首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six strains of the entomopathogenic fungus Matarhizium anisopliae var. anisopliae from North and South America and one strain of M. anisopliae var. major from Samoa were compared by pyrolysis-gas chromatography of conidia. Two strains established to be very similar by other methods proved 98% similar by pyrolysis-gas chromatography. Similarities of the other strains ranged from 62 to 88%. The method is proposed as a simple technique for routine identification of M. anisopliae strains.  相似文献   

2.
A forced heterocaryon was established between two auxotrophic conidial color mutants of Metarhizium anisopliae. From the heterocaryon, a prototrophic somatic diploid was selected which, in turn, yielded somatic segregants. The virulence of the original mutants, the somatic diploid, and the somatic segregants was evaluated on three species of mosquitoes as well as on Ostrinia nubilalis larvae. The virulence of the somatic diploid was comparable to that of the wild-type parental strain while the auxotrophic somatic segregants exhibited virulence approximately equal to that of the auxotrophic components of the heterocaryon. Putative somatic diploids were obtained between morphological mutants of the two species varieties (M. anisopliae var. minor and var. major). The presumptive diploids were avirulent for the insect species to which the parental strains exhibited virulence.  相似文献   

3.
A new genotyping tool has been developed and evaluated for Metarhizium anisopliae var. anisopliae. The tool is based on Restriction Fragment Length Polymorphism (RFLP) analysis of three chitinase genes that are functionally linked to insect-pathogenicity of this fungus. It allowed for discrimination of 14 genotypes among 22 M. anisopliae var. anisopliae strains of a world wide collection. Analyses revealed that the approach may also be applicable to other Metarhizium varieties. The new tool will be useful for genetic characterization of M. anisopliae var. anisopliae strains, and it is applicable for laboratories with limited access to molecular diagnostic equipment.  相似文献   

4.
Forty-seven isolates of Metarhizium anisopliae var. anisopliae (small-spored form) and five isolates of M. anisopliae var. major (large-spored form) obtained from widely separated geographical regions from various insect hosts were screened for virulence against Culex pipiens pipiens larvae. Pathogenesis was variable with mortalities ranging from 0 to 100%. However, much of the variation in mortality among small-spored isolates was due to lowered natural viabilities. The most virulent isolates were from Austria, Australia, and Brazil from insect species in three different orders. Isolates from the major strain were generally avirulent. There was no correlation of strain morphology, geographical region of isolation, or original host species with strain virulence. The strains most virulent to C. pipiens larvae were also highly infective to Aedes aegypti and Anopheles stephensi larvae. Virulence of two strains (E6 and E9) to C. pipiens larvae was significantly enhanced by one passage through a C. pipiens larval siphon. Relative potencies increased approximately 1.63 to 2.45 times. A smaller increase in virulence, depending upon the isolate, was also shown when these same strains were tested against A. aegypti and A. stephensi. Virulence of strain E9 was also increased significantly by passage through an alternate host, Nilaparvata lugens.  相似文献   

5.
The effect of the chemical insecticide, fenitrothion, and a mycoinsecticide based on Metarhizium anisopliae var. acridum on the activity of non-target epigeal arthropod scavengers was investigated in areas of open savannah in southeast Niger Republic, West Africa. Both insecticides were applied as full cover sprays to unreplicated 800 ha plots to assess their season-long control of Sahelian grasshoppers. Compared with control plots, fenitrothion caused an immediate but temporary reduction in grasshopper numbers, whereas M. anisopliae var. acridum provided delayed but prolonged control. Scavenging rates of pyrethroid-killed grasshoppers placed along transects in unsprayed plots and those treated with fenitrothion and M. anisopliae var. acridum at various intervals after spraying were assessed. In the fenitrothion plot, an immediate reduction in scavenging activity occurred that was still apparent after 40 days at the plot center, although recovery at the plot edges was more rapid. By contrast scavenging rates remained high over equivalent areas in the M. anisopliae var. acridum and two untreated plots. Concurrent to the scavenging study, counts of grasshopper cadavers resulting from the spray treatments were conducted. These counts revealed that the density of grasshopper cadavers remained low throughout the M. anisopliae var. acridum plot and explained <1% of the reduction in live grasshoppers resulting from treatment, compared with >20% in the fenitrothion plot. This shortfall in grasshopper cadavers resulting from the spray treatment in the M. anisopliae var. acridum plot was unexpected because in a monitoring study, fungus-killed (unlike pyrethroid-killed) grasshoppers were unattractive to scavengers and readily persisted in this plot, and thus should have become apparent. Given we did not observe significant grasshopper dispersal, the scarcity of cadavers generated in the M. anisopliae var. acridum plot, together with unquantified visual observations, suggests that predation of infected but living grasshoppers was high. Our data provide circumstantial evidence that the different effects of chemical and biological grasshopper control on grasshopper natural enemies may influence the efficacy of large-scale treatments.  相似文献   

