首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nerve growth factor: Cellular localization and regulation of synthesis   总被引:1,自引:0,他引:1  
1. The role of nerve growth factor (NGF) as a retrograde messenger between peripheral target tissues and innervating sympathetic and neural crest-derived sensory neurons is supported by the observations that (a) the interruption of retrograde axonal transport has the same effects as the neutralization of endogenous NGF by anti-NGF antibodies and (b) the close correlation between the density of innervation by fibers of NGF-responsive neurons and the levels of NGF and mRNANGF in their target organs. 2. In situ hybridization experiments have demonstrated that a great variety of cells in the projection field or NGF-responsive neurons is synthesizing NGF, among them epithelial cells, smooth muscle cells, fibroblasts, and Schwann cells. 3. The temporal correlation between the growth of trigeminal sensory fibers into the whisker pad of the mouse and the commencement of NGF synthesis initially suggested a causal relationship between these two events. However, in chick embryos rendered aneural by prior removal of the neural tube or the neural crest, it was shown that the onset of NGF synthesis in the periphery is independent of neurons, and is controlled by an endogenous "clock" whose regulatory mechanism remains to be established. 4. A comparison between NGF synthesis in the nonneuronal cells of the newborn rat sciatic nerve and that in the adult sciatic nerve after lesion provided evidence for the important regulatory role played by a secretory product of activated macrophages. The identity of this product is currently under investigation.  相似文献   

2.
3.
In previous experiments, it has been demonstrated that, in rat irides in culture, a rapid increase in nerve growth factor (NGF) levels occurred (see Barth, E.-M., Korsching, S., and Thoenen, H. (1984) J. Cell Biol. 99, 839-843). We have now determined the levels of mRNANGF in rat irides as a function of time in culture as well. After an initial lag period of 2 h, mRNANGF levels were transiently increased, so that after 12 h, they had increased 35-fold with respect to zero time. In contrast, poly(A)+ RNA levels dropped to 55% of the zero time values within 5 h, recovered to 85% after 24 h, and remained constant until the end of the observation period. Total ribosomal RNA was found to remain constant, indicating that there was no nonspecific decline of overall metabolic function. Actinomycin D prevented the increase in mRNANGF without reducing the basic mRNANGF levels over a 5-h time period, indicating that the enhanced synthesis of NGF in the rat iris in culture is primarily mediated by an augmented production of mRNANGF. The increases of mRNANGF, cellular NGF, and NGF released into the medium were found to be strictly sequential. Monensin selectively abolished the increased production of mature NGF (see Barth et al.) but not of mRNANGF, suggesting that the processing of NGF precursor is prevented.  相似文献   

4.
Previous experiments have demonstrated that in the septo-hippocampal system choline acetyltransferase (ChAT) is induced by nerve growth factor (NGF) (Gnahn et al. (1983) Dev. Brain Res. 9, 45-52) and that hippocampal NGF and mRNANGF levels are correlated with the density of cholinergic innervation (Korsching et al. (1985) EMBO J. 4, 1389-1393). In the present investigation we have compared the developmental changes of ChAT, NGF, and mRNANGF levels in this system. During the postnatal development of the hippocampus the time courses of NGF and ChAT were well correlated including the most rapid increase between P12 and P14. This increase in hippocampal NGF was preceded by a corresponding increase in mRNANGF. The developmental changes in hippocampal NGF levels were also closely reflected by corresponding changes in the septum. This, together with previous observations (Korsching et al., 1985) that the adult septum, in spite of relatively high NGF levels, does not contain measurable quantities of mRNANGF, suggests that the NGF levels in the septum are determined by the quantity of NGF transported retrogradely from the field of innervation rather than by local synthesis. During the prenatal period hippocampal NGF levels were relatively high, whereas the mRNANGF was below the level of detection. Since the ingrowth of septal fibers, and with that also the removal of NGF by retrograde transport, begins around birth, the relatively high prenatal NGF levels probably result from an accumulation produced by a small copy number of mRNANGF prior to the removal of NGF by retrograde axonal transport. It is concluded that the correlation of the developmental changes in NGF and mRNANGF with the ChAT activity in the hippocampus further supports the concept of a physiological role of NGF in the central nervous system.  相似文献   

