首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report herein the NMR structure of Tm0979, a structural proteomics target from Thermotoga maritima. The Tm0979 fold consists of four beta/alpha units, which form a central parallel beta-sheet with strand order 1234. The first three helices pack toward one face of the sheet and the fourth helix packs against the other face. The protein forms a dimer by adjacent parallel packing of the fourth helices sandwiched between the two beta-sheets. This fold is very interesting from several points of view. First, it represents the first structure determination for the DsrH family of conserved hypothetical proteins, which are involved in oxidation of intracellular sulfur but have no defined molecular function. Based on structure and sequence analysis, possible functions are discussed. Second, the fold of Tm0979 most closely resembles YchN-like folds; however the proteins that adopt these folds differ in secondary structural elements and quaternary structure. Comparison of these proteins provides insight into possible mechanisms of evolution of quaternary structure through a simple mechanism of hydrophobicity-changing mutations of one or two residues. Third, the Tm0979 fold is found to be similar to flavodoxin-like folds and beta/alpha barrel proteins, and may provide a link between these very abundant folds and putative ancestral half-barrel proteins.  相似文献   

2.
Coronavirus nucleocapsid proteins are basic proteins that encapsulate viral genomic RNA to form part of the virus structure. The nucleocapsid protein of SARS-CoV is highly antigenic and associated with several host-cell interactions. Our previous studies using nuclear magnetic resonance revealed the domain organization of the SARS-CoV nucleocapsid protein. RNA has been shown to bind to the N-terminal domain (NTD), although recently the C-terminal half of the protein has also been implicated in RNA binding. Here, we report that the C-terminal domain (CTD), spanning residues 248-365 (NP248-365), had stronger nucleic acid-binding activity than the NTD. To determine the molecular basis of this activity, we have also solved the crystal structure of the NP248-365 region. Residues 248-280 form a positively charged groove similar to that found in the infectious bronchitis virus (IBV) nucleocapsid protein. Furthermore, the positively charged surface area is larger in the SARS-CoV construct than in the IBV. Interactions between residues 248-280 and the rest of the molecule also stabilize the formation of an octamer in the asymmetric unit. Packing of the octamers in the crystal forms two parallel, basic helical grooves, which may be oligonucleotide attachment sites, and suggests a mechanism for helical RNA packaging in the virus.  相似文献   

3.
Coronaviruses cause a variety of respiratory and enteric diseases in animals and humans including severe acute respiratory syndrome. In these enveloped viruses, the filamentous nucleocapsid is formed by the association of nucleocapsid (N) protein with single-stranded viral RNA. The N protein is a highly immunogenic phosphoprotein also implicated in viral genome replication and in modulating cell signaling pathways. We describe the structure of the two proteolytically resistant domains of the N protein from infectious bronchitis virus (IBV), a prototype coronavirus. These domains are located at its N- and C-terminal ends (NTD and CTD, respectively). The NTD of the IBV Gray strain at 1.3-A resolution exhibits a U-shaped structure, with two arms rich in basic residues, providing a module for specific interaction with RNA. The CTD forms a tightly intertwined dimer with an intermolecular four-stranded central beta-sheet platform flanked by alpha helices, indicating that the basic building block for coronavirus nucleocapsid formation is a dimeric assembly of N protein. The variety of quaternary arrangements of the NTD and CTD revealed by the analysis of the different crystal forms delineates possible interfaces that could be used for the formation of a flexible filamentous ribonucleocapsid. The striking similarity between the dimeric structure of CTD and the nucleocapsid-forming domain of a distantly related arterivirus indicates a conserved mechanism of nucleocapsid formation for these two viral families.  相似文献   

4.
5.
Roadblock/LC7 is a member of a class of dynein light chains involved in regulating the function of the dynein complex. We have determined the three-dimensional structure of isoform 1 of the mouse Roadblock/LC7 cytoplasmic dynein light chain (robl1_mouse) by NMR spectroscopy. In contrast to a previously reported NMR structure of the human homolog with 96% sequence identity (PDB 1TGQ), which showed the protein as a monomer, our results indicate clearly that robl1 exists as a symmetric homodimer. The two beta3-strands pair with each other and form a continuous ten-stranded beta-sheet. The 25-residue alpha2-helix from one subunit packs antiparallel to that of the other subunit on the face of the beta-sheet. Zipper-like hydrophobic contacts between the two helices serve to stabilize the dimer. Through an NMR titration experiment, we localized the site on robl1_mouse that interacts with the 40 residue peptide spanning residues 243 through 282 of IC74-1_rat. These results provide physical evidence for a symmetrical interaction between dimeric robl1 and the two molecules of IC74-1 in the dynein complex.  相似文献   