6.
A genetic variant of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae, isolated from a soil in Alberta, Canada, from a location with a history of severe grasshopper infestations, was evaluated for pathogenicity in bioassays of living grasshoppers. Mortality in treated individuals drawn from a laboratory colony was 99% (LT50 = 6.7 days, LT90 = 9.6 days) at 12 days post-inoculation compared to 100% (LT50 = 4.1 days, LT90 = 5.8 days) mortality at 8 days in insects exposed to a commercial isolate of M. anisopliae var. acridum (IMI 330189). Experimental infection of field-collected grasshoppers under laboratory conditions with the native isolate of M. anisopliae var. anisopliae resulted in 100% (LT50 = 4.4 days, LT90 = 5.4 days) mortality attained within 7 days compared to 100% (LT50 = 4.7 days, LT90 = 6.3 days) mortality in 9 days in insects treated with M. anisopliae var. acridum. Amplification of fungal genomic DNA from the indigenous isolate with primers for the specific detection of M. anisopliae var. anisopliae produced a product almost 300 bp larger than expected based on previously known isolates. This is the first demonstration of a highly virulent, indigenous non-chemical control agent of grasshoppers in North America. GenBank Accession Nos. DQ342236, DQ342237.  相似文献   

7.
Li Y  Cai SH 《Current microbiology》2011,62(5):1400-1404
A set of six specific primers was designed by targeting intergenic spacer region (IGS) sequences. With Bst DNA polymerase, the products could be clearly amplified for 60 min at 62°C in a simple water bath. The sensitivity of the loop-mediated isothermal amplification (LAMP) for detecting Metarhizium anisopliae var. anisopliae was about 0.01 pg fungal DNA per reaction (equivalent to 27 conidia). LAMP products could be judged with agar gel or naked eye after addition of SYBR Green I. There were no cross reactions with other fungal isolates indicating high specificity of the LAMP. The LAMP could detect the presence of M. anisopliae var. anisopliae from soil. The detection limits for M. anisopliae var. anisopliae of LAMP reaction was 50 conidia per reaction in soil.  相似文献   

8.
Although Turkey is the first among all hazelnut-producing countries, yield per unit area of this crop is low in comparison to other countries, mainly because many insect species seriously damage hazelnut trees and their fruit. To find effective and safe biocontrol agents, we conducted a survey study to isolate entomopathogenic fungi from the hazelnut-growing region of Turkey and characterized the isolated strains in detail. In addition, we determined the effectiveness of seven selected strains from this region against Melolontha melolontha (Coleoptera: Scarabaeidae) which is one of the most serious pests of hazelnut. In 2006 and 2007, 301 soil samples were collected randomly and analyzed for presence of entomopathogenic fungi using the Galleria bait method. Entomopathogenic fungi were found to occur in 20.59% of the soil samples studied. Based on morphology, ITS sequence and partial sequencing of the 18S (SSU rDNA) and EF1-α genes, the isolates were identified as Metarhizium anisopliae var. anisopliae, Metarhizium sp., Beauveria bassiana, Beauveria cf. bassiana, Isaria fumosorosea and Evlachovaea sp. Metarhizium anisopliae var. anisopliae was isolated from 34 sites and was the most frequent and abundant entomopathogenic species recovered. All the isolates tested were pathogenic to M. melolontha. M. anisopliae var. anisopliae KTU-27 and Evlachovaea sp. KTU-36 produced the highest insecticidal activity (86.6%) within 15 days after inoculation. Our results suggest that entomopathogenic fungi could be good biocontrol agents against M. melolontha, and are discussed with respect to ecology of fungi in relation to habitat in order to evaluate biocontrol potential of these isolates. This is the first study of the distribution of entomopathogenic fungi in the hazelnut-growing region of Turkey and of their pathogenicities against M. melolontha.  相似文献   

