首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RECQ1 is the most abundant RecQ homolog in humans but its functions have remained mostly elusive. Biochemically, RECQ1 displays distinct substrate specificities from WRN and BLM, indicating that these RecQ helicases likely perform non-overlapping functions. Our earlier work demonstrated that RECQ1-deficient cells display spontaneous genomic instability. We have obtained key evidence suggesting a unique role of RECQ1 in repair of oxidative DNA damage. We show that similar to WRN, RECQ1 associates with PARP-1 in nuclear extracts and exhibits direct protein interaction in vitro. Deficiency in WRN or BLM helicases have been shown to result in reduced homologous recombination and hyperactivation of PARP under basal condition. However, RECQ1-deficiency did not lead to PARP activation in undamaged cells and nor did it result in reduction in homologous recombination repair. In stark contrast to what is seen in WRN-deficiency, RECQ1-deficient cells hyperactivate PARP in a specific response to H2O2 treatment. RECQ1-deficient cells are more sensitive to oxidative DNA damage and exposure to oxidative stress results in a rapid and reversible recruitment of RECQ1 to chromatin. Chromatin localization of RECQ1 precedes WRN helicase, which has been shown to function in oxidative DNA damage repair. However, oxidative DNA damage-induced chromatin recruitment of these RecQ helicases is independent of PARP activity. As other RecQ helicases are known to interact with PARP-1, this study provides a paradigm to delineate specialized and redundant functions of RecQ homologs in repair of oxidative DNA damage.  相似文献   

2.
RecQ helicases play an important role in preserving genomic integrity, and their cellular roles in DNA repair, recombination, and replication have been of considerable interest. Of the five human RecQ helicases identified, three are associated with genetic disorders characterized by an elevated incidence of cancer or premature aging: Werner syndrome, Bloom syndrome, and Rothmund-Thomson syndrome. Although the biochemical properties and protein interactions of the WRN and BLM helicases defective in Werner syndrome and Bloom syndrome, respectively, have been extensively investigated, less information is available concerning the functions of the other human RecQ helicases. We have focused our attention on human RECQ1, a DNA helicase whose cellular functions remain largely uncharacterized. In this work, we have characterized the DNA substrate specificity and optimal cofactor requirements for efficient RECQ1-catalyzed DNA unwinding and determined that RECQ1 has certain properties that are distinct from those of other RecQ helicases. RECQ1 stably bound to a variety of DNA structures, enabling it to unwind a diverse set of DNA substrates. In addition to its DNA binding and helicase activities, RECQ1 catalyzed efficient strand annealing between complementary single-stranded DNA molecules. The ability of RECQ1 to promote strand annealing was modulated by ATP binding, which induced a conformational change in the protein. The enzymatic properties of the RECQ1 helicase and strand annealing activities are discussed in the context of proposed cellular DNA metabolic pathways that are important in the maintenance of genomic stability.  相似文献   

3.
Analysis of helicase activity and substrate specificity of Drosophila RECQ5   总被引:2,自引:1,他引:1  
RecQ5 is one of five RecQ helicase homologs identified in humans. Three of the human RecQ homologs (BLM, WRN and RTS) have been linked to autosomal recessive human genetic disorders (Bloom syndrome, Werner syndrome and Rothmund–Thomson syndrome, respectively) that display increased genomic instability and cause elevated levels of cancers in addition to other symptoms. To understand the role of RecQ helicases in maintaining genomic stability, the WRN, BLM and Escherichia coli RecQ helicases have been characterized in terms of their DNA substrate specificity. However, little is known about other members of the RecQ family. Here we show that Drosophila RECQ5 helicase is a structure-specific DNA helicase like the other RecQ helicases biochemically characterized so far, although the substrate specificity is not identical to that of WRN and BLM helicases. Drosophila RECQ5 helicase is capable of unwinding 3′ Flap, three-way junction, fork and three-strand junction substrates at lower protein concentrations compared to 5′ Flap, 12 nt bubble and synthetic Holliday junction structures, which can be unwound efficiently by WRN and BLM.  相似文献   

