首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role and mechanisms of action of insulin-like growth factors (IGFs) in skin remain unclear. Epidermal keratinocytes possess IGF-I receptors and are responsive to IGF-I, which is primarily derived from underlying dermal fibroblasts. IGF binding proteins (IGFBPs), also synthesized by fibroblasts, may be involved in paracrine targeting of IGF-I to its receptors. We therefore examined whether human keratinocytes synthesize IGFBPs and their mRNAs. Following culture in complete medium (containing bovine pituitary extract and epidermal growth factor) Western ligand blotting (WLB) of cell conditioned medium revealed a major band of 32 kD, a less abundant IGFBP of 24 kD at all passages, and a 37–42 kD IGFBP which increased in abundance in late passage. Immunoprecipitation followed by WLB confirmed that the predominant 32 kD band was IGFBP-2. Radioimmunoassay of IGFBP-1, -3, and -6 revealed detectable levels of IGFBP-3 and significant levels of IGFBP-6, but not IGFBP-1. Northern analysis following culture in complete medium revealed that at early passage IGFBP-1, -2, -4, and -6 mRNAs were detectable. IGFBP-3 and -5 mRNAs were not detectable. Following culture in growth factor-free medium a 37–42 kD band, consistent with IGFBP-3, was predominant and a 24 kD band consistent with IGFBP-4 was also present. These data demonstrate the expression of a distinct pattern of IGFBPs by cultured human keratinocytes dependent on culture conditions. Keratinocyte-derived IGFBPs are likely to play a role in the transport and targeting of IGF-I from dermally derived fibroblasts to the epidermis. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The insulin-like growth factors I and II (IGFs), important growth factors both in vivo and in vitro, are known to have at least six binding proteins (IGFBP-1-6). In human serum, IGFBP-3 is a major binding protein and is considered to be GH-IGF-I-dependent. We have established a Western Ligand Blot (WLB) assay for IGFBP-3. The method is a densitometric analysis of IGFBP-3 bands on a film of WLB. The IGFBP-3 levels of patients with classical growth hormone deficiency (GHD, 5 isolated and 10 multiple hormone deficiencies with appropriate therapy) were studied. Before puberty there is no overlap between control (n = 31) and the patients with GHD (n = 10). However, IGFBP-3 levels of two of five pubertal patients with GHD were within the normal range (n = 16). We think that measurement of serum IGFBP-3 is a useful diagnostic marker for GHD, especially before puberty.  相似文献   

3.
AIMS: The impact of growth hormone (GH) and prednisolone on the GH/insulin-like growth factor (IGF) axis with special emphasis on IGF binding protein-3 (IGFBP-3) proteolysis was studied in 8 healthy adults in a double-blind cross-over study with four periods: (1) placebo; (2) s.c. GH 0.1 IU/kg/day; (3) oral prednisolone 50 mg/day, and (4) co-administration of GH and prednisolone. METHODS: Each treatment period lasted for 4 days followed by a washout period of 10 days. We measured IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3 by immunoassays, IGFBP-3 by Western ligand blotting (WLB) and finally in vitro IGFBP-3 proteolysis by a (125)I-IGFBP-3 degradation assay. RESULTS: IGF-I levels increased by 99% during GH administration and 67% during co-administration of GH and prednisolone (p < 0.0005), whereas no significant change was seen during prednisolone alone. IGFBP-1 levels decreased 55% during the prednisolone period (p < 0.002), but the between period changes were not significant (p < 0.1). IGFBP-2 decreased 33% during co-administration of GH and prednisolone (p < 0.002). IGFBP-3 increased 12% during GH and 7% during co-administration of GH and prednisolone (p < 0.003 and p < 0.03 compared to placebo, respectively), whereas prednisolone alone induced no significant changes. IGFBP-3 measured by WLB did not change significantly, neither did IGFBP-3 proteolysis. CONCLUSIONS: Prednisolone administration induces only minimal changes in circulating components of the IGF axis and is not accompanied by alterations in IGFBP-3 proteolysis. This indicates that the metabolic effects of glucocorticoids do not depend on serum IGF-I.  相似文献   

