首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kin recognition between medial Golgi enzymes in HeLa cells.   总被引:37,自引:4,他引:33       下载免费PDF全文
The medial Golgi enzymes, N-acetylglucosaminyltransferase I (NAGT I) and mannosidase II (Mann II), and the trans Golgi enzyme, beta-1,4-galactosyltransferase (GalT) were each retained in the endoplasmic reticulum (ER) by grafting on the cytoplasmic tail of the p33 invariant chain. Transient and stable expression of p33/NAGT I in HeLa cells caused relocation of endogenous Mann II to the ER and transient expression of p33/Mann II had a similar effect on endogenous NAGT I. Neither of these endogenous medial enzymes were affected by transient expression of p33/GalT. These data provide strong evidence for kin recognition between medial Golgi enzymes and suggest a role for them in the organization of the Golgi stack.  相似文献   

3.
M Sanzo  B Stevens  M J Tsai  B W O'Malley 《Biochemistry》1984,23(26):6491-6498
We have fractionated oviduct tissue extracts by using a combination of ion-exchange and DNA-Sephadex chromatography. By comparing the electrophoretic patterns of proteins eluted from competing specific and nonspecific DNA columns, we isolated a fraction which bound with specificity to columns containing the chicken middle repetitive sequence "CR1". This fraction showed a clear preference for binding to separate, cloned CR1 fragments derived from either the 5' or the 3' transition region of the ovalbumin gene domain when examined by using nitrocellulose filter binding assays. To localize the protein binding site, a CR1 clone was digested with various restriction enzymes, and the resulting fragments were examined for preferential protein binding. Results suggest that the binding site lies within a 39-nucleotide sequence which is highly conserved among different CR1 elements. This finding represents the first isolation of a protein which demonstrates a preference for binding to a middle repetitive sequence and suggests that this interaction may have a biological role. The DNA column competition adsorption method should have general application to the isolation of other gene-regulating proteins possessing DNA sequence preference.  相似文献   

4.
We have used an in vitro assay that reconstitutes transport from the ER to the Golgi complex in yeast to identify a functional vesicular intermediate in transit to the Golgi apparatus. Permeabilized yeast cells, which serve as the donor in this assay, release a homogeneous population of vesicles that are biochemically distinct from the donor ER fraction. The isolated vesicles, containing a post-ER/pre-Golgi form of the marker protein pro-alpha-factor, were able to bind to and fuse with exogenously added Golgi membranes. The ability to isolate fusion competent vesicles provides direct evidence that ER to Golgi membrane transport is mediated by a discrete population of vesicular carriers.  相似文献   

5.
Large amounts of injected radiolabeled low density lipoproteins have been found by others to accumulate primarily in the liver and studies in various types of isolated cells, including hepatocytes, have indicated the presence of specific cell membrane recognition sites for lipoproteins. In the present studies, the high affinity binding of radiolabeled low density lipoproteins ([125I]LDL, d 1.020--1.063 g/mL) was measured in the major subcellular fractions of porcine liver homogenates. The nuclear and mitochondrial fractions were 1.9- and 1.4-fold enriched in binding activity with respect to unfractionated homogenates and contained 15% and 12% of the total binding activity, respectively. The microsomes, which contained most of the plasma membranes and endoplasmic reticulum, were approximately 4-fold enriched in binding and contained 73% of the binding activity. Microsomal subfractions obtained by differential homogenization and centrifugation procedures were 5.6--7.0-fold enriched in LDL binding and contained 54--58% of the homogenate binding activity. They were separated by discontinuous sucrose density gradient centrifugation into fractions which contained "light" and "heavy" plasma membranes and endoplasmic reticulum. The heavy membrane fraction was 2--4 fold in binding with respect to the parent microsomes (16--22 fold with respect to the homogenate). There was no enrichment of binding activity in the other two fractions. Two plasma membrane "marker" enzymes, nucleotide pyrophosphatase and 5'-nucleotidase, were also followed. Of the two, binding in the sucrose density gradient subfractions most closely followed nucleotide pyrophosphatase, which was also most highly enriched (3.2--3.3-fold) in the heavy membrane fraction, but did not follow it exactly. The enzyme was 2-fold richer in the light membranes than in the parent microsomes, though the light membrane binding activity was only 0.4--1.4 times that of the parent microsomes. High affinity binding was time and temperature dependent, saturable, and inhibited by unlabeled low density lipoproteins but not by unrelated proteins. Binding was stimulated 2--3 fold Ca2+, was not affected by treatment with Pronase or trypsin and was inhibited by low concentrations of phospholipids and high density lipoproteins (HDL). Heparin-Mn2+ treatment of HDL did not affect its ability to inhibit [125I] LDL binding. The LDL recognition site was distinct from the liver membrane asialoglycoprotein receptor; LDL binding was not inhibited by desialidated fetuin. We conclude that porcine liver contains a high affinity binding site that recognizes features common to both pig low density and high density lipoproteins. Further studies may elucidate the significance of this binding site in lipoprotein metabolism.  相似文献   