6.
The WW domain is known as one of the smallest protein modules with a triple-stranded beta-sheet fold. Here, we present the solution structure of the second WW domain from the mouse salvador homolog 1 protein. This WW domain forms a homodimer with a beta-clam-like motif, as evidenced by size exclusion chromatography, analytical ultracentrifugation and NMR spectroscopy. While typical WW domains are believed to function as monomeric modules that recognize proline-rich sequences, by using conserved aromatic and hydrophobic residues that are solvent-exposed on the surface of the beta-sheet, this WW domain buries these residues in the dimer interface.  相似文献   

7.
Ribonuclease P (RNase P) in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of a catalytic RNA and five protein subunits. We previously determined crystal structures of four protein subunits. Ph1481p, an archaeal homologue for human hPop5, is the protein component of the P.horikoshii RNase P for which no structural information is available. Here we report the crystal structure of Ph1481p in complex with another protein subunit, Ph1877p, determined at 2.0 A resolution. Ph1481p consists of a five-stranded antiparallel beta-sheet and five helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. Ph1481p is, however, distinct from the typical RNP domain in that it has additional helices at the C terminus, which pack against one face of the beta-sheet. The presence of two complexes in the asymmetric unit, together with gel filtration chromatography indicates that the heterotetramer is stable in solution and represents a fundamental building block in the crystals. In the heterotetrameric structure (Ph1877p-(Ph1481p)(2)-Ph1877p), a homodimer of Ph1481p sits between two Ph1877p monomers. Ph1481p dimerizes through hydrogen bonding interaction from the loop between alpha1 and alpha2 helices, and each Ph1481p interacts with two Ph1877p molecules, where alpha2 and alpha3 in Ph1481p interact with alpha7 in one Ph1877p and alpha8 in the other Ph1877p molecule, respectively. Deletion of the alpha1-alpha2 loop in Ph1481p caused heterodimerization with Ph1877p, and abolished ability to homodimerize itself and heterotetramerize with Ph1877p. Furthermore, the reconstituted particle containing the deletion mutant Ph1481p (mPh1481p) exhibited significantly reduced nuclease activity. These results suggest the presence of the heterotetramer of Ph1481p and Ph1877p in P.horikoshii RNase P.  相似文献   

8.
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the processing of the 5' leader sequence of precursor tRNA. We previously found that the reconstituted particle (RP) composed of RNase P RNA and four proteins (Ph1481p, Ph1601p, Ph1771p, and Ph1877p) in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 exhibited the RNase P activity, but had a lower optimal temperature (around at 55 degrees C), as compared with 70 degrees C of the authentic RNase P from P. horikoshii [Kouzuma et al., Biochem. Biophys. Res. Commun. 306 (2003) 666-673]. In the present study, we found that addition of a fifth protein Ph1496p, a putative ribosomal protein L7Ae, to RP specifically elevated the optimum temperature to about 70 degrees C comparable to that of the authentic RNase P. Characterization using gel shift assay and chemical probing localized Ph1496p binding sites on two stem-loop structures encompassing nucleotides A116-G201 and G229-C276 in P. horikoshii RNase P RNA. Moreover, the crystal structure of Ph1496p was determined at 2.0 A resolution by the molecular replacement method using ribosomal protein L7Ae from Haloarcula marismortui as a search model. Ph1496p comprises five alpha-helices and a four stranded beta-sheet. The beta-sheet is sandwiched by three helices (alpha1, alpha4, and alpha5) at one side and two helices (alpha2 and alpha3) at other side. The archaeal ribosomal protein L7Ae is known to be a triple functional protein, serving as a protein component in ribosome and ribonucleoprotein complexes, box C/D, and box H/ACA. Although we have at present no direct evidence that Ph1496p is a real protein component in the P. horikoshii RNase P, the present result may assign an RNase P protein to L7Ae as a fourth function.  相似文献   