4.
Insulin-like growth factor-1, IGF-1, is believed to be an important anabolic modulator of cartilage metabolism and its bioactivity and bioavailability is regulated, in part, by IGF-1 binding protein 3 (IGFBP-3). Prostaglandin E2 (PGE2) stimulates IGF-1 production by articular chondrocytes and we determined whether the eicosanoid could regulate IGFBP-3 and, as such, act as a modifier of IGF-1 action at a different level. Using human articular chondrocytes in high density primary culture, Western and Western ligand blotting to measure secreted IGFBP-3 protein, and Northern analysis to monitor IGFBP-3 mRNA levels, we demonstrated that PGE2 provoked a 3.9 ± 1.1 (n = 3) fold increase in IGFBP-3 mRNA and protein. This effect was reversed by the Ca++ channel blockers, verapamil and nifedipine, and the Ca++/calmodulin inhibitor, W-7. The Ca++ ionophore, ionomycin, mimicked the effects of PGE2 as did the phorbol ester PMA, which activates Ca++-phospholipid-dependent protein kinase C (PKC). Cyclic AMP mimetics, such as forskolin, IBMX, Ro-20-1724, and Sp-cAMP, inhibited the expression and synthesis of the binding protein. PGE2 did not increase the levels of cAMP or protein kinase A (PKA) activity in chondrocytes. The PGE2 secretagogue, IL-1β, down-regulated control levels of IGFBP-3 which could be completely abrogated by pre-incubation with the tyrosine kinase inhibitor, erbstatin, and partially reversed (50 ± 8%) by KT-5720, a PKA inhibitor. These observations suggested that PGE2 does not mediate the effect of its secretagogue and that IL-1β signalling in chondrocytes may involve multiple kinases of diverse substrate specificities. Dexamethasone down-regulated control, constitutive levels of IGFBP-3 mRNA and protein eliminating the previously demonstrated possibility of cross-talk between glucocorticoid receptor (GR) and PGE2 receptor signalling pathways. Taken together, our results suggest that PGE2 modulates IGFBP-3 expression, protein synthesis, and secretion, and that such regulation may modify human chondrocyte responsiveness to IGF-1 and influence cartilage metabolism. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The bioactivity of the growth hormone-insulin-like growth factor (IGF) system is reduced in Turner syndrome and may explain the reduction seen in final height. We compared levels of free and total IGF-I, immunoreactive and Western ligand blot IGF-binding protein (IGFBP)-3, and IGFBP-3 proteolysis in women with Turner syndrome (n = 23) before (T(B)) and during 6 mo treatment with 17beta-estradiol and norethisterone. An age-matched group of controls (n = 24) was included. Total IGF-I and immunoreactive levels of IGFBP-3 were comparable in T(B) and controls, whereas free IGF-I (P = 0.02) in T(B) was less than in controls. Western ligand blotting (WLB)-IGFBP-3 was significantly lower in T(B) than in controls (P = 0.0005). Accordingly, IGFBP-3 proteolysis was greater in Turner syndrome (P = 0.001). Female sex steroid treatment increased WLB-IGFBP-3 (P = 0.0005), whereas immunoreactive IGFBP-3 and IGFBP-3 proteolysis were normalized (P = 0.004). Free IGF-I remained unchanged (P = 0.8), with a tendency toward a decrease in total IGF-I (P = 0.1). In conclusion, despite normal total IGF-I and immunoreactive IGFBP-3, free serum IGF-I is less and IGFBP-3 proteolysis is greater in Turner syndrome than in controls. During sex steroid treatment, IGFBP-3 proteolysis normalized, without any change in free IGF-I.  相似文献   