5.
Up-regulation of neurotrophin synthesis is an important mechanism of peripheral nerve regeneration after injury. Neurotrophin expression is regulated by a complex series of events including cell interactions and multiple molecular stimuli. We have studied neurotrophin synthesis at 2?weeks time-point in a transvertebral model of unilateral or bilateral transection of sciatic nerve in rats. We have found that unilateral sciatic nerve transection results in the elevation of nerve growth factor (NGF) and NT-3, but not glial cell-line derived neurotrophic factor or brain-derived neural factor, in the uninjured nerve on the contralateral side, commonly considered as a control. Bilateral transection further increased NGF but not other neurotrophins in the nerve segment distal to the transection site, as compared to the unilateral injury. To further investigate the distinct role of NGF in regeneration and its potential for peripheral nerve repair, we transduced isogeneic Schwann cells with NGF-encoding lentivirus and transplanted the over-expressing cells into the distal segment of a transected nerve. Axonal regeneration was studied at 2?weeks time-point using pan-neuronal marker NF-200 and found to directly correlate with NGF levels in the regenerating nerve.  相似文献   

6.
The sequence of changes occurring in transected rat sciatic nerve was examined by electron microscopy and by sodium dodecyl sulfate (SDS) polyacrylamide disc gel electrophoresis. Representative segments of transected nerves were processed for ultrastructural examinations between 0 and 34 days after the transection of sciatic nerves immediately below the sacro-sciatic notch. The remainder of the transected nerves and the intact portions of sciatic nerves were desheathed and immediately homogenized in 1 percent SDS containing 8 M urea and 50 mM dithioerythritol. Solubilized proteins were analyzed on 12 percent gels at pH 8.3 in a discontinuous electrophoretic system. Initial changes were limited to the axons of transected nerve fibers and were characterized by the loss of microtubules and neurofilaments and their replacement by an amorphous floccular material. These changes became widespread between 24 and 48 h after transection. The disruption of neurofilaments during this interval occurred in parallel with a selective loss of 69,000, 150,000 and 200,000 mol wt proteins from nerve homogenates, thus corroborating the view that these proteins represent component subunits of mammalian neurofilaments. Furthermore, the selective changes of neurofilament proteins in transected nerves indicate their inherent lability and suggest their susceptibility to calcium-mediated alterations. Electrophoretic profiles of nerve proteins during the 4-34-day interval after nerve transection reflected the breakdown and removal of myelin, the proliferation of Schwann cells and the deposition of endoneurial collagen. A marked increase of intermediate-sized filaments within proliferating Schwann cell processes was not accompanied by the appearance of neurofilamentlike proteins in gels of nerve homogenates.  相似文献   

7.
The neurotrophin family includes NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Previous studies have demonstrated that expression of NGF and its low-affinity receptor is induced in nonneuronal cells of the distal segment of the transected sciatic nerve suggesting a role for NGF during axonal regeneration (Johnson, E. M., M. Taniuchi, and P. S. DeStefano. 1988. Trends Neurosci. 11:299-304). To assess the role of the other neurotrophins and the members of the family of Trk signaling neurotrophin receptors, we have here quantified the levels of mRNAs for BDNF, NT-3, and NT-4 as well as mRNAs for trkA, trkB, and trkC at different times after transection of the sciatic nerve in adult rats. A marked increase of BDNF and NT-4 mRNAs in the distal segment of the sciatic nerve was seen 2 wk after the lesion. The increase in BDNF mRNA was mediated by a selective activation of the BDNF exon IV promoter and adrenalectomy attenuated this increase by 50%. NT-3 mRNA, on the other hand, decreased shortly after the transection but returned to control levels 2 wk later. In Schwann cells ensheathing the sciatic nerve, only trkB mRNA encoding truncated TrkB receptors was detected with reduced levels in the distal part of the lesioned nerve. Similar results were seen using a probe that detects all forms of trkC mRNA. In the denervated gastrocnemius muscle, the level of BDNF mRNA increased, NT-3 mRNA did not change, while NT-4 mRNA decreased. In the spinal cord, only small changes were seen in the levels of neutrophin and trk mRNAs. These results show that expression of mRNAs for neurotrophins and their Trk receptors is differentially regulated after a peripheral nerve injury. Based on these results a model is presented for how the different neurotrophins could cooperate to promote regeneration of injured peripheral nerves.  相似文献   