4.
The RecQ helicases are involved in several aspects of DNA metabolism. Five members of the RecQ family have been found in humans, but only two of them have been carefully characterized, BLM and WRN. In this work, we describe the enzymatic characterization of RECQ1. The helicase has 3' to 5' polarity, cannot start the unwinding from a blunt-ended terminus, and needs a 3'-single-stranded DNA tail longer than 10 nucleotides to open the substrate. However, it was also able to unwind a blunt-ended duplex DNA with a "bubble" of 25 nucleotides in the middle, as previously observed for WRN and BLM. We show that only short DNA duplexes (<30 bp) can be unwound by RECQ1 alone, but the addition of human replication protein A (hRPA) increases the processivity of the enzyme (>100 bp). Our studies done with Escherichia coli single-strand binding protein (SSB) indicate that the helicase activity of RECQ1 is specifically stimulated by hRPA. This finding suggests that RECQ1 and hRPA may interact also in vivo and function together in DNA metabolism. Comparison of the present results with previous studies on WRN and BLM provides novel insight into the role of the N- and C-terminal domains of these helicases in determining their substrate specificity and in their interaction with hRPA.  相似文献   

5.
RecQ helicases maintain chromosome stability by resolving a number of highly specific DNA structures that would otherwise impede the correct transmission of genetic information. Previous studies have shown that two human RecQ helicases, BLM and WRN, have very similar substrate specificities and preferentially unwind noncanonical DNA structures, such as synthetic Holliday junctions and G-quadruplex DNA. Here, we extend this analysis of BLM to include new substrates and have compared the substrate specificity of BLM with that of another human RecQ helicase, RECQ1. Our findings show that RECQ1 has a distinct substrate specificity compared with BLM. In particular, RECQ1 cannot unwind G-quadruplexes or RNA-DNA hybrid structures, even in the presence of the single-stranded binding protein, human replication protein A, that stimulates its DNA helicase activity. Moreover, RECQ1 cannot substitute for BLM in the regression of a model replication fork and is very inefficient in displacing plasmid D-loops lacking a 3'-tail. Conversely, RECQ1, but not BLM, is able to resolve immobile Holliday junction structures lacking an homologous core, even in the absence of human replication protein A. Mutagenesis studies show that the N-terminal region (residues 1-56) of RECQ1 is necessary both for protein oligomerization and for this Holliday junction disruption activity. These results suggest that the N-terminal domain or the higher order oligomer formation promoted by the N terminus is essential for the ability of RECQ1 to disrupt Holliday junctions. Collectively, our findings highlight several differences between the substrate specificities of RECQ1 and BLM (and by inference WRN) and suggest that these enzymes play nonoverlapping functions in cells.  相似文献   

6.
RecQ helicases play an important role in the maintenance of genomic stability in pro- and eukaryotes. This is highlighted by the human genetic diseases Werner, Bloom's and Rothmund–Thomson syndrome, caused by respective mutations in three of the five human RECQ genes. The highest numbers of RECQ homologous genes are found in plants, e.g. seven in Arabidopsis thaliana . However, only limited information is available on the functions of plant RecQ helicases, and no biochemical characterization has been performed. Here, we demonstrate that AtRECQ2 is a (d)NTP-dependent 3'→5' DNA helicase. We further characterized its basal properties and its action on various partial DNA duplexes. Importantly, we demonstrate that AtRECQ2 is able to disrupt recombinogenic structures: by disrupting various D-loop structures, AtRECQ2 may prevent non-productive recombination events on the one hand, and may channel repair processes into non-recombinogenic pathways on the other hand, thus facilitating genomic stability. We show that a synthetic partially mobile Holliday junction is processed towards splayed-arm products, possibly indicating a branch migration function for AtRECQ2. The biochemical properties defined in this work support the hypothesis that AtRECQ2 might be functionally orthologous to the helicase part of the human RecQ homologue HsWRN.  相似文献   

7.
Five human RecQ helicases (WRN, BLM, RECQ4, RECQ5, RECQ1) exist in humans. Of these, three are genetically linked to diseases of premature aging and/or cancer. Neither RECQ1 nor RECQ5 has yet been implicated in a human disease. However, cellular studies and genetic analyses of model organisms indicate that RECQ1 (and RECQ5) play an important role in the maintenance of genomic stability. Biochemical studies of purified RECQ1 protein demonstrate that the enzyme catalyzes DNA unwinding and strand annealing, and these activities are likely to be important for its role in DNA repair. RECQ1 also physically and functionally interacts with proteins involved in genetic recombination. In this review, we will summarize our current knowledge of RECQ1 roles in cellular nucleic acid metabolism and propose avenues of investigation for future studies.  相似文献   