6.
Insulin-like growth factor-1, IGF-1, is believed to be an important anabolic modulator of cartilage metabolism whose action is mediated by high affinity cell surface receptors and bioactivity and bioavailability regulated, in part, by IGF-1 binding proteins (IGFBPs). Prostaglandin E2 (PGE2) stimulates collagen and proteoglycan synthesis in cartilage via an autocrine feedback loop involving IGF-1. We determined whether the eicosanoid could regulate IGFBP-4, a major form expressed by chondrocytes and, as such, act as a modifier of IGF-1 action at another level. Using human articular chondrocytes in high-density primary culture, Western and Western ligand blotting to measure secreted IGFBP-4 protein, and Northern analysis to monitor IGFBP-4 mRNA levels, we demonstrated that PGE2 provoked a 2.7 ± 0.3- and 3.8 ± 0.5- (n = 3) fold increase in IGFBP-4 mRNA and protein, respectively. This effect was reversed by the Ca++ channel blocker, verapamil, and the Ca++/calmodulin inhibitor, W-7. The Ca++ ionophore, ionomycin, mimicked the effects of PGE2. The phorbol ester, PMA, which activated phospholipid-dependent protein kinase C (PKC) in chondrocytes, had no effect on IGFBP-4 production. Cyclic AMP mimetics and PKA activators, IBMX, and Sp-cAMP, inhibited the expression of the binding protein as did the PGE2 secretagogue, interleukin-1β (IL-β). The inhibitory effect of the latter cytokine was mediated by a erbstatin/genistein (tyrosine) sensitive kinase. Dexamethasone, an inhibitor of cyclooxygenase (COX-2) expression and PGE2 synthesis, down-regulated control, constitute levels of IGFBP-4 mRNA and protein, eliminating the previously demonstrated possibility of cross-talk between glucocorticoid receptor (GR) and PGE2-receptor signalling pathways. The results suggest that extracellular signals control IGFBP-4 production by a number of different transducing networks with changes in Ca++ and calmodulin activity exerting a strong positive influence, possibly maintaining the constitutivity of IGFBP-4 synthesis under basal conditions. PGE2 activation of the IGF-1/IGFBP axis may play a pivotal role in the metabolism of cartilage and possibly connective tissues in general. Eicosanoid biosynthesis may be a rate-limiting step in cartilage repair processes. J. Cell. Biochem. 65:408–419. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Spatial and temporal distribution, abundance and production of macroinvertebrate communities were estimated over two years in a fifth-order section of the Widawka River. Discharge of this river has been increased artificially by coal mine water inputs. Additionally, during the second year, one of the highest discharges of the current 20-year period was recorded. Chironomidae were co-dominant in macrobenthos, both in a straight reach (WIA) and in a meandering site (WIB). More mosaic habitats resulted in higher densities of midges, reaching 6215 ind.m–2 in year 1 and 1141 ind.m–2 in year 2 at WIA, while at WIB 896 densities were ind.m–2 and 257 ind.m–2, respectively. Flooding affected the distribution and abundance of the chironomid assemblages. Recolonization by psammophilous Polypedilum began after the various microhabitats were buried with sand. Chironomid production was estimated on a species-specific basis for the dominant taxa. In year 1 (mean annual water temperature 10.0° C) chironomid production was 12.4 g dry wt m–2 yr–1 1 at WIA and 1.9 g dry wt m–2 yr–1 at WIB. These values sharply decreased in year 2 (mean annual water temperature 9.8° C) reaching 1.9 g dry wt m–2 yr–1 at WIA and 0.4 g dry wt m–2 yr–1 at WIB, as effects of the high spate.  相似文献   

8.
Although insulin-like growth factor-binding protein (IGFBP)-3 and IGFBP-5 are known to modulate cell growth by reversibly sequestering extracellular insulin-like growth factors, several reports have suggested that IGFBP-3, and possibly also IGFBP-5, have important insulin-like growth factor-independent effects on cell growth. These effects may be related to the putative nuclear actions of IGFBP-3 and IGFBP-5, which we have recently shown are transported to the nuclei of T47D breast cancer cells. We now describe the mechanism for nuclear import of IGFBP-3 and IGFBP-5. In digitonin-permeabilized cells, where the nuclear envelope remained intact, nuclear translocation of wild-type IGFBP-3 appears to occur by a nuclear localization sequence (NLS)-dependent pathway mediated principally by the importin beta nuclear transport factor and requiring both ATP and GTP hydrolysis. Under identical conditions, an NLS mutant form of IGFBP-3, IGFBP-3[(228)KGRKR --> MDGEA], was unable to translocate to the nucleus. In cells where both the plasma membrane and nuclear envelope were permeabilized, wild-type IGFBP-3, but not the mutant form, accumulated in the nucleus, implying that the NLS was also involved in mediating binding to nuclear components. By fusing wild-type and mutant forms of NLS sequences (IGFBP-3 [215-232] and IGFBP-5 [201-218]) to the green fluorescent protein, we identified the critical residues of the NLS necessary and sufficient for nuclear accumulation. Using a Western ligand binding assay, wild-type IGFBP-3 and IGFBP-5, but not an NLS mutant form of IGFBP-3, were shown to be recognized by importin beta and the alpha/beta heterodimer but only poorly by importin alpha. Together these results suggest that the NLSs within the C-terminal domain of IGFBP-3 and IGFBP-5 are required for importin-beta-dependent nuclear uptake and probably also accumulation through mediating binding to nuclear components.  相似文献   