8.
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are molecules which regulate the development and maintenance of specific functions in different populations of peripheral and central neurons, amongst them sensory neurons of neural crest and placode origin. Under physiological conditions NGF is synthesized by peripheral target tissues, whereas BDNF synthesis is highest in the CNS. This situation changes dramatically after lesion of peripheral nerves. As previously shown, there is a marked rapid increase in NGF mRNA in the nonneuronal cells of the damaged nerve. The prolonged elevation of NGF mRNA levels is related to the immigration of activated macrophages, interleukin-1 being the most essential mediator of this effect. Here we show that transsection of the rat sciatic nerve also leads to a very marked increase in BDNF mRNA, the final levels being even ten times higher than those of NGF mRNA. However, the time-course and spatial pattern of BDNF mRNA expression are distinctly different. There is a continuous slow increase of BDNF mRNA starting after day 3 post-lesion and reaching maximal levels 3-4 wk later. These distinct differences suggest different mechanisms of regulation of NGF and BDNF synthesis in non-neuronal cells of the nerve. This was substantiated by the demonstration of differential regulation of these mRNAs in organ culture of rat sciatic nerve and Schwann cell culture. Furthermore, using bioassays and specific antibodies we showed that cultured Schwann cells are a rich source of BDNF- and ciliary neurotrophic factor (CNTF)-like neurotrophic activity in addition to NGF. Antisera raised against a BDNF-peptide demonstrated BDNF-immunoreactivity in pure cultured Schwann cells, but not in fibroblasts derived from sciatic nerve.  相似文献   

9.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity measured in the ventral and dorsal part of the dog spinal cord (L6-S2) and in the stumps of the sciatic nerve 5, 10, 15 and 21 days after its transection were compared with the corresponding activities in the intact contralateral nerve and in sham-operated animals. AChE was also examined histochemically. Changes in the enzyme activities in the central nerve stump were correlated with activity changes in the spinal cord. In the central nerve stump, a marked (25%) increase in AChE activity was found on the fifth day after transection, but by the 21st day it fell below control value levels; up to the 15th day it showed good correlation with AChE activity in the ventral spinal cord. Histochemically, pronounced reduction of enzymatic activity was found in the ipsilateral part of the spinal cord. On the 15th day, ChAT activity in the ventral spinal cord was also significantly decreased and the accumulation of the enzyme in the central nerve stump was negligible. On the contrary, at the last 21-day interval examined, a significant increase in ChAT activity and a nonsignificant increase in AChE activity was found in the spinal cord, but their activities in the central nerve stump were decreased. In the degenerated peripheral nerve stump ChAT activity dropped by an average of 99% and AChE activity by 48% during the first 15 days after transection but, on the 21st day, AChE activity was 22% higher than at the preceding interval.  相似文献   

10.
Basic fibroblast growth factor (FGF-2) is expressed in the peripheral nervous system and is up-regulated after nerve lesion. It has been demonstrated that administration of FGF-2 protects neurons from injury-induced cell death and promotes axonal regrowth. Using transgenic mice over-expressing FGF-2 (TgFGF-2), we addressed the importance of endogenously generated FGF-2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild-type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF-2. Morphometric evaluation of intact nerves from TgFGF-2 mice revealed no difference in number and size of myelinated fibers compared to wild-type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF-2 over-expression on Schwann cell proliferation during the early regeneration process, we used BrdU-labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild-types. We propose that endogenously synthesized FGF-2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination.  相似文献   