9.
The abundance and genetic diversity of the entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, in southwestern British Columbia (BC) and southern Alberta was examined. The fungus was found to be widespread in soil throughout southwestern BC, and was recovered from 56% of 85 sample sites. In contrast to southwestern BC, no M. anisopliae isolates were recovered in southern Alberta. An automated fluorescent amplified fragment length polymorphism (AFLP) method was used to examine genetic diversity. In excess of 200 isolates were characterized. The method identified 211 polymorphic amplicons, ranging in size from ≈92 to 400 base pairs, and it was found to be reproducible with a resolution limit of 86.2% similarity. The AFLP method distinguished Metarhizium from other entomopathogenic fungal genera, and demonstrated considerable genetic diversity (25 genotypes) among the reference strains of M. anisopliae isolates examined (i.e. recovered from various substrates and geographical locations). Although 13 genotypes of M. anisopliae var. anisopliae were recovered from southwestern BC soils, the vast majority of isolates (91%) belonged to one of two closely-related genotypes. Furthermore, these two genotypes predominated in urban, agricultural and forest soils. The reasons for the limited diversity of M. anisopliae var. anisopliae in southwestern BC are uncertain. However, findings of this study are consistent with island biogeography theory, and have significant implications for the development of this fungus for microbial control of pest insects.  相似文献   

10.
This investigation deals with the control effects of the insect pathogenic fungus Metarhizium anisopliae var. anisopliae on Daktulosphaira vitifoliae. In pot experiments, the soil surrounding phylloxera-infected grapes was inoculated with barley colonised with M. anisopliae. After thirty-two days, ineight of ten Metarhizium-applied pots nofresh phylloxera infections could be observed.In two of ten plants, a few fresh nodositiessingly occupied with phylloxera or phylloxeraeggs could be found. In all untreated plants,fresh nodosities with either single (two of sixplants) or multiple (four of six plants)occupation with phylloxera could be observed.M. anisopliae could be re-isolated in aconcentration of <1 × 103 CFU g$minus;1 soil dry weight from those pots with phylloxera-infected plants that had been treated with the fungus. The potential role of M. anisopliae in grape phylloxera management is discussed.  相似文献   

11.
A list of entomopathogens from two Chihuahuan desertlocalities in México is given. Rhabditid nematodes, nuclear polyhedrosis viruses, a rickettsia(Rickettsiella popilliae), the fungi Beauveria bassiana,Entomophaga calopteni (= Entomophaga gryllipathotype 2),Entomophthora muscae, Entomophthora planchoniana,Furia vomitoriae, Nomuraea rileyi, Metarhiziumanisopliae var. anisopliae, Pandora gammae, Pandoraneoaphidis and Zoophthora radicans, and the microsporidian Nosema weiseri were all collected from the campus of the UniversidadAutónoma Agraria Antonio Narro, near the city of Saltillo, state of Coahuila, México. Metarhizium anisopliae var. anisopliae and Paecilomyces fumosoroseus were collected in the urban area of Saltillo. B.bassiana, Fusarium sp. (very similar toFusarium coccophilum),M. anisopliae and Paecilomyces farinosuswere collected in an appleorchard 50 km east of Saltillo. The nematodes, B.bassiana, E. calopteni, M. anisopliae, P.gammae, P. neoaphidis, and Z. radicans caused mortality levels of >10% in their respective hosts in the field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
1. Field observations have indicated that infection of locusts and grasshoppers by the fungal entomopathogen Metarhizium anisopliae var. acridum may result in a substantial increase in the host's susceptibility to predation, before death is caused directly by the disease. 2. Laboratory experiments were conducted to examine how the behaviour of the desert locust Schistocerca gregaria Forskål changes following infection by M. anisopliae var. acridum to explore some potential mechanisms underlying this phenomenon. 3. In the first experiment, which involved monitoring general locust activity in small cages throughout the disease incubation period, infected locusts were observed to increase locomotion and bodily movement from 3 days after infection until death (average survival time of 11 days). There was some evidence of reduced feeding and mating behaviour following infection. 4. In a second experiment, locusts were exposed individually to a simulated predator attack and the initiation and strength of any escape responses were measured. Infected locusts were observed to have a reduced escape capability (both the propensity to escape and the strength of the response). In contrast to the relatively early changes in general activity observed in the first experiment, this was only apparent at the late stages of infection shortly before death. 5. Both an increase in movement and general apparency early in the infection process, and reduced escape capability late on, suggest mechanisms whereby the susceptibility of locusts and grasshoppers to predation might be enhanced following infection with M. anisopliae var. acridum.  相似文献   