9.
Burkoldheria pseudomallei is a Gram-negative bacterium that possesses a protein secretion system similar to those found in Salmonella and Shigella. Recent work has indicated that the protein encoded by the BipD gene of B. pseudomallei is an important secreted virulence factor. BipD is similar in sequence to IpaD from Shigella and SipD from Salmonella and is therefore likely to be a translocator protein in the type-III secretion system of B. pseudomallei. The crystal structure of BipD has been solved at a resolution of 2.1 A revealing the detailed tertiary fold of the molecule. The overall structure is appreciably extended and consists of a bundle of antiparallel alpha-helical segments with two small beta-sheet regions. The longest helices of the molecule form a four-helix bundle and most of the remaining secondary structure elements (three helices and two three-stranded beta-sheets) are formed by the region linking the last two helices of the four-helix bundle. The structure suggests that the biologically active form of the molecule may be a dimer formed by contacts involving the C-terminal alpha-helix, which is the most strongly conserved part of the protein. Comparison of the structure of BipD with immunological and other data for IpaD indicates that the C-terminal alpha-helix is also involved in contacts with other proteins that form the translocon.  相似文献   

10.
Modular organization of SARS coronavirus nucleocapsid protein   总被引:1,自引:0,他引:1  
The SARS-CoV nucleocapsid (N) protein is a major antigen in severe acute respiratory syndrome. It binds to the viral RNA genome and forms the ribonucleoprotein core. The SARS-CoV N protein has also been suggested to be involved in other important functions in the viral life cycle. Here we show that the N protein consists of two non-interacting structural domains, the N-terminal RNA-binding domain (RBD) (residues 45–181) and the C-terminal dimerization domain (residues 248–365) (DD), surrounded by flexible linkers. The C-terminal domain exists exclusively as a dimer in solution. The flexible linkers are intrinsically disordered and represent potential interaction sites with other protein and protein-RNA partners. Bioinformatics reveal that other coronavirus N proteins could share the same modular organization. This study provides information on the domain structure partition of SARS-CoV N protein and insights into the differing roles of structured and disordered regions in coronavirus nucleocapsid proteins. CK Chang and SC Sue contributed equally to this project.  相似文献   

11.
Three-dimensional structure of rat acid phosphatase.   总被引:3,自引:2,他引:1       下载免费PDF全文
G Schneider  Y Lindqvist    P Vihko 《The EMBO journal》1993,12(7):2609-2615
The crystal structure of recombinant rat prostatic acid phosphatase was determined to 3 A resolution with protein crystallographic methods. The enzyme subunit is built up of two domains, an alpha/beta domain consisting of a seven-stranded mixed beta-sheet with helices on both sides of the sheet and a smaller alpha domain. Two disulfide bridges between residues 129-340 and 315-319 were found. Electron density at two of the glycosylation sites for parts of the carbohydrate moieties was observed. The dimer of acid phosphatase is formed through two-fold interactions of edge strand 3 from one subunit with strand 3 from the second subunit, thus extending the beta-sheet from seven to 14 strands. Other subunit-subunit interactions involve conserved residues from loops between helices and beta-strands. The fold of the alpha/beta domain is similar to the fold observed in phosphoglycerate mutase. The active site is at the carboxy end of the parallel strands of the alpha/beta domain. There is a strong residual electron density at the phosphate binding site which probably represents a bound chloride ion. Biochemical properties and results from site-directed mutagenesis experiments of acid phosphatase are correlated to the three-dimensional structure.  相似文献   

12.
13.
14.
目的:研究SARS冠状病毒核壳蛋白(N蛋白)对蛋白翻译的影响。方法:构建N蛋白表达载体FLAG-pcDNA3-N,分别与FLAG-pcDNA3和表达荧光素酶的质粒共转染293T人胚肾细胞,通过检测荧光素酶的活性来判断N蛋白对细胞内蛋白翻译的影响;在体外翻译体系中检测N蛋白对体外翻译的影响。结果:构建了载体FLAG-pcDNA3-N,在293T人胚肾细胞内表达后,荧光素酶活性被抑制;在体外翻译体系中加入N蛋白,体外翻译被抑制。结论:SARS冠状病毒N蛋白抑制蛋白翻译。  相似文献   

15.
Prolyl aminopeptidase from Serratia marcescens specifically catalyzes the removal of N-terminal proline residues from peptides. We have solved its three-dimensional structure at 2.3 A resolution by the multiple isomorphous replacement method. The enzyme consists of two contiguous domains. The larger domain shows the general topology of the alpha/beta hydrolase fold, with a central eight-stranded beta-sheet and six helices. The smaller domain consists of six helices. The catalytic triad (Ser113, His296, and Asp268) is located near the large cavity at the interface between the two domains. Cys271, which is sensitive to SH reagents, is located near the catalytic residues, in spite of the fact that the enzyme is a serine peptidase. The specific residues which make up the hydrophobic pocket line the smaller domain, and the specificity of the exo-type enzyme originates from this smaller domain, which blocks the N-terminal of P1 proline.  相似文献   