11.
With the development of tissue engineering and the shortage of autologous nerve grafts in nerve reconstruction, cell transplantation in a conduit is an alternative strategy to improve nerve regeneration. The present study evaluated the effects and mechanism of brain-derived neural stem cells (NSCs) on sciatic nerve injury in rats. At the transection of the sciatic nerve, a 10-mm gap between the nerve stumps was bridged with a silicon conduit filled with 5?×?105 NSCs. In control experiments, the conduit was filled with nerve growth factor (NGF) or normal saline (NS). The functional and morphological properties of regenerated nerves were investigated, and expression of hepatocyte growth factor (HGF) and NGF was measured. One week later, there was no connection through the conduit. Four or eight weeks later, fibrous connections were evident between the proximal and distal segments. Motor function was revealed by measurement of the sciatic functional index (SFI) and sciatic nerve conduction velocity (NCV). Functional recovery in the NSC and NGF groups was significantly more advanced than that in the NS group. NSCs showed significant improvement in axon myelination of the regenerated nerves. Expression of NGF and HGF in the injured sciatic nerve was significantly lower in the NS group than in the NSCs and NGF groups. These results and other advantages of NSCs, such as ease of harvest and relative abundance, suggest that NSCs could be used clinically to enhance peripheral nerve repair.  相似文献   

12.
The levels of nerve growth factor (NGF) and its mRNA in the rat central nervous system were determined by two-site enzyme immunoassay and quantitative Northern blots, respectively. Relatively high NGF levels (0.4-1.4 ng NGF/g wet weight) were found both in the regions innervated by the magnocellular cholinergic neurons of the basal forebrain (hippocampus, olfactory bulb, neocortex) and in the regions containing the cell bodies of these neurons (septum, nucleus of the diagonal band of Broca, nucleus basalis of Meynert). Comparatively low, but significant NGF levels (0.07-0.21 ng NGF/g wet weight) were found in various other brain regions. mRNANGF was found in the hippocampus and cortex but not in the septum. This suggests that magnocellular cholinergic neurons of the basal forebrain are supplied with NGF via retrograde axonal transport from their fields of innervation. These results, taken together with those of previous studies showing that these neurons are responsive to NGF, support the concept that NGF acts as trophic factor for magnocellular cholinergic neurons.  相似文献   

13.
R Heumann  S Korsching  J Scott    H Thoenen 《The EMBO journal》1984,3(13):3183-3189
We have developed a sensitive assay for the quantification of nerve growth factor mRNA (mRNANGF) in various tissues of the mouse using in vitro transcribed RNANGF. Probes of both polarities were used to determine the specificity of the hybridization signals obtained. Comparison of NGF levels with its mRNA revealed that both were correlated with the density of sympathetic innervation. Thus, vas deferens contained high levels of both NGF and mRNANGF, whereas skeletal muscle levels were barely detectable, indicating that in peripheral tissues NGF levels are primarily regulated by the quantity of mRNANGF and not by the rate of processing of NGF precursor to NGF. However, although superior cervical ganglia contained the highest levels of NGF, its mRNA was barely detectable. Thus, the high levels of NGF in sympathetic ganglia result from retrograde axonal transport rather than local synthesis. The quantity of NGF found in the submandibular glands of female animals was three orders of magnitude higher than expected from their mRNA levels. This observation is discussed in the context of the difference between the mechanism of storage and exocytosis of exocrine glands versus the constitutive release from other tissues.  相似文献   

14.
The purpose of this study was to evaluate whether 1 mA of percutaneous electrical stimulation (ES) at 0, 2, 20, or 200 Hz augments regeneration between the proximal and distal nerve stumps in streptozotocin diabetic rats. A10-mm gap was made in the diabetic rat sciatic nerve by suturing the stumps into silicone rubber tubes. Normal animals were used as the controls. Starting 1 week after transection, ES was applied between the cathode placed at the distal stump and the anode at the proximal stump every other day for 3 weeks. At 4 weeks after surgery, the normal controls and the groups receiving ES at 20, and 200 Hz had a higher success percentage of regeneration compared to the ES groups at 0 and 2 Hz. In addition, quantitative histology of the successfully regenerated nerves revealed that the groups receiving ES at a higher frequency, especially at 200 Hz, had a more mature structure with more myelinated fibers compared to those in the lower-frequency ES groups. Similarly, electrophysiology in the ES group at 200 Hz showed significantly shorter latency, larger amplitude, larger area of evoked muscle action potentials and faster conduction velocity compared to other groups. Immunohistochemical staining showed that ES at a higher frequency could significantly promote calcitonin gene-related peptide expression in lamina I-II regions in the dorsal horn and recruit a higher number of macrophages in the diabetic distal sciatic nerve. The macrophages were found that they could stimulate the secretion of nerve growth factor, platelet-derived growth factor, and transforming growth factor-β in dissected sciatic nerve segments. The ES at a higher frequency could also increase cutaneous blood flow in the ipsilateral hindpaw to the injury. These results indicated that a high-frequency ES could be necessary to heal severed diabetic peripheral nerve with a long gap to be repaired.  相似文献   