13.
The potential of several entomopathogenic fungi to control soil‐dwelling stages of western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), was evaluated in various growing media. Two Metarhizium anisopliae (Metsch) Sorokin strains, V275 and ERL700, were the most effective, causing 85–96% mortality of thrips larvae and pupae (as measured by relative adult emergence rates), 11 days after inoculation. Mortality in other M. anisopliae‐treated media ranged from 51–84%; Beauveria bassiana (Balsamo) Vuillemin strains caused 54–84% mortality, and Paecilomyces fumosoroseus (Wize) 63–75% mortality. In contrast, mortality from the insecticide treatment (fipronil 1 g l?1 medium) was only 15–54%. Metarhizium anisopliae V275 was selected for more in‐depth evaluation under greenhouse conditions. There was no significant difference in M. anisopliae efficacy in growing media whether it was applied as drench (84–93%) or premixed into the medium as dry conidia (85–92%). The use of M. anisopliae with reduced rates of either fipronil or imidacloprid did not significantly improve control. Overall, our study shows that M. anisopliae V275 is robust and offers much promise for the control of soil‐dwelling stages of thrips as part of an integrated pest‐management programme.  相似文献   

14.
The objective of this work were to isolate and identify strains of entomopathogenic fungi from ingurgitated female Boophilus microplus ticks, collected from the soil in the municipality of Paracambi, Rio de Janeiro State, Brazil. The ingurgitated females were inoculated in the selective medium oat dodine agar (oda), where 49 colonies of Beauveria bassiana (71%) and 20 of Metarhizium anisopliae var. anisopliae (29%) were isolated. These isolated strains characterize for the first time in Brazil the natural occurrence of these species of fungi in this tick, and will be used to conduct bioassays to evaluate the pathogenicity and virulence of these strains for ticks of the genus Boophilus microplus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
1 Thermal behaviour of the variegated grasshopper, Zonocerus variegatus, was investigated in the humid tropical zone of southern Benin, west Africa, in the dry seasons of 1996 and 1998. In 1998, investigations included studies of a population of grasshoppers sprayed with an oil‐based formulation of the entomopathogenic fungus Metarhizium anisopliae var acridum. 2 Body temperature measurements and observations of thermal behaviour both in the field and on thermal gradients in the laboratory, suggest that Z. variegatus was not an active behavioural thermoregulator. Although it did show shade‐seeking behaviour at high temperatures, no overt behavioural postures or microhabitat selection associated with heat gain and elevation of body temperatures was observed. Moreover, no alterations to thermal behaviour were found in response to infection by Metarhizium. 3 Body temperatures exhibited by Z. variegatus in the field will lengthen disease incubation of M. anisopliae var acridum compared with laboratory maintained, constant temperature conditions and may have a significant impact on pathogens with a lower thermal tolerance. 4 Habitat structure appeared to be an important factor determining the extent of body temperature elevation. The effect of habitat differences on infection and growth of M. anisopliae var acridum and other entomopathogenic fungi is discussed.  相似文献   

16.

Background  

Parasite heterogeneity and within-host competition are thought to be important factors influencing the dynamics of host-parasite relationships. Yet, while there have been many theoretical investigations of how these factors may act, empirical data is more limited. We investigated the effects of parasite density and heterogeneity on parasite virulence and fitness using four strains of the entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, and its leaf-cutting ant host Acromyrmex echinatior as the model system.  相似文献   

17.
Little is known about the role of endophytic fungi against abiotic stresses and isoflavonoids (IF) contents of soybean. In current study, we investigated the role of fungal endophytes on the growth of soybean under salt stress conditions. Pure cultures of nine endophytic fungi were isolated from the roots of field-grown soybean plants, and their culture filtrates were screened on Waito-C and Dongjin-byeo rice cultivars; for identification of plant growth promoting fungal strains. It was observed that fungal isolate GMC-2B significantly promoted the growth of both Waito-C and Dongjin-byeo. GMC-2B was later identified as a new strain of Metarhizium anisopliae LHL07 on the basis of 18S rDNA sequences and phylogenetic analysis. Metarhizium anisopliae LHL07 inoculated soybean plants recorded significantly higher shoot length, shoot fresh and dry biomass, chlorophyll contents, transpiration rate, photosynthetic rate and leaf area; under sodium chloride induced salt stress as compared to non-inoculated control plants. An elevated proline and reduced superoxide dismutase and malondialdehyde contents in M. anisopliae LHL07 inoculated soybean plants demonstrated mitigation of salt induced oxidative stress. Furthermore, reduced abscisic acid and elevated jasmonic acid contents in soybean plants confirmed that lesser stress was convened to M. anisopliae inoculated-plants under salinity stress. We also assessed the role of M. anisopliae interaction on IF biosynthesis of soybean, and found significantly higher IF contents in M. anisopliae inoculated soybean plants. In conclusion, endophytic fungal interactions with soybean can be beneficial to improve soybean quality and quantity under salt affected agricultural systems.  相似文献   