8.
Proteins belonging to the highly conserved RecQ helicase family are essential for the maintenance of genomic stability. Here, we describe the biochemical properties of the human RECQ5beta protein. Like BLM and WRN, RECQ5beta is an ATP-dependent 3'-5' DNA helicase that can promote migration of Holliday junctions. However, RECQ5beta required the single-stranded DNA-binding protein RPA in order to mediate the efficient unwinding of oligonucleotide-based substrates. Surprisingly, we found that RECQ5beta possesses an intrinsic DNA strand-annealing activity that is inhibited by RPA. Analysis of deletion variants of RECQ5beta revealed that the DNA helicase activity resides in the conserved N-terminal portion of the protein, whereas strand annealing is mediated by the unique C-terminal domain. Moreover, the strand-annealing activity of RECQ5beta was strongly inhibited by ATPgammaS, a poorly hydrolyzable analog of ATP. This effect was alleviated by mutations in the ATP-binding motif of RECQ5beta, indicating that the ATP-bound form of the protein cannot promote strand annealing. This is the first demonstration of a DNA helicase with an intrinsic DNA strand-annealing function residing in a separate domain.  相似文献   

9.
Five members of the RecQ subfamily of DEx-H-containing DNA helicases have been identified in both human and mouse, and mutations in BLM, WRN, and RECQ4 are associated with human diseases of premature aging, cancer, and chromosomal instability. Although a genetic disease has not been linked to RECQ1 mutations, RECQ1 helicase is the most highly expressed of the human RecQ helicases, suggesting an important role in cellular DNA metabolism. Recent advances have elucidated a unique role of RECQ1 to suppress genomic instability. Embryonic fibroblasts from RECQ1-deficient mice displayed aneuploidy, chromosomal instability, and increased load of DNA damage.(1) Acute depletion of human RECQ1 renders cells sensitive to DNA damage and results in spontaneous γ-H2AX foci and elevated sister chromatid exchanges, indicating aberrant repair of DNA breaks.(2) Consistent with a role in DNA repair, RECQ1 relocalizes to irradiation-induced nuclear foci and associates with chromatin.(2) RECQ1 catalytic activities(3) and interactions with DNA repair proteins(2,4,5) are likely to be important for its molecular functions in genome homeostasis. Collectively, these studies provide the first evidence for an important role of RECQ1 to confer chromosomal stability that is unique from that of other RecQ helicases and suggest its potential involvement in tumorigenesis.  相似文献   

10.
Understanding the molecular and cellular functions of RecQ helicases has attracted considerable interest since several human diseases characterized by premature aging and/or cancer have been genetically linked to mutations in genes of the RecQ family. Although a human disease has not yet been genetically linked to a mutation in RECQ1, the prominent roles of RecQ helicases in the maintenance of genome stability suggest that RECQ1 helicase is likely to be important in vivo.To acquire a better understanding of RECQ1 cellular and molecular functions, we have investigated its protein interactions. Using a co-immunoprecipitation approach, we have identified several DNA repair factors that are associated with RECQ1 in vivo. Direct physical interaction of these repair factors with RECQ1 was confirmed with purified recombinant proteins. Importantly, RECQ1 stimulates the incision activity of human exonuclease 1 and the mismatch repair recognition complex MSH2/6 stimulates RECQ1 helicase activity. These protein interactions suggest a role of RECQ1 in a pathway involving mismatch repair factors. Regulation of genetic recombination, a proposed role for RecQ helicases, is supported by the identified RECQ1 protein interactions and is discussed.  相似文献   

11.
Several proteins have been shown to catalyze branch migration (BM) of the Holliday junction, a key intermediate in DNA repair and recombination. Here, using joint molecules made by human RAD51 or Escherichia coli RecA, we find that the polarity of the displaced ssDNA strand of the joint molecules defines the polarity of BM of RAD54, BLM, RECQ1, and RuvAB. Our results demonstrate that RAD54, BLM, and RECQ1 promote BM preferentially in the 3'→5' direction, whereas RuvAB drives it in the 5'→3' direction relative to the displaced ssDNA strand. Our data indicate that the helicase activity of BM proteins does not play a role in the heterology bypass. Thus, RAD54 that lacks helicase activity is more efficient in DNA heterology bypass than BLM or REQ1 helicases. Furthermore, we demonstrate that the BLM helicase and BM activities require different protein stoichiometries, indicating that different complexes, monomers and multimers, respectively, are responsible for these two activities. These results define BM as a mechanistically distinct activity of DNA translocating proteins, which may serve an important function in DNA repair and recombination.  相似文献   

