDS-PAGE showed that this strain is defective in lipopolysaccharide (LPS) production; the defect could be complemented by introducing plasmids from several other R. leguminosarum strains, and by the R. leguminosarum biovar phaseoli LPS gene clones pCos126 and pDel27. The nodules formed by the strain cured of pRleVF39e had a reduced symbiotic zone, an enlarged senescence zone, and an abundance of starch granules. This strain grew at a much slower rate than the wild type, was unable to grow on minimal medium, and no longer produced melanin. These defects could be complemented by at least one other Rhizobium plasmid, pRle336e, a plasmid of strain 336 which is distinct from the nodulation plasmid (pRle336c) and the plasmid (pRle336d) which could complement the LPS defect associated with the loss of pRleVF39c. This demonstrates that genes necessary for symbiosis can be carried on at least three different plasmids in R. leguminosarum.  相似文献   

8.
Agrobacterium transconjugants containing symbiotic plasmids from different Rhizobium spp. strains that nodulate Phaseolus vulgaris were obtained. All transconjugants conserved the parental nodulation host range. Symbiotic (Sym) plasmids of Rhizobium strains isolated originally from P. vulgaris nodules, which had a broad nodulation host range, and single-copy nitrogenase genes conferred a Fix+ phenotype to the Agrobacterium transconjugants. A Fix phenotype was obtained with Sym plasmids of strains isolated from P. vulgaris nodules that had a narrow host range and reiterated nif genes, as well as with Sym plasmids of strains isolated from other legumes that presented single nif genes and a broad nodulation host range. This indicates that different types of Sym plasmids can confer the ability to establish an effective symbiosis with P. vulgaris.  相似文献   

9.
Two self-transmissible Sym(biosis) plasmids, one encoding pea-specific nodulation and nitrogen-fixation functions (plasmid pJB5JI) and the other encoding clover-specific nodulation and nitrogen-fixation functions (plasmid pBR1AN) were used to determine whether the symbiotic genes encoded on these plasmids are expressed in various members of the Rhizobiaceae. The host specificity of Rhizobium trifolii and R. leguminosarum Sym plasmid-cured strains could be directly determined by the transfer to these strains of the appropriate Sym plasmid. The nodulation of white clovers was restored by either plasmid pJB5JI or pBR1AN when these plasmids were transferred to two transposon Tn5-induced hair-curling (Hac-) R. trifolii mutants. In addition, lucerne nodulation was restored to a Hac- R. meliloti mutant when either plasmid pBR1AN or pJB5JI was transferred to this strain. The phenotype of nonmucoid (Muc-) Rhizobium mutants, which had altered cell surfaces, was not influenced by the transfer to these strains of plasmid pBR1AN or plasmid pJB5JI.  相似文献   

10.
During analysis of early events in the infection and nodulation of Vicia hirsuta roots inoculated with normal and mutant strains of Rhizobium leguminosarum and strains containing cloned nodulation (nod) genes, a number of novel observations were made. (i) Alternating zones of curled and straight root hairs were seen on roots of V. hirsuta inoculated with the wild-type strain of R. leguminosarum. This phasing of root hair curling was not seen if plants were grown under continuous light or continuous dark conditions. (ii) Reduced nodulation and delayed nodule initiation was observed with a strain carrying a Tn5 mutation in the nodE gene. In addition the phased root hair curling was absent, and root hair curling was observed along the length of the root. (iii) The nodABC genes cloned on a multicopy plasmid in a wild-type strain inhibited nodulation but induced a continuous root hair curling response. Those few nodules that eventually formed were found to contain bacteria which had lost the plasmid carrying the nodABC genes. (iv) With a strain of Rhizobium cured of its indigenous symbiotic plasmid, but containing the cloned nodABCDEF genes, continuous root hair curling on V. hirsuta was observed. However, no infection threads were observed, and surprisingly, it did appear that initial stages of nodule development occurred. Observations of thin sections of these early developing nodules indicated that early nodule meristematic divisions may have occurred but that no bacteria were found within the nodules and no infection threads were observed either within the nodule bumps or within any of the root hairs. It was concluded that for normal infections to occur, precise regulation of the nod genes is required and that overexpression of the root hair curling genes inhibits the normal infection process.  相似文献   