15.
Basic fibroblast growth factor (FGF‐2) is expressed in the peripheral nervous system and is up‐regulated after nerve lesion. It has been demonstrated that administration of FGF‐2 protects neurons from injury‐induced cell death and promotes axonal regrowth. Using transgenic mice over‐expressing FGF‐2 (TgFGF‐2), we addressed the importance of endogenously generated FGF‐2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild‐type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF‐2. Morphometric evaluation of intact nerves from TgFGF‐2 mice revealed no difference in number and size of myelinated fibers compared to wild‐type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF‐2 over‐expression on Schwann cell proliferation during the early regeneration process, we used BrdU‐labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild‐types. We propose that endogenously synthesized FGF‐2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

16.
We studied the synthesis and release of nerve growth factor (NGF) in cultured rat iris with a two-site enzyme immunoassay by measuring the time course of NGF levels remaining in the iris and relased into the medium up to 72 h. For up to 3 h, the NGF levels in the iris did not change significantly. After that, they increased to a maximal level of 350 +/- 30 pg NGF/iris at 19 h, which is 200 times higher than the in vivo content. Between 20 and 72 h in culture, the NGF level decreased to 130 +/- 10 pg NGF/iris, whereas general protein synthesis did not change during that time period. Maximal rate of NGF production (203 pg NGF/h/iris) was seen between 9 and 12 h in culture. In the medium, NGF levels were first detectable after 6 h. Levels then increased with a time course similar to that seen within the iris, reaching a maximal level of 1,180 +/- 180 pg after 19 h in vitro, and then did not significantly change for up to 48 h. The NGF production of the densely sympathetically innervated dilator was three times higher than that of the predominantly cholinergically innervated sphincter. The NGF production was blocked by inhibitors of messenger RNA synthesis (actinomycin D) and of polyadenylation (9-beta-D-arabinofuranosyladenine) as well as by inhibitors of translation (cycloheximide). Monensin, which interferes with the transport of proteins through the Golgi apparatus, decreased NGF levels to 8-12% of controls in the medium, suggesting that the Golgi apparatus is involved in the intracellular processing of NGF.  相似文献   

17.
Between 3 and 4 days after transection of cat sciatic nerve, Schwann cell-associated premitotic activity spreads anterogradely along degenerating distal nerve stumps at a rate of approximately 200 mm/day. We investigated whether fast anterograde axonal transport contributes to the initiation of this component of Wallerian degeneration. Axonal transport was blocked in intact and transected cat sciatic nerves by focally chilling a proximal segment to temperatures below 11 degrees C for 24 hr. Incorporation of [3H]thymidine (a marker of premitotic DNA synthesis) was then measured 3 and 4 days posttransection in cold blocked- and control-degenerating nerves. Effects of cold block prior to and concomitant with nerve transection were studied. Results failed to support the hypothesis that Schwann-cell premitotic activity after axotomy is associated with entry into the axon of mitogenic substances and their anterograde fast transport along the distal stump. Instead, data suggested that progressive anterograde failure of fast anterograde transport distal to transection serves to effect the Schwann-cell premitotic response to axotomy.  相似文献   

