首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe an 8-years old female with supernumerary chromosome der(21)t(4;21)(q25;q22) resulting in partial trisomy 4q25-qter and partial trisomy 21(pter-q22). The extra material was originated from a reciprocal balanced translocation carrier mother (4q;21q). Karyotyping was confirmed by FISH using whole chromosome painting probes for 4 and 21q and using 21q22.13-q22.2 specific probe to rule out trisomy of Down syndrome critical region. Phenotypic and cytogenetic findings were compared with previously published cases of partial trisomy 4q and 21q. Our patient had the major criteria of distal trisomy 4q namely severe psychomotor retardation, growth retardation, microcephaly, hearing impairment, specific facies (broad nasal root, hypertelorism, ptosis, narrow palpebral fissures, long eye lashes, long philtrum, carp like mouth and malformed ears) and thumbs and minor feet anomalies. In spite of detection of most of the 3 copies of chromosome 21, specific features of Down syndrome (DS) were lacked in this patient, except for notable bilateral symmetrical calcification of basal ganglia. This report represents further delineation of the phenotype-genotype correlation of trisomy 4q syndrome. It also supports that DS phenotype is closely linked to 21q22. Nevertheless, presence of basal ganglia calcification in this patient may point out to a more proximal region contributing in its development in DS, or that genes outside the critical region may influence or control manifestations of DS features.  相似文献   

2.

Objective

People with velo-cardio-facial syndrome or 22q11 deletion syndrome (22q11DS) have behavioral, cognitive and psychiatric problems. Approximately 30% of affected individuals develop schizophrenia-like psychosis. Glutamate dysfunction is thought to play a crucial role in schizophrenia. However, it is unknown if and how the glutamate system is altered in 22q11DS. People with 22q11DS are vulnerable for haploinsufficiency of PRODH, a gene that codes for an enzyme converting proline into glutamate. Therefore, it can be hypothesized that glutamatergic abnormalities may be present in 22q11DS.

Method

We employed proton magnetic resonance spectroscopy (1H-MRS) to quantify glutamate and other neurometabolites in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of 22 adults with 22q11DS (22q11DS SCZ+) and without (22q11DS SCZ−) schizophrenia and 23 age-matched healthy controls. Also, plasma proline levels were determined in the 22q11DS group.

Results

We found significantly increased concentrations of glutamate and myo-inositol in the hippocampal region of 22q11DS SCZ+ compared to 22q11DS SCZ−. There were no significant differences in levels of plasma proline between 22q11DS SCZ+ and 22q11DS SCZ−. There was no relationship between plasma proline and cerebral glutamate in 22q11DS.

Conclusion

This is the first in vivo 1H-MRS study in 22q11DS. Our results suggest vulnerability of the hippocampus in the psychopathology of 22q11DS SCZ+. Altered hippocampal glutamate and myo-inositol metabolism may partially explain the psychotic symptoms and cognitive impairments seen in this group of patients.  相似文献   

3.
The 22q11 deletion syndrome (22q11DS) is a developmental syndrome comprising of heart, palate, thymus and parathyroid glands defects. Individuals with 22q11DS usually carry a 1.5- to 3-Mb heterozygous deletion on chromosome 22q11.2. However, there are many patients with features of 22q11DS without a known cause from conventional karyotype and FISH analysis. Six patients with features of 22q11DS, a normal chromosomal and FISH 22q11 analysis, were selected for investigation by microarray genomic comparative hybridisation (array CGH). Array-CGH is a powerful technology enabling detection of submicroscopic chromosome duplications and deletions by comparing a differentially labelled test sample to a control. The samples are co-hybridised to a microarray containing genomic clones and the resulting ratio of fluorescence intensities on each array element is proportional to the DNA copy number difference. No chromosomal changes were detected by hybridisation to a high resolution array representing chromosome 22q. However, one patient was found to have a 6-Mb deletion on 5q11.2 detected by a whole genome 1-Mb array. This deletion was confirmed with fluorescence in-situ hybridisation (FISH) and microsatellite marker analysis. It is the first deletion described in this region. The patient had tetralogy of Fallot, a bifid uvula and velopharyngeal insufficiency, short stature, learning and behavioural difficulties. This case shows the increased sensitivity of array CGH over detailed karyotype analysis for detection of chromosomal changes. It is anticipated that array CGH will improve the clinicians capacity to diagnose congenital syndromes with an unknown aetiology.  相似文献   

4.

Background

Individuals with the 22q11.2 deletion syndrome (22q11DS) are at increased risk for schizophrenia and Autism Spectrum Disorders (ASDs). Given the prevalence of visual processing deficits in these three disorders, a causal relationship between genes in the deleted region of chromosome 22 and visual processing is likely. Therefore, 22q11DS may represent a unique model to understand the neurobiology of visual processing deficits related with ASD and psychosis.