16.
Lumazine synthase catalyzes the penultimate step in the synthesis of riboflavin in plants, fungi, and microorganisms. The enzyme displays two quaternary structures, the pentameric forms in yeast and fungi and the 60-meric icosahedral capsids in plants and bacteria. To elucidate the structural features that might be responsible for differences in assembly, we have determined the crystal structures of lumazine synthase, complexed with the inhibitor 5-nitroso-6-ribitylamino-2,4-pyrimidinedione, from spinach and the fungus Magnaporthe grisea to 3.3 and 3.1 A resolution, respectively. The overall structure of the subunit and the mode of inhibitor binding are very similar in these enzyme species. The core of the subunit consists of a four-stranded parallel beta-sheet sandwiched between two helices on one side and three helices on the other. The packing of the five subunits in the pentameric M. grisea lumazine synthase is very similar to the packing in the pentameric substructures in the icosahedral capsid of the plant enzyme. Two structural features can be correlated to the differences in assembly. In the plant enzyme, the N-terminal beta-strand interacts with the beta-sheet of the adjacent subunit, thus extending the sheet from four to five strands. In fungal lumazine synthase, an insertion of two residues after strand beta1 results in a completely different orientation of this part of the polypeptide chain and this conformational difference prevents proper packing of the subunits at the trimer interface in the icosahedron. In the spinach enzyme, the beta-hairpin connecting helices alpha4 and alpha5 participates in the packing at the trimer interface of the icosahedron. Another insertion of two residues at this position of the polypeptide chain in the fungal enzyme disrupts the hydrogen bonding in the hairpin, and the resulting change in conformation of this loop also interferes with proper intrasubunit contacts at the trimer interface.  相似文献   

17.
The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform 13C and 15N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the β-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.  相似文献   

18.
Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped RNA virus of the Arteriviridae family, genomically related to the coronaviruses. PRRSV is the causative agent of both severe and persistent respiratory disease and reproductive failure in pigs worldwide. The PRRSV virion contains a core made of the 123 amino acid nucleocapsid (N) protein, a product of the ORF7 gene. We have determined the crystal structure of the capsid-forming domain of N. The structure was solved to 2.6 A resolution by SAD methods using the anomalous signal from sulfur. The N protein exists in the crystal as a tight dimer forming a four-stranded beta sheet floor superposed by two long alpha helices and flanked by two N- and two C-terminal alpha helices. The structure of N represents a new class of viral capsid-forming domains, distinctly different from those of other known enveloped viruses, but reminiscent of the coat protein of bacteriophage MS2.  相似文献   

19.
20.
Type IV pili are long, thin fibres, which extend from the surface of the bacterial pathogen Neisseria meningitidis; they play a key role in adhesion and colonisation of host cells. PilP is a lipoprotein, suggested to be involved in the assembly and stabilization of an outer membrane protein, PilQ, which is required for pilus formation. Here we describe the expression of a recombinant fragment of PilP, spanning residues 20 to 181, and determination of the solution structure of a folded domain, spanning residues 85 to 163, by NMR. The N-terminal third of the protein, from residues 20 to 84, is apparently unfolded. Protease digestion yielded a 113 residue fragment that contained the folded domain. The domain adopts a simple beta-sandwich type fold, consisting of a three-stranded beta-sheet packed against a four-stranded beta-sheet. There is also a short segment of 3(10) helix at the N-terminal part of the folded domain. We were unable to identify any other proteins that are closely related in structure to the PilP domain, although the fold appears to be distantly related to the lipocalin family. Over 40 homologues of PilP have been identified in Gram-negative bacteria and the majority of conserved residues lie within the folded domain. The fourth beta-strand and adjacent loop regions contain a high proportion of conserved residues, including three glycine residues, which seem to play a role in linking the two beta-sheets. The two beta-sheets pack together to form a crevice, lined with conserved hydrophobic residues: we suggest that this feature could act as a binding site for a small ligand. The results show that PilP and its homologues have a conserved, folded domain at the C-terminal end of the protein that may be involved in mediating binding to hydrophobic ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号