6.
Using the avidin-biotinyl glycan system reported previously (Shao, M.-C., and Wold, F. (1987) J. Biol. Chem. 267, 2968-2972), we have compared the processing efficiency of oviduct enzymes acting on different glycan-(biotinyl)Asn and glycan-(6-biotinamidohexanoyl)Asn derivatives when they are free and bound to avidin. The glycans were selected to permit exploration of the individual processing steps, and the two different groups of derivatives were used to assess both the close (biotinyl) and more distal (biotinamidohexanoyl) display of the glycan relative to the avidin surface. The direct comparison of the free and avidin-bound glycans demonstrated that mannosidase I is strongly inhibited by avidin in both the close and distal complexes, whereas GlcNAc transferase I and mannosidase II are strongly inhibited only in the close complex. GlcNAc transferases III, IV, and V, which could only be assessed individually by indirect means using different substrates, did not appear to be affected in any major way by the protein matrix; the data suggest that transferase III is inhibited only to a minor extent in the close complex. Gal transferase activity showed a minor effect of the avidin matrix for both complexes in the hybrid processing pathways. The most significant consequence of the avidin effect on Gal transferase was the apparent abolishment of the incorporation of a 2nd Gal residue in the two avidin complexes. This survey of the protein matrix effects on glycan processing by oviduct enzymes appears to provide reasonable clues to the origin of the very different glycan structures observed in oviduct-processed glycoproteins. Thus, ovalbumin and avidin itself, containing a mixture of oligomannose and hybrid glycans at their single glycosylation sites, may well present they glycans to the processing enzymes in a display very similar to that of the avidin close complex observed here. The inhibition of mannosidase I and GlcNAc transferase I lead to preservation of oligomannose structures, whereas the strong inhibition of mannosidase II favors the incorporation of the bisecting GlcNAc by GlcNAc transferase III to yield hybrid structures as the most processed products. Ovomucoid, which contains multiantennary complex structures at all glycosylation sites, may on the other hand display its glycans, unencumbered by the protein surface, in conformations similar to either the free glycans or the distal complexes observed in this work.  相似文献   

7.
The enteric pathogens enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli (EHEC) and Shigella flexneri all translocate at least one effector protein of the EspG protein family into host cells via a type III secretion system (T3SS). The EspG family comprises EspG, EspG2 and VirA. From a Y2H screen, we identified the Golgi matrix protein GM130 as a potential binding partner of EspG. We confirmed EspG:GM130 protein interaction by affinity co-purification. In co-immunoprecipitation experiments EspG was co-precipitated with GM130 while both GM130 and tubulins were co-precipitated with EspG. When expressed ectopically in HeLa cells, the EspG protein family all localized to the Golgi and induced fragmentation of the Golgi apparatus. All EspG family proteins were also able to disrupt protein secretion to a greater extent than the T3SS effector NleA/EspI, which has previously been shown to localize to the Golgi and interact with SEC24 to disrupt COPII vesicle formation. We hypothesize that EspG:GM130 interaction disrupts protein secretion either through direct disruption of GM130 function or through recruitment of other EspG interacting proteins to the Golgi.  相似文献   