Methodology

We measured Event-Related Potentials (ERPs) during a texture segregation task in 58 children with 22q11DS and 100 age-matched controls. The C1 component was used to index afferent activity of visual cortex area V1; the texture negativity wave provided a measure for the integrity of recurrent connections in the visual cortical system. COMT genotype and plasma proline levels were assessed in 22q11DS individuals.

Principal Findings

Children with 22q11DS showed enhanced feedforward activity starting from 70 ms after visual presentation. ERP activity related to visual feedback activity was reduced in the 22q11DS group, which was seen as less texture negativity around 150 ms post presentation. Within the 22q11DS group we further demonstrated an association between high plasma proline levels and aberrant feedback/feedforward ratios, which was moderated by the COMT 158 genotype.

Conclusions

These findings confirm the presence of early visual processing deficits in 22q11DS. We discuss these in terms of dysfunctional synaptic plasticity in early visual processing areas, possibly associated with deviant dopaminergic and glutamatergic transmission. As such, our findings may serve as a promising biomarker related to the development of schizophrenia among 22q11DS individuals.  相似文献   

5.
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder that arises from lack of expression of paternally inherited genes known to be imprinted and located in the chromosome 15q11-q13 region. PWS is considered the most common syndromal cause of life-threatening obesity and is estimated at 1 in 10,000 to 20,000 individuals. A de novo paternally derived chromosome 15q11-q13 deletion is the cause of PWS in about 70% of cases, and maternal disomy 15 accounts for about 25% of cases. The remaining cases of PWS result either from genomic imprinting defects (microdeletions or epimutations) of the imprinting centre in the 15q11-q13 region or from chromosome 15 translocations. Here, we describe the clinical presentation of PWS, review the current understanding of causative cytogenetic and molecular genetic mechanisms, and discuss future directions for research.  相似文献   

6.
7.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurogenetic disorders caused by the loss of function of imprinted genes in the chromosomal region 15q11q13. An approximately 2 Mb region inside 15q11q13 is subject to genomic imprinting. As a consequence the maternal and paternal copies in this region are different in DNA methylation and gene expression. The most frequent genetic lesions in both disorders are an interstitial de novo deletion of the chromosomal region 15q11q13, uniparental disomy 15, an imprinting defect or, in the case of AS, a mutation of the UBE3A gene. Microdeletions in a small number of patients with PWS and AS with an imprinting defect have led to the identification of the chromosome 15 imprinting centre (IC) upstream of the SNURF-SNRPN gene, which acts in cis to regulate imprinting in the whole 15q imprinted domain. The IC consists of two critical elements: one in the more centromeric part which is deleted in patients with AS and which is thought to be responsible for the establishment of imprinting in the female germ line, and one in the more telomeric part which is deleted in patients with PWS and which is required to maintain the paternal imprint.  相似文献   

8.
22q11.2 Deletion Syndrome (22q11DS) arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR) measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear), including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM.  相似文献   

9.
22q11 Deletion syndrome (22q11DS) is a common microdeletion syndrome with variable expression, including congenital and later onset conditions such as schizophrenia. Most studies indicate that expression does not appear to be related to length of the deletion but there is limited information on the endpoints of even the common deletion breakpoint regions in adults. We used a real-time quantitative PCR (qPCR) approach to fine map 22q11.2 deletions in 44 adults with 22q11DS, 22 with schizophrenia (SZ; 12 M, 10 F; mean age 35.7 SD 8.0 years) and 22 with no history of psychosis (NP; 8 M, 14 F; mean age 27.1 SD 8.6 years). QPCR data were consistent with clinical FISH results using the TUPLE1 or N25 probes. Two subjects (one SZ, one NP) negative for clinical FISH had atypical 22q11.2 deletions confirmed by FISH using the RP11-138C22 probe. Most (n = 34; 18 SZ, 16 NP) subjects shared a common 3 Mb hemizygous 22q11.2 deletion. However, eight subjects showed breakpoint variability: a more telomeric proximal breakpoint (n = 2), or more centromeric (n = 3) or more telomeric distal breakpoint (n = 3). One NP subject had a proximal nested 1.4 Mb deletion. COMT and TBX1 were deleted in all 44 subjects, and PRODH in 40 subjects (19 SZ, 21 NP). The results delineate proximal and distal breakpoint variants in 22q11DS. Neither deletion extent nor PRODH haploinsufficiency appeared to explain the clinical expression of schizophrenia in the present study. Further studies are needed to elucidate the molecular basis of schizophrenia and clinical heterogeneity in 22q11DS.  相似文献   