18.
The localization of the neural cell adhesion molecules L1, N-CAM, and the myelin-associated glycoprotein was studied by pre- and postembedding staining procedures at the light and electron microscopic levels in transected and crushed adult mouse sciatic nerve. During the first 2-6 d after transection, myelinated and nonmyelinated axons degenerated in the distal part of the proximal stump close to the transection site and over the entire length of the distal part of the transected nerve. During this time, regrowing axons were seen only in the proximal, but not in the distal nerve stump. In most cases L1 and N-CAM remained detectable at cell contacts between nonmyelinating Schwann cells and degenerating axons as long as these were still morphologically intact. Similarly, myelin-associated glycoprotein remained detectable in the periaxonal area of the degenerating myelinated axons. During and after degeneration of axons, nonmyelinating Schwann cells formed slender processes which were L1 and N-CAM positive. They resembled small-diameter axons but could be unequivocally identified as Schwann cells by chronical denervation. Unlike the nonmyelinating Schwann cells, only few myelinating ones expressed L1 and N-CAM. At the cut ends of the nerve stumps a cap developed (more at the proximal than at the distal stump) that contained S-100-negative and fibronectin-positive fibroblast-like cells. Most of these cells were N-CAM positive but always L1 negative. Growth cones and regrowing axons expressed N-CAM and L1 at contact sites with these cells. Regrowing axons of small diameter were L1 and N-CAM positive where they made contact with each other or with Schwann cells, while large-diameter axons were only poorly antigen positive or completely negative. 14 d after transection, when regrowing axons were seen in the distal part of the transected nerve, regrowing axons made L1- and N-CAM-positive contacts with Schwann cells. When contacting basement membrane, axons were rarely found to express L1 and N-CAM. Most, if not all, Schwann cells associated with degenerating myelin expressed L1 and N-CAM. In crushed nerves, the immunostaining pattern was essentially the same as in the cut nerve. During formation of myelin, the sequence of adhesion molecule expression was the same as during development: L1 disappeared and N-CAM was reduced on myelinating Schwann cells and axons after the Schwann cell process had turned approximately 1.5 loops around the axon. Myelin-associated glycoprotein then appeared both periaxonally and on the turning loops of Schwann cells in the uncompacted myelin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
20.
High-affinity tyrosine kinase A (trkA) neurotrophin receptors on neurons and nonneuronal cells elicit differentiation or survival functions in response to nerve growth factor (NGF), whereas the low-affinity neurotrophin (p75) receptor modulates trkA activity or can independently cause apoptosis or NFkappaB-mediated survival functions. We examined dental tissues for the presence of trkA-like immunoreactivity (trkA-IR), to determine which nonneuronal cell types express it in normal compared with inflamed teeth and how the trkA-positive cells relate to those expressing the p75 receptor and/or NGF. Normal and injured rat molars (dentin cavity for 4 h, 16-24 h, 3 days, 16 days, or 5 weeks) were immunoreacted using the ABC detection system for two anti-trkA antibodies (sTA, Santa Cruz Biotechnology; rTA, L. Reichardt) and antibodies against p75 and NGF, all of which also stained pulpal nerve fibers. We report that, when using the sTA antibody (recognizing the intracellular carboxy terminal), nonneuronal trkA-IR was found in odontoblasts of normal teeth and also in invading polymorphonuclear leukocytes (PMNs) and reparative odontoblasts after injury. When using rTA (recognizing the extracellular domain of the receptor), nonneuronal trkA-IR was only found in odontoblasts. Odontoblasts also had NGF-IR but did not label for NGF mRNA. The lack of odontoblast NGF mRNA suggests that NGF is passed from fibroblasts to the adjacent odontoblasts, where it is picked up by receptor-mediated mechanisms for regulation of odontoblast function. Tooth injury disrupts this system such that trkA-IR decreases in injured odontoblasts, p75 decreases in fibroblasts, and NGF is upregulated by fibroblasts and accumulates in the injured pulp and surviving odontoblasts. Pulpal NGF may contribute to chemoattraction for the invading leukocytes or their sTA-IR may have been induced in response to pulpal NGF. Thus, tooth pulp has a different distribution of nonneuronal NGF and its paracrine receptors during inflammation compared with normal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号