8.
Cellular behaviour during development is dictated, in part, by the insoluble extracellular matrix and the soluble growth factor peptides, the major molecules responsible for integrating cells into morphologically and functionally defined groups. These extracellular molecules influence cellular behaviour by binding at the cell surface to specific receptors that transduce intracellular signals in various ways not yet fully clear. Syndecan, a cell surface proteoglycan found predominantly on epithelia in mature tissues binds both extracellular matrix components (fibronectin, collagens I, III, V, and thrombospondin) and basic fibroblast growth factor (bFGF). Syndecan consists of chondroitin sulfate and heparan sulphate chains linked to a 31 kilodalton (kDa) integral membrane protein. Syndecan represents a family of integral membrane proteoglycans that differ in extracellular domains, but share cytoplasmic domains. Syndecan behaves as a matrix receptor: it binds selectively to components of the extracellular matrix, associates intracellularly with the actin cytoskeleton when cross-linked at the cell surface, its extracellular domain is shed upon cell rounding and it localizes solely to basolateral surfaces of simple epithelia. Mammary epithelial cells made syndecan-deficient become fibroblastic in morphology and cell behaviour, showing that syndecan maintains epithelial cell morphology. Syndecan changes in quantity, location and structure during development: it appears initially on four-cell embryos (prior to its known matrix ligands), becomes restricted in the pre-implementation embryo to the cells that will form the embryo proper, changes its expression due to epithelial-mesenchymal interactions (for example, induced in kidney mesenchyme by the ureteric bud), and with association of cells with extracellular matrix (for example, during B-cell differentiation), and ultimately, in mature tissues becomes restricted to epithelial tissues. The number and size of its glycosaminoglycan chains vary with changes in cell shape and organization yielding tissue type-specific polymorphic forms of syndecan. Its interactions with the major extracellular effector molecules that influence cell behaviour, its role in maintaining cell shape and its spatial and temporal changes in expression during development indicate that syndecan is involved in morphogenesis.  相似文献   

9.
During the course of an attempt to purify the substance P (SP) receptor from horse salivary glands by substance P-affinity chromatography, a polypeptide of Mr = 78,000 was isolated. The first fifteen amino acid residues at the amino terminus were determined and, unexpectedly, were found to be identical with the amino terminus of a glucose-regulated protein (GRP) of the same molecular weight, a protein that has been identified as a member of the heat shock protein family. This finding raises the intriguing possibility that SP may interact in vivo with GRPs and other members of the heat shock protein family and play a role in modulating their biological activities.  相似文献   

10.
11.
Our previous work found that the monoclonal antibody 8C6, which recognized the epitope EVETPIRN on influenza A virus M2 protein, conferred protection against influenza virus challenge. In this study, 8C6 was used to screen the 7-mer phage peptide library in order to identify the crucial amino acid residues on the protective epitope EVETPIRN. Nine positive phage clones were selected by a test of dose-dependent binding activity to 8C6 after three rounds of panning. The phage clones exhibited a consensus motif (TXXR), which was found on the epitope EVETPIRN. Site-directed mutation analysis indicated that Thr and Arg on the epitope EVETPIRN played a key role in the recognition by 8C6. Furthermore, sequence alignment and analysis revealed that Thr and Arg on the epitope were highly conserved. Our results could provide useful information for influenza vaccine design based on M2 mimotope.  相似文献   

12.
13.
Short B  Barr FA 《Current biology : CB》2003,13(8):R311-R313
Golgins are coiled-coil proteins thought to form a matrix important for shaping and organising Golgi cisternae and directing long-range recognition events in vesicular transport. This model is brought into question by new evidence that two golgins, GM130 and golgin-84, contribute to but are not essential for protein transport and Golgi structure.  相似文献   

14.
The eukaryotic Golgi apparatus is characterized by a stack of flattened cisternae that are surrounded by transport vesicles. The organization and function of the Golgi require Golgi matrix proteins, including GRASPs and golgins, which exist primarily as fiber-like bridges between Golgi cisternae or between cisternae and vesicles. In this review, we highlight recent findings on Golgi matrix proteins, including their roles in maintaining the Golgi structure, vesicle tethering, and novel, unexpected functions. These new discoveries further our understanding of the molecular mechanisms that maintain the structure and the function of the Golgi, as well as its relationship with other cellular organelles such as the centrosome.  相似文献   