9.
10.
Insulin-like growth factors (IGFs) are crucial for many aspects of development, growth, and metabolism yet control of their activity by IGF-binding proteins (IGFBPs) remains controversial. The effect of IGFBP-1 depends on its phosphorylation status; phosphorylated IGFBP-1 inhibits IGF actions whereas the nonphosphorylated isoform is stimulatory. In order to understand this phenomenon, we purified phosphorylated IGFBP-1 from normal human plasma by immunoaffinity chromatography. Unexpectedly, the resulting preparation enhanced IGF-stimulated 3T3-L1 fibroblast proliferation, due to the presence of a co-purified protein of approximately 700 kDa. Matrix-assisted laser desorption ionization-mass spectrometry and Western immunoblotting analysis identified this co-purified protein as alpha(2)-macroglobulin (alpha(2)M). Anti-alpha(2)M antibodies co-immunoprecipitated IGFBP-1 from human plasma and from (125)I-IGFBP-1.alpha(2)M complexes formed in vitro. The (125)I-IGFBP-1/alpha(2)M association could be inhibited with excess unlabeled IGFBP-1. Surface plasmon resonance analysis indicated that alpha(2)M preferentially associates with the phosphorylated isoform of IGFBP-1 and that when complexed to alpha(2)M, IGFBP-1 can still bind IGF-I. These findings have functional significance since alpha(2)M protects IGFBP-1 from proteolysis and abrogates the inhibitory effect of phosphorylated IGFBP-1 on IGF-I stimulated 3T3-L1 cell proliferation. We conclude that alpha(2)M is a binding protein of IGFBP-1 which modifies IGF-I/IGFBP-1 actions resulting in enhanced IGF effects. In line with its role in regulating the clearance and activity of other growth factors, we predict that alpha(2)M has a novel and important role in controlling the transport and biological activity of IGFs.  相似文献   

11.
Abstract— Orthograde and retrograde axonal transport were studied in rat sciatic nerves which had been crushed and either allowed to regenerate, or prevented from doing so by tightly ligaturing the nerve. At various intervals after crushing the nerve. L-[3H]leucine was injected into the lumbosacral spinal cord. and the subsequent transport of labeled protein in motoneuron axons was quantitated by measuring the accumulation of labeled protein at collection crushes made proximal to the original nerve crush. Accumulations proximal to the collection crushes (orthograde transport) 9-11 h after injection (p.i.). decreased within I day of nerve injury, but returned to normal values as regeneration proceeded. In non-regenerating nerves accumulations remained depressed for at least 30 days. Accumulations distal to the collection crushes (retrograde transport) 9-11 h pi. increased over the first 5 days following injury but returned to normal values as regeneration proceeded. In non-regenerating nerves accumulations remained elevated. The time-course of retrograde transport of newly-synthesized protein also returned to normal during nerve regeneration. It is suggested that changes in retrograde transport during regeneration may inform the neuron cell body of the progress of regeneration and elicit appropriate metabolic responses. among which may be the changes in orthograde transport that follow axotomy.  相似文献   