10.
A significant portion of patients with 22q11 deletion syndrome (22q11DS) develop psychiatric disorders, including schizophrenia and other psychotic and affective symptoms, and the responsible gene/s are assumed to also play a significant role in the etiology of nonsyndromic psychiatric disease. The most common psychiatric diagnosis among patients with 22q11DS is schizophrenia, thought to result from neurotransmitter imbalances and also from disturbed brain development. Several genes in the 22q11 region with known or suspected roles in neurotransmitter metabolism have been analyzed in patients with isolated schizophrenia; however, their contribution to the disease remains controversial. Haploinsufficiency of the TBX1 gene has been shown to be sufficient to cause the core physical malformations associated with 22q11DS in mice and humans and via abnormal brain development could contribute to 22q11DS-related and isolated psychiatric disease. 22q11DS populations also have increased rates of psychiatric conditions other than schizophrenia, including mood disorders. We therefore analyzed variations at the TBX1 locus in a cohort of 446 white patients with psychiatric disorders relevant to 22q11DS and 436 ethnically matched controls. The main diagnoses included schizophrenia (n = 226), schizoaffective disorder (n = 67), bipolar disorder (n = 82), and major depressive disorder (n = 29). We genotyped nine tag SNPs in this sample but did not observe significant differences in allele or haplotype frequencies in any of the analyzed groups (all affected, schizophrenia and schizoaffective disorder, schizophrenia alone, and bipolar disorder and major depressive disorder) compared with the control group. Based on these results we conclude that TBX1 variation does not make a strong contribution to the genetic etiology of nonsyndromic forms of psychiatric disorders commonly seen in patients with 22q11DS.  相似文献   

11.
12.
Deletion of the 1.5–3 Mb region of chromosome 22 at locus 11.2 gives rise to the chromosome 22q11.2 deletion syndrome (22q11DS), also known as DiGeorge and Velocardiofacial Syndromes. It is the most common micro-deletion disorder in humans and one of the most common multiple malformation syndromes. The syndrome is characterized by a broad phenotype, whose characterization has expanded considerably within the last decade and includes many associated findings such as craniofacial anomalies (40%), conotruncal defects of the heart (CHD; 70–80%), hypocalcemia (20–60%), and a range of neurocognitive anomalies with high risk of schizophrenia, all with a broad phenotypic variability. These phenotypic features are believed to be the result of a change in the copy number or dosage of the genes located in the deleted region. Despite this relatively clear genetic etiology, very little is known about which genes modulate phenotypic variations in humans or if they are due to combinatorial effects of reduced dosage of multiple genes acting in concert. Here, we report on decreased expression levels of genes within the deletion region of chromosome 22, including DGCR8, in peripheral leukocytes derived from individuals with 22q11DS compared to healthy controls. Furthermore, we found dysregulated miRNA expression in individuals with 22q11DS, including miR-150, miR-194 and miR-185. We postulate this to be related to DGCR8 haploinsufficiency as DGCR8 regulates miRNA biogenesis. Importantly we demonstrate that the level of some miRNAs correlates with brain measures, CHD and thyroid abnormalities, suggesting that the dysregulated miRNAs may contribute to these phenotypes and/or represent relevant blood biomarkers of the disease in individuals with 22q11DS.  相似文献   

13.
The Angelman (AS) and Prader-Willi (PWS) syndromes are two clinically distinct disorders that are caused by a differential parental origin of chromosome 15q11-q13 deletions. Both also can result from uniparental disomy (the inheritance of both copies of chromosome 15 from only one parent). Loss of the paternal copy of 15q11-q13, whether by deletion or maternal uniparental disomy, leads to PWS, whereas a maternal deletion or paternal uniparental disomy leads to AS. The differential modification in expression of certain mammalian genes dependent upon parental origin is known as genomic imprinting, and AS and PWS represent the best examples of this phenomenon in humans. Although the molecular mechanisms of genomic imprinting are unknown, DNA methylation has been postulated to play a role in the imprinting process. Using restriction digests with the methyl-sensitive enzymes HpaII and HhaI and probing Southern blots with several genomic and cDNA probes, we have systematically scanned segments of 15q11-q13 for DNA methylation differences between patients with PWS (20 deletion, 20 uniparental disomy) and those with AS (26 deletion, 1 uniparental disomy). The highly evolutionarily conserved cDNA, DN34, identifies distinct differences in DNA methylation of the parental alleles at the D15S9 locus. Thus, DNA methylation may be used as a reliable, postnatal diagnostic tool in these syndromes. Furthermore, our findings demonstrate the first known epigenetic event, dependent on the sex of the parent, for a locus within 15q11-q13. We propose that expression of the gene detected by DN34 is regulated by genomic imprinting and, therefore, that it is a candidate gene for PWS and/or AS.  相似文献   