12.
RecQ helicases are critical for the maintenance of genomic stability. The Arabidopsis RecQ helicase RECQ4A is the functional counterpart of human BLM, which is mutated in the genetic disorder Bloom’s syndrome. RECQ4A performs critical roles in regulation of homologous recombination (HR) and DNA repair. Loss of RECQ4A leads to elevated HR frequencies and hypersensitivity to genotoxic agents. Through complementation studies, we were now able to demonstrate that the N-terminal region and the helicase activity of RECQ4A are both essential for the cellular response to replicative stress induced by methyl methanesulfonate and cisplatin. In contrast, loss of helicase activity or deletion of the N-terminus only partially complemented the mutant hyper-recombination phenotype. Furthermore, the helicase-deficient protein lacking its N-terminus did not complement the hyper-recombination phenotype at all. Therefore, RECQ4A seems to possess at least two different and independent sub-functions involved in the suppression of HR. By in vitro analysis, we showed that the helicase core was able to regress an artificial replication fork. Swapping of the terminal regions of RECQ4A with the closely related but functionally distinct helicase RECQ4B indicated that in contrast to the C-terminus, the N-terminus of RECQ4A was required for its specific functions in DNA repair and recombination.  相似文献   

13.
Werner syndrome (WS) predisposes patients to cancer and premature aging, owing to mutations in WRN. The WRN protein is a RECQ-like helicase and is thought to participate in DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) or homologous recombination (HR). It has been previously shown that non-homologous DNA ends develop extensive deletions during repair in WS cells, and that this WS phenotype was complemented by wild-type (wt) WRN. WRN possesses both 3' --> 5' exonuclease and 3' --> 5' helicase activities. To determine the relative contributions of each of these distinct enzymatic activities to DSB repair, we examined NHEJ and HR in WS cells (WRN-/-) complemented with either wtWRN, exonuclease-defective WRN (E-), helicase-defective WRN (H-) or exonuclease/helicase-defective WRN (E-H-). The single E-and H- mutants each partially complemented the NHEJ abnormality of WRN-/- cells. Strikingly, the E-H- double mutant complemented the WS deficiency nearly as efficiently as did wtWRN. Similarly, the double mutant complemented the moderate HR deficiency of WS cells nearly as well as did wtWRN, whereas the E- and H- single mutants increased HR to levels higher than those restored by either E-H- or wtWRN. These results suggest that balanced exonuclease and helicase activities of WRN are required for optimal HR. Moreover, WRN appears to play a structural role, independent of its enzymatic activities, in optimizing HR and efficient NHEJ repair. Another human RECQ helicase, BLM, suppressed HR but had little or no effect on NHEJ, suggesting that mammalian RECQ helicases have distinct functions that can finely regulate recombination events.  相似文献   

14.
Werner syndrome (WS) is characterized by features of premature aging and is caused by loss of the RecQ helicase protein WRN. WS fibroblasts display defects associated with telomere dysfunction, including accelerated telomere erosion and premature senescence. In yeast, RecQ helicases act in an alternative pathway for telomere lengthening (ALT) via homologous recombination. We found that WRN associates with telomeres when dissociation of telomeric D loops is likely during replication and recombination. In human ALT cells, WRN associates directly with telomeric DNA. The majority of TRF1/PCNA colocalizing foci contained WRN in live S phase ALT cells but not in telomerase-positive HeLa cells. Biochemically, the WRN helicase and 3' to 5' exonuclease act simultaneously and cooperate to release the 3' invading tail from a telomeric D loop in vitro. The telomere binding proteins TRF1 and TRF2 limit digestion by WRN. We propose roles for WRN in dissociating telomeric structures in telomerase-deficient cells.  相似文献   