12.
We have found that a CNTF-like molecule which supports ciliary and sympathetic neurons is not retrogradely transported in either sympathetic or parasympathetic nerves. The factor has an apparent Mr of 21 kDa, a pI of 4.9, and is present in peripheral nerves and smooth muscle of the chick. Our experiments indicate that CNTF-like activity does not accumulate on the distal side of ligated chickexpansor nerves. In contrast, there is a clear accumulation of NGF. The activity further differs from NGF in that it is not removed from a smooth muscle of the chick wing by innervating sympathetic fibers. Transection of these fibers does not lead to an accumulation of ciliary activity in theexpansor secundariorum muscle, suggesting that neurons do not actively deplete the muscle of factor by retrograde transport. Finally, recombinant CNTF or semi-purified preparations of CNTF-like activity labelled with125I were not transported to the ciliary ganglion of chicks following injection of biologically active material into the eye. Our results suggest either that endogenous CNTF does not act as a survival factorin vivo, or that retrograde transport is not a property inherent to all neuronotrophic molecules.Special issue dedicated to Dr. Lawrence Austin  相似文献   

13.
Reversal of axonal transport at a nerve crush.   总被引:5,自引:0,他引:5  
Abstract— —We have compared retrograde axonal transport of 3H-labeled protein in normal rat motor and sensory axons, and axons which were injured by a distal ligation of the sciatic nerve. After injection of L-[3H]leucine into the vicinity of the neuron cell bodies, labeled protein was transported into the axons. A premature return of protein towards the cell bodies occurred in the injured axons, which we interpret as a reversal of axonal transport occurring at the site of injury. We estimate that reversal of transport occurred within 1.9–2.4 h of the arrival of labeled protein at the injury, and that the minimum velocity of the subsequent retrograde transport was 112–133 mm day?1. The ability of the injured axons to reverse transport developed about 0.8 h after making the injury. A large fraction of the orthograde transported protein was returned towards the cell body: it is estimated that by 28 h after labeled protein in sensory axons reached the injury, 46% of the3H-labeled protein originally transported to the injury site had been returned. In intact sensory nerves at this time only 15% of the transported protein had returned. It is suggested that axonal injury produces a sudden increase in the return of newly synthesized protein to the cell body, and that this might serve as a signal for chromatolysis.  相似文献   

14.
Dystonia musculorum (dt) mice suffer from a severe sensory neuropathy caused by mutations in the gene encoding the cytoskeletal cross-linker protein dystonin/bullous pemphigoid antigen 1 (Bpag1). Loss of function of dystonin/Bpag1 within neurons leads to a loss in the maintenance of cytoskeletal organization and to the development of focal axonal swellings prior to death of the neuron. In the present study, we demonstrate that neurons within the sciatic nerves of dt27J mice undergo axonal degeneration as has been previously reported for the dorsal roots. Furthermore, ultrastructural studies reveal a perturbed organization of the neurofilament and microtubule networks within the axons of sciatic nerves in dt27J mice. The disrupted cytoskeletal organization suggested that axonal transport is affected in dt mice. To address this, we assessed fast axonal transport by measuring the rate of accumulation of acetylcholinesterase (AChE) proximal and distal to a surgically introduced ligature on the sciatic nerves of normal and dt27J mice. Our findings demonstrate that axonal transport of AChE in both orthograde and retrograde directions is markedly affected, and allow us to conclude that axonal transport defects do exist in the sciatic nerves of dt27J mice.  相似文献   