14.
Osteoporosis is a common disease with strong genetic control. We performed an autosomal linkage scan in a large pedigree-based sample of 4,498 subjects for a composite osteoporosis phenotype that combines osteoporotic fracture (OF) and low bone mineral density (BMD). All of the subjects were U.S. Caucasians recruited in the Omaha area of Nebraska. Sex-specific linkage analyses and autosomal imprinting analyses were also conducted. For conventional linkage analyses in the total sample, we identified suggestive linkage on chromosomes 14q32 (LOD = 2.61), 7p14 (LOD = 2.42), and 11q25 (LOD = 2.09). In female subjects a significant linkage signal was detected on chromosome 14q22 (LOD = 3.53) and another two peaks were detected on chromosomes 7p14 (LOD = 3.07) and 9p21 (LOD = 2.29). Suggestive evidence of imprinted loci was found with paternally derived alleles on chromosomes 1q42 (LOD = 2.12) and 9q34 (LOD = 1.88). Some evidence of linkage to maternally derived alleles was found on chromosome 7q22 (LOD = 1.67). Our study provides new clues to osteoporosis genetic research and for the first time suggests that genomic imprinting effects may play a role in the etiology of osteoporosis.  相似文献   

15.
IntroductionSubjects with 22q11.2 deletion syndrome (22q11DS) and subjects with ultra-high risk for psychosis (UHR) share a risk of approximately 30% to develop a psychotic disorder. Studying these groups helps identify biological markers of pathophysiological processes involved in the development of psychosis. Total cortical surface area (cSA), total cortical grey matter volume (cGMV), cortical thickness (CT), and local gyrification index (LGI) of the cortical structure have a distinct neurodevelopmental origin making them important target markers to study in relation to the development of psychosis.Results22q11DS subjects had lower total cSA and total cGMV compared to UHR and HC subjects. The 22q11DS subjects showed bilateral lower LGI in the i) prefrontal cortex, ii) precuneus, iii) precentral gyrus and iv) cuneus compared to UHR subjects. Additionally, lower LGI was found in the left i) fusiform gyrus and right i) pars opercularis, ii) superior, and iii) inferior temporal gyrus in 22q11DS subjects compared to HC. In comparison to 22q11DS subjects, the UHR subjects had lower CT of the insula. For both risk groups, positive symptom severity was negatively correlated to rostral middle frontal gyrus CT.ConclusionA shared negative correlation between positive symptom severity and rostral middle frontal gyrus CT in UHR and 22q11DS may be related to their increased vulnerability to develop a psychotic disorder. 22q11DS subjects were characterised by widespread lower degree of cortical gyrification linked to early and postnatal neurodevelopmental pathology. No implications for early neurodevelopmental pathology were found for the UHR subjects, although they did have distinctively lower insula CT which may have arisen from defective pruning processes during adolescence. Implications of these findings in relation to development of psychotic disorders are in need of further investigation in longitudinal studies.  相似文献   

16.
Point mutations in TBX1 can recapitulate many of the structural defects of 22q11 deletion syndromes (22q11DS), usually associated with a chromosomal deletion at 22q1.2. 22q11DS often includes specific cardiac and pharyngeal organ anomalies, but the presence of characteristic craniofacial defects is highly variable. Even among family members with a single TBX1 point mutation but no cytological deletion, cleft palate and low-set ears may or may not be present. In theory, such differences could depend on an unidentified, second-site lesion that modifies the craniofacial consequences of TBX1 deficiency. We present evidence for such a locus in a mouse model. Null mutations of chordin have been reported to cause severe defects recapitulating 22q11DS, which we show are highly dependent on genetic background. In an inbred strain in which chordin−/− is fully penetrant, we found a closely linked, strong modifier—a mutation in a Tbx1 intron causing severe splicing defects. Without it, lack of chordin results in a low penetrance of mandibular hypoplasia but no cardiac or thoracic organ malformations. This hypomorphic Tbx1 allele per se results in defects resembling 22q11DS but with a low penetrance of hallmark craniofacial malformations, unless chordin is mutant. Thus, chordin is a modifier for the craniofacial anomalies of Tbx1 mutations, demonstrating the existence of a second-site modifier for a specific subset of the phenotypes associated with 22q11DS.  相似文献   

17.
18.
J M Stringer  A J Pask  G Shaw  M B Renfree 《Heredity》2014,113(2):145-155
Genomic imprinting has been identified in therian (eutherian and marsupial) mammals but not in prototherian (monotreme) mammals. Imprinting has an important role