11.
The Rhizobium leguminosarum nodM gene product shows strong homology to the Escherichia coli glmS gene product that catalyses the formation of glucosamine 6-P from fructose 6-P and glutamine. DNA hybridization with nodM indicated that, in addition to nodM on the symbiotic plasmid, another homologous gene was present elsewhere in the R. leguminosarum genome. A glucosamine-requiring mutant was isolated and its auxotrophy could be corrected by two different genetic loci. It could grow without glucosamine when the nodM gene on the symbiotic plasmid was induced or if the cloned nodM gene was expressed from a vector promoter. Alternatively, it could be complemented by a second fragment of R. leguminosarum DNA that carries a region homologous to E. coli glmS. Biochemical assays of glucosamine 6-P formation confirmed that the two R. leguminosarum genes nodM and glmS have interchangeable functions. No nodulation of peas or vetch was observed with a double nodM glmS mutant, and this block occurred at a very early stage since no root-hair deformation or infection threads were seen. Nodulation and root-hair deformation did occur with either the nodM or the glmS mutant, showing that the gene products of either of these genes can be involved in the formation of the lipo-oligosaccharide nodulation signal. However, the glmS mutant formed nodules that had greatly reduced nitrogen fixation. Constitutive expression of nodM restored nitrogen fixation to the glmS mutant. Therefore the reduced nitrogen fixation probably occurs because glmS is absent and nodM is not normally expressed in nodules and, in the absence of glucosamine precursors, normal bacteroid maturation is blocked.  相似文献   

12.
A single large plasmid was isolated from multiplasmid-harboring strains Rhizobium leguminosarum 1001 and R. trifolii 5. These single plasmids, as well as the largest plasmid detectable in R. phaseoli 3622, hybridized with part of the nif structural genes of Klebsiella pneumoniae. In contrast, the plasmids of R. meliloti strains V7 and L5-30 did not show hybridization with the nif genes of K. pneumoniae, indicating that these genes might be located either on the chromosome or on a much larger plasmid which as yet has not been isolated. Studies of the homology between plasmids of fast-growing Rhizobium species showed that a specific deoxyribonucleic acid sequence, which carries the structural genes for nitrogenase, is highly conserved on a plasmid in R. leguminosarum, R. trifolii, and R. phaseoli. Furthermore, it was found that this type of plasmid in the different species shares extensive deoxyribonucleic acid homology, suggesting that strains in the R. leguminosarum cluster have preserved a nif plasmid.  相似文献   

13.
Two mutant derivatives of Rhizobium leguminosarum ANU843 defective in lipopolysaccharide (LPS) were isolated. The LPS of both mutants lacked O antigen and some sugar residues of the LPS core oligosaccharides. Genetic regions previously cloned from another Rhizobium leguminosarum wild-type isolate, strain CFN42, were used to complement these mutants. One mutant was complemented to give LPS that was apparently identical to the LPS of strain ANU843 in antigenicity, electrophoretic mobility, and sugar composition. The other mutant was complemented by a second CFN42 lps genetic region. In this case the resulting LPS contained O-antigen sugars characteristic of donor strain CFN42 and reacted weakly with antiserum against CFN42 cells, but did not react detectably with antiserum against ANU843 cells. Therefore, one of the CFN42 lps genetic regions specifies a function that is conserved between the two R. leguminosarum wild-type isolates, whereas the other region, at least in part, specifies a strain-specific LPS structure. Transfer of these two genetic regions into wild-type strains derived from R. leguminosarum ANU843 and 128C53 gave results consistent with this conclusion. The mutants derived from strain ANU843 elicited incompletely developed clover nodules that exhibited low bacterial populations and very low nitrogenase activity. Both mutants elicited normally developed, nitrogen-fixing clover nodules when they carried CFN42 lps DNA that permitted synthesis of O-antigen-containing LPS, regardless of whether the O antigen was the one originally made by strain ANU843.  相似文献   

14.
15.
Transposon Tn5-induced C4-dicarboxylate transport mutants of Rhizobium meliloti 2011 which could be complemented by cosmid pRmSC121 were subdivided into two classes. Class I mutants (RMS37 and RMS938) were defective in symbiotic C4-dicarboxylate transport and in nitrogen fixation. They were mutated in the structural gene dctA, which codes for the C4-dicarboxylate carrier. Class II mutants (RMS11, RMS16, RMS17, RMS24, and RMS31) expressed reduced activity in symbiotic C4-dicarboxylate transport and in nitrogen fixation. These mutants were mutated in regulatory dct genes which do not play an essential role in the symbiotic state. Thin sections of alfalfa nodules induced by the wild type and class I and class II mutants were analyzed by light microscopy. Class mutants induced typical Fix- nodules, showing a large senescent zone, whereas nodules induced by class II mutants only differed in an enhanced content of starch granules compared with wild-type nodules. Class I mutants could be complemented by a 2.1-kilobase SalI-HindIII subfragment of cosmid pRmSC121. DNA sequencing of this fragment resulted in the identification of an open reading frame, which was designated dctA because Tn5 insertion sites of the class I mutants mapped within this coding region. The dctA gene was preceded by a nif consensus promoter and an upstream NifA-binding element. Upstream of the dctA promoter, the 5' end of the R. meliloti dctB gene could be localized. The amino acid sequence of the N-terminal part of the R. meliloti DctB protein shared 49% homology with the corresponding part of the R. leguminosarum DctB protein. The DctA protein consisted of 441 or 453 amino acids due to two possible ATG start codons, with calculated molecular masses of 46.1 and 47.6 kilodaltons, respectively. The hydrophobicity plot suggests that DctA is a membrane protein with several membrane passages. The amino acid sequences of the R. meliloti and the R. leguminosarum DctA proteins were highly conserved (82%).  相似文献   