15.
Diabetes-induced changes in growth factor binding protein 3 (IGFBP-3) and tumor necrosis factor alpha (TNFα) have been linked to decreased insulin receptor signaling in diabetic retinopathy. Our previous studies in retinas of diabetic rats have shown that Compound 49b, a novel β-adrenergic receptor agonist, prevented diabetic changes by increasing IGFBP-3 and decreasing TNFα, thus restoring insulin signaling and protection against diabetic retinopathy. The current study was designed to determine whether boosted expression of IGFBP-3 NB (a non-IGF-1 binding form of IGFBP-3) alone is sufficient to mimic the full actions of Compound 49b in protecting against diabetic retinopathy, as well as testing whether IGFBP-3 NB is linked to a restoration of normal insulin signal transduction. Two months after initiation of streptozotocin-induced diabetes, rats received a single intravitreal injection of IGFBP-3 NB plasmid in the right eye. Four days after injection, electroretinogram (ERG) analyses were performed prior to sacrifice. Whole retinal lysates from control, diabetic, diabetic + control plasmid, and diabetic+ IGFBP-3 NB were analyzed for IGFBP-3, TNFα, suppressor of cytokine signaling 3 (SOCS3), and insulin receptor signaling partners using Western blotting or ELISA. Data show that a single intraocular injection of IGFBP-3 NB in diabetic animals significantly reduced TNFα levels, concomitant with reductions in IRS-1Ser307, SOCS3, and pro-apoptotic markers, while restoring insulin receptor phosphorylation and increasing anti-apoptotic marker levels. These cellular changes were linked to restoration of retinal function. Our findings establish IGFBP-3 as a pivotal regulator of the insulin receptor/TNFα pathway and a potential therapeutic target for diabetic retinopathy.  相似文献   

16.
The presence of a requirement for calcium during the fast transport of [3H]protein in axons was assessed in desheathed spinal nerves of bullfrog. The nerves were desheathed locally along 4 mm of their length, and desheathing was judged effective on the basis of an enhanced uptake of [3H]leucine into that region of nerve trunk. Desheathing per se had a slight inhibitory effect on transport. Incubation of desheathed nerve trunks in calcium-free medium reduced transport by 60-80% relative to that in desheathed nerves incubated in normal medium. Addition of Mg2+ or Sr2+ to the calcium-free medium allowed transport to proceed normally. Addition of Co2+ or Mn2+ to normal medium did not affect transport in desheathed isolated nerve trunks. When ganglia and nerve trunks were both incubated in medium containing 0.18 mM-CoCl2, transport was depressed to a similar extent proximal and distal to the desheathed region. This again indicates that Co2+ does not inhibit transport in desheathed nerves, whereas it does inhibit transport in the ganglia. Additive inhibitory effects were observed when ganglia were incubated in medium containing 0.018 mM-CoCl2, and desheathed nerves were incubated in calcium-free medium. Differences in the divalent cation specificities of the axonal and ganglionic calcium requirements suggest that calcium supports transport in nerves in a manner distinct from its role in maintaining transport in spinal ganglia. It is concluded that the ganglionic calcium requirement involves initiation of axonal transport in the soma rather than translocation in the intraganglionic region of axon.  相似文献   

17.
The phosphorylation of insulin-like growth factor binding protein-I (IGFBP-1) alters its binding affinity for insulin-like growth factor I (IGF-I) and thus regulates the bioavailability of IGF-I for binding to the IGF-I receptor. The kinase(s) responsible for the phosphorylation of IGFBP-1 has not been identified. This study was designed to characterize the IGFBP-1 kinase activity in HepG2 human hepatoma cells, a cell line that secretes IGFBP-1 primarily as phosphorylated isoforms. IGFBP-1 kinase activity was partially purified from detergent extracts of the cells by phosphocellulose chromatography and gel filtration. Two kinases of approximate Mr 150,000 (peak I kinase) and Mr 50,000 (peak II kinase) were identified. Each kinase phosphorylated IGFBP-1 at serine residues that were phosphorylated by intact HepG2 cells. The kinases were distinct based on their differential sensitivity to inhibition by heparin (IC50 = 2.5 and 16.5 μg/ml, peak I and II kinase, respectively) and inhibition by the isoquinoline sulfonamide CKI-7 (IC50 = 50 μM and 100 μM, peak I and II kinase, respectively). In addition, a tenfold molar excess of nonradioactive GTP relative to [gamma-32P]ATP lowered the incorporation of 32P into IGFBP-1 by 80% when the reaction was catalyzed by the peak I kinase, whereas GTP had no effect on the reaction catalyzed by the peak II kinase. In the presence of polylysine, IGFBP-1 was radiolabeled by the partially purified kinase activity when [gamma-32P]GTP served as the phosphate donor indicating the presence of casein kinase II activity. Furthermore, IGFBP-1 was phosphorylated by purified casein kinase I and casein kinase II at sites phosphorylated by the peak I and peak II kinases. Our data suggest that at least two kinases could be responsible for the phosphorylation of IGFBP-1 in intact HepG2 cells and that the kinases are related to the casein kinase family of protein kinases. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Myelin-associated glycoprotein (MAG) is a well-characterized axon growth inhibitor in the adult vertebrate nervous system. Several signals that play roles in inhibiting axon growth have been identified. Here, we report that soluble MAG induces activation of Rap1 in postnatal cerebellar granule neurons (CGNs) and dorsal root ganglion (DRG) neurons. The p75 receptor associates with activated Rap1 and is internalized in response to MAG. After MAG is applied to the distal axons of the sciatic nerves, the activated Rap1, internalized p75 receptor, and MAG are retrogradely trafficked via axons to the cell bodies of the DRG neurons. Rap1 activity is required for survival of the DRG neurons as well as CGNs when treated with MAG. The transport of the signaling complex containing the p75 receptor and Rap1 may play a role in the effect of MAG.  相似文献   