15.
16.
Antibody affinity is critically important in therapeutic applications, as well as steady state diagnostic assays. Picomolar affinity antibodies, approaching the association limit of protein-protein interactions, have been discovered for highly potent antigens, but even such high-affinity binders have off-rates sufficient to negate therapeutic efficacy. To cross this affinity threshold, antibodies that tether their targets in a manner other than reversible non-covalent interaction will be required. Here we report the design and construction of an antibody that forms an irreversible complex with a protein antigen in a metal-dependent reaction. The complex resists thermal and chemical denaturation, as well as attempts to remove the coordinating metal ion. Such irreversibly binding antibodies could facilitate the development of next generation "reactive antibody" therapeutics and diagnostics.  相似文献   

17.
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K(D), 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a K(D) of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date.  相似文献   

18.
A new Golgi resident, p54, has been demonstrated in several eukaryotic species and in multiple organs. Based on Triton X-114 partition, carbonate extraction and trypsin protection assays, p54 behaved as an extrinsic membrane protein, facing the luminal compartment. p54 was purified by two-dimensional electrophoresis and identified by matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) mass spectrometry as NEFA, a calcium-binding protein (Barnikol-Watanabe et al., 1994, Biol. Chem. Hoppe Seyler, 375, 497-512). By immunofluorescence, p54/NEFA essentially colocalized with the medial Golgi marker mannosidase II, and did not overlap with the cis-Golgi marker p58, nor with the trans-Golgi network (TGN) marker TGN38. By immuno-electron microscopy, p54/NEFA localized in the medial cisternae and in Golgi-associated vesicles. p54/NEFA remained associated with mannosidase II despite Golgi disruption by nocodazole, caffeine, or, to some extent, potassium depletion (a new procedure to induce Golgi disassembly), but the two markers rapidly dissociated upon brefeldin A treatment and at metaphase, and reassociated upon drug removal and at the end of anaphase. Since p54/NEFA is a peripheral luminal membrane constituent, its distinct trafficking from the transmembrane marker mannosidase II suggests a novel Golgi retention mechanism, by strong association of this soluble protein with another integral transmembrane resident.  相似文献   

19.
Unmodified procedures for isolation of fractions rich in Golgi elements from other tissues have not proved applicable to the rat ventral prostate because of the tendency of membranous material to aggregate. We have devised a new procedure whereby: 1) a Golgi rich fraction from rat ventral prostate was released by a gentle two-step homogenization and isolated by centrifugation through discontinuous sucrose density gradients; 2) the specific activity of UDP-galactose: glycoprotein galactosyltransferase increased 69-fold in this fraction; 3) the isolated Golgi fraction was reasonably free from mitochondria, lysosomes, endoplasmic reticulum and plasma membranes as shown by the relatively low activities of marker enzymes; 4) the specific activities of acid phosphatase and 5'-nucleotidase in the Golgi rich fraction was 4 times greater than that in prostate homogenate. Both enzymes are secretory products and their presence in Golgi elements is probably associated with their packaging in secretory granules.  相似文献   

20.
We tested whether the entire Golgi apparatus is a dynamic structure in interphase mammalian cells by assessing the response of 12 different Golgi region proteins to an endoplasmic reticulum (ER) exit block. The proteins chosen spanned the Golgi apparatus and included both Golgi glycosyltransferases and putative matrix proteins. Protein exit from ER was blocked either by microinjection of a GTP-restricted Sar1p mutant protein in the presence of a protein synthesis inhibitor, or by plasmid-encoded expression of the same dominant negative Sar1p. All Golgi region proteins examined lost juxtanuclear Golgi apparatus-like distribution as scored by conventional and confocal fluorescence microscopy in response to an ER exit block, albeit with a differential dependence on Sar1p concentration. Redistribution of GalNAcT2 was more sensitive to low Sar1p(dn) concentrations than giantin or GM130. Redistribution was most rapid for p27, COPI, and p115. Giantin, GM130, and GalNAcT2 relocated with approximately equal kinetics. Distinct ER accumulation could be demonstrated for all integral membrane proteins. ER-accumulated Golgi region proteins were functional. Photobleaching experiments indicated that Golgi-to-ER protein cycling occurred in the absence of any ER exit block. We conclude that the entire Golgi apparatus is a dynamic structure and suggest that most, if not all, Golgi region-integral membrane proteins cycle through ER in interphase cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号