18.
The entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) was applied in maize fields to control the Western Corn Rootworm Diabrotica virgifera virgifera Le Conte (Coleoptera: Chrysomelidae). Establishment and persistence of two strains of M. anisopliae were investigated after application as ‘fungal colonized barley kernels’ (FCBK) into the soil and as a spore suspension on maize leaves and on the soil surface in 2006 and 2007 at two locations in Hungary. The applied fungal strains were able to establish at both locations and a long‐term persistence of at least 15 months could be recorded in the soil. A positive correlation between density of colony forming units (CFU) in the soil and the soil inhabiting stages of the host insect D. v. virgifera could be found. M. anisopliae spores applied on maize leaves were able to survive for no longer than 3 days after application, whereas on the soil surface a noticeably increase of fungus densities were found after treatments. Molecular markers were used to identify the applied M. anisopliae strains before and after application of FCBK into the soil of the maize field.  相似文献   

19.
The efficacy of two Finnish strains of Metarhizium anisopliaeagainst the rape blossom beetle Meligethes aeneus (Coleoptera:Nitidulidae) and the effect on its parasitoids Phradismorionellus (Hymenoptera: Ichneumonidae) and Diospilus capito(Hymenoptera: Braconidae) were studied in laboratory and semi-fieldexperiments. Several bio-assays were performed using either directexposure of the host beetle to the pathogens, or pots containing soilinoculated with M. anisopliae conidia at a rate of 2 ×108 per ml soil. Parasitised and unparasitised M. aeneuslarvae were collected in the field and were placed for pupation in thetest soil. The effect of treatment on M. aeneus andD. capito was estimated after adult emergence, and the effecton P. morionellus was estimated by dissecting hibernating pupae.While both of the M. anisopliae strains were highly pathogenicto M. aeneus adults and larvae upon direct exposure, soiltreatment resulted in no significant difference between the number ofinsects emerging (or found) from the treated and untreatedpots. However, the treated insects appeared to be latently infectedand the actual infection rate had to be estimated after their deathand incubation in a moist chamber. The mortality of the beetles causedby direct exposure to the fungus was 85% (range 70–88%). The rateof latent infection following indirect exposure via treated soil indeep pots in laboratory was 80% (range 49–100%), while that inP. morionellus was only 17% (range 0–85%), and inD. capito significantly higher, 76% (range 72–100%).The results indicate that M. anisopliae is a potentially usefulcandidate to be used as a bio-insecticide to control the pollenbeetle, and that at least the most abundant parasitoid, Phradismorionellus, is less affected than the target pest itself. Thepossible ecological role of latent infections in the host as well asin some of the parasitoids needs to be clarified.  相似文献   

20.
Microsclerotia (MS), overwintering structures produced by many plant pathogenic fungi, have not been described for Metarhizium anisopliae. Three strains of M. anisopliae – F52, TM109, and MA1200 – formed MS in shake flask cultures using media with varying carbon concentrations and carbon-to-nitrogen (C:N) ratios. Under the conditions of this study, all strains produced MS, compact hyphal aggregates that become pigmented with culture age, in addition to more typical blastospores and mycelia. While all strains formed desiccation tolerant MS, highest concentrations (2.7–2.9 × 108 L−1 liquid medium) were produced in rich media with C:N ratios of 30:1 and 50:1 by strain F52. All three strains of M. anisopliae produced similar biomass concentrations when media and growth time were compared. Strain MA1200 produced higher concentrations of blastospores than the other two strains of M. anisopliae with highest blastospore concentrations (1.6 and 4.2 × 108 blastospores ml−1 on days 4 and 8, respectively) in media with the highest carbon and nitrogen concentrations. Microsclerotial preparations of M. anisopliae containing diatomaceous earth survived air-drying (to <5 % moisture) with no significant loss in viability. Rehydration and incubation of air-dried MS granules on water agar plates resulted in hyphal germination and sporogenic germination to produce high concentrations of conidia. Bioassays using soil-incorporated, air-dried MS preparations resulted in significant infection and mortality in larvae of the sugar beet root maggot, Tetanops myopaeformis. This is the first report of the production of sclerotial bodies by M. anisopliae and provides a novel approach for the control of soil-dwelling insects with this entomopathogenic fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号