19.
Low molecular weight insulin-like growth factor binding proteins (IGFBPs), particularly IGFBP-4, are believed to inhibit the actions of insulin-like growth factors (IGFs). We showed previously that ovarian follicular dominance in cattle is associated with the presence of a protease that degrades IGFBP-4. To test the hypothesis that specific IGFBP-4 proteolysis is associated with selection of the dominant follicle, we induced codominant follicles (co-DFs) during the first follicular wave of the estrous cycle. The ovaries of Holstein heifers were examined twice daily by ultrasonography; when the largest follicle reached 6 mm in diameter, saline (control, n = 5) or 2 mg of recombinant bovine (rb) FSH (FSH, n = 5) was injected i.m. every 12 h for 48 h. Follicular fluid was collected by aspiration from the two largest follicles/heifer 12 h after the last injection. IGFBPs in follicular fluid were quantified by Western ligand blotting/phosphorimaging. IGFBP-4 protease activity was measured by incubating follicular fluid with recombinant human (rh) IGFBP-4 substrate, followed by ligand blotting/phosphorimaging to quantify the percent of substrate loss and Western immunoblotting to detect specific proteolytic fragments. Co-DFs of FSH heifers did not differ (P > 0.05) from the single dominant follicle of controls in size, or in concentration of progesterone or level of IGFBP-4 in follicular fluid. In contrast, the largest subordinate follicle of control heifers was smaller, with lower progesterone and higher IGFBP-4 in the follicular fluid (P < 0.05). Concentrations of estradiol in follicular fluid were high in dominant follicles, intermediate in co-DFs, and low in subordinate follicles (P < 0.05). IGFBP-4 protease activity in co-DFs was similar (P > 0.05) to that of dominant follicles, but fourfold higher (P < 0.05) than that of subordinate follicles. The results strongly suggest that an FSH-dependent IGFBP-4 protease is associated with selection of the dominant follicle in cattle.  相似文献   

20.
In the present study we examined the production of insulin-like growth factor binding proteins (IGFBPs), in chromaffin cells, a model system for sympathetic neurons. Four IGFBPs of approximately 27, approximately 31, approximately 36 and a doublet of approximately 45-50 kDa, detected in Western ligand blots of conditioned medium, were identified in Western immunoblots as IGFBP-4, IGFBP-5, IGFBP-2 and IGFBP-3, respectively. In ligand blots IGFBP-3 and IGFBP-4 appeared as the most prominent species. IGF-I (1 nM) enhanced release of IGFBP-3 while dexamethasone (1 nM) diminished release of IGFBP-4. No significant proteolytic degradation of the IGFBPs was demonstrated. Cycloheximide completely attenuated release of the IGFBPs, indicating dependency on new synthesis of the proteins. These findings are consistent with autocrine modulation of the IGF system in bovine adrenomedullary chromaffin cells by IGFBPs. Furthermore, the specific stimulatory and inhibitory effects of IGF-I and dexamethasone, respectively, on release of the predominant species of IGFBP-3 and IGFBP-4, suggested that IGFBP production may be selectively modulated in a positive and negative manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号