15.
16.
Loss of the RecQ DNA helicase WRN protein causes Werner syndrome, in which patients exhibit features of premature aging and increased cancer. WRN deficiency induces cellular defects in DNA replication, mitotic homologous recombination (HR), and telomere stability. In addition to DNA unwinding activity, WRN also possesses exonuclease, strand annealing, and branch migration activities. The single strand binding proteins replication protein A (RPA) and telomere-specific POT1 specifically stimulate WRN DNA unwinding activity. To determine whether RPA and POT1 also modulate WRN branch migration activity, we examined biologically relevant mobile D-loops that mimic structures in HR strand invasion and at telomere ends. Both RPA and POT1 block WRN exonuclease digestion of the invading strand by loading on the strand. However, only RPA robustly stimulates WRN branch migration activity and increases the percentage of D-loops that are disrupted. Our results are consistent with cellular data that support RPA enhancement of branch migration during HR repair and, conversely, POT1 limitation of inappropriate recombination and branch migration at telomeric ends. This is, to our knowledge, the first evidence that RPA can stimulate branch migration activity.  相似文献   

17.
RecQ helicases are critical for maintaining genomic integrity. In this study, we show that three RecQ members (WRN, deficient in the Werner syndrome; BLM, deficient in the Bloom syndrome; and Drosophila melanogaster RecQ5b (dmRecQ5b)) possess a novel strand pairing activity. Furthermore, each of these enzymes combines this strand pairing activity with its inherent DNA unwinding capability to perform coordinated strand exchange. In this regard, WRN and BLM are considerably more efficient than dmRecQ5b, apparently because dmRecQ5b lacks conserved sequences C-terminal to the helicase domain that contribute to DNA binding, strand pairing, and strand exchange. Based on our findings, we postulate that certain RecQ helicases are structurally designed to accomplish strand exchange on complex replication and recombination intermediates. This is highly consistent with proposed roles for RecQ members in DNA metabolism and the illegitimate recombination and cancer-prone phenotypes associated with RecQ defects.  相似文献   

18.
Werner and Bloom syndromes are genetic RecQ helicase disorders characterized by genomic instability. Biochemical and genetic data indicate that an important protein interaction of WRN and Bloom syndrome (BLM) helicases is with the structure-specific nuclease Flap Endonuclease 1 (FEN-1), an enzyme that is implicated in the processing of DNA intermediates that arise during cellular DNA replication, repair and recombination. To acquire a better understanding of the interaction of WRN and BLM with FEN-1, we have mapped the FEN-1 binding site on the two RecQ helicases. Both WRN and BLM bind to the extreme C-terminal 18 amino acid tail of FEN-1 that is adjacent to the PCNA binding site of FEN-1. The importance of the WRN/BLM physical interaction with the FEN-1 C-terminal tail was confirmed by functional interaction studies with catalytically active purified recombinant FEN-1 deletion mutant proteins that lack either the WRN/BLM binding site or the PCNA interaction site. The distinct binding sites of WRN and PCNA and their combined effect on FEN-1 nuclease activity suggest that they may coordinately act with FEN-1. WRN was shown to facilitate FEN-1 binding to its preferred double-flap substrate through its protein interaction with the FEN-1 C-terminal binding site. WRN retained its ability to physically bind and stimulate acetylated FEN-1 cleavage activity to the same extent as unacetylated FEN-1. These studies provide new insights to the interaction of WRN and BLM helicases with FEN-1, and how these interactions might be regulated with the PCNA–FEN-1 interaction during DNA replication and repair.  相似文献   

19.
Of the five human RecQ family helicases, RecQ4, BLM, and WRN suppress distinct genome instability-linked diseases with severe phenotypes, often with indeterminate etiologies. Here, we functionally define Hrq1, a novel orthologue of RecQ4 from fission yeast. Biochemical analysis of Hrq1 reveals a DEAH box- and ATP-dependent 3'-5' helicase activity on various DNA substrates, including bubbles but not blunt duplexes, characteristic of the RecQ family. Cells lacking Hrq1 suffer spontaneous genomic instability and, consequently, require homologous recombination repair and the DNA damage checkpoint for viability. Hrq1 supports the nucleotide excision repair of DNA damage caused by the chemotherapeutic agent cisplatin and, in certain genetic contexts, UV light. Genetic epistasis analyses reveal that Hrq1 acts parallel to the PCNA/Ubc13/Mms2-dependent postreplication repair (PRR) pathway. Thus, in hrq1Δ cells, lesions are channeled through the PRR pathway, yielding hyper-recombinant and mutator phenotypes; analogous defects may underlie the genetic instability and diseases associated with RecQ4 dysfunction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号