16.
Nif- Hup- mutants of Rhizobium japonicum.   总被引:7,自引:2,他引:5       下载免费PDF全文
Two H2 uptake-negative (Hup-) Rhizobium japonicum mutants were obtained that also lacked symbiotic N2 fixation (acetylene reduction) activity. One of the mutants formed green nodules and was deficient in heme. Hydrogen oxidation activity in this mutant could be restored by the addition of heme plus ATP to crude extracts. Bacteroid extracts from the other mutant strain lacked hydrogenase activity and activity for both of the nitrogenase component proteins. Hup+ revertants of the mutant strains regained both H2 uptake ability and nitrogenase activity.  相似文献   

17.
Regions of the Rhizobium meliloti nodulation genes from the symbiotic plasmid were transferred to Agrobacterium tumefaciens and Rhizobium trifolii by conjugation. The A. tumefaciens and R. trifolii transconjugants were unable to elicit curling of alfalfa root hairs, but were able to induce nodule development at a low frequency. These were judged to be genuine nodules on the basis of cytological and developmental criteria. Like genuine alfalfa nodules, the nodules were initiated from divisions of the inner root cortical cells. They developed a distally positioned meristem and several peripheral vascular bundles. An endodermis separated the inner tissues of the nodule from the surrounding cortex. No infection threads were found to penetrate either root hairs or the nodule cells. Bacteria were found only in intercellular spaces. Thus, alfalfa nodules induced by A. tumefaciens and R. trifolii transconjugants carrying small nodulation clones of R. meliloti were completely devoid of intracellular bacteria. When these strains were inoculated onto white clover roots, small nodule-like protrusions developed that, when examined cytologically, were found to more closely resemble roots than nodules. Although the meristem was broadened and lacked a root cap, the protrusions had a central vascular bundle and other rootlike features. Our results suggest that morphogenesis of alfalfa root nodules can be uncoupled from infection thread formation. The genes encoded in the 8.7-kilobase nodulation fragment are sufficient in A. tumefaciens or R. trifolii backgrounds for nodule morphogenesis.  相似文献   

18.
19.
Spontaneous streptomycin-resistant mutants were isolated from two fast growing gum-producing strains Ca85 and Ca401 and from two moderately growing strains Ca181 and Ca534 of Rhizobium sp. Cicer. The nodulation ability and symbiotic effectiveness of the mutants relative to parent strains were evaluated on chickpea (Cicer arietinum) grown in sterilized chillum jars. Some mutants of strains Ca85 and Ca401 showed Nod phenotype whereas some mutants of strains Ca181 and Ca534 showed Nod(+) fix(-) phenotype. Other mutants also showed decreased nodule number and reduction in nitrogenase activity as well as in shoot dry weight as compared to inoculation with parental strains. The results showed that acquisition of streptomycin resistance in Rhizobium sp. Cicer strains is associated with decreased symbiotic effectiveness in chickpea, suggesting that antibiotic-resistant mutants first should be analyzed for symbiotic effectiveness before using these mutants for ecological studies or nodulation competitiveness.  相似文献   

20.
Eight symbiotic mutants defective in lipopolysaccharide (LPS) synthesis were isolated from Rhizobium leguminosarum biovar phaseoli CFN42. These eight strains elicited small white nodules lacking infected cells when inoculated onto bean plants. The mutants had undetectable or greatly diminished amounts of the complete LPS (LPS I), whereas amounts of an LPS lacking the O antigen (LPS II) greatly increased. Apparent LPS bands that migrated between LPS I and LPS II on sodium dodecyl sulfate-polyacrylamide gels were detected in extracts of some of the mutants. The mutant strains were complemented to wild-type LPS I content and antigenicity by DNA from a cosmid library of the wild-type genome. Most of the mutations were clustered in two genetic regions; one mutation was located in a third region. Strains complemented by DNA from two of these regions produced healthy nitrogen-fixing nodules. Strains complemented to wild-type LPS content by the other genetic region induced nodules that exhibited little or no nitrogenase activity, although nodule development was obviously enhanced by the presence of this DNA. The results support the idea that complete LPS structures, in normal amounts, are necessary for infection thread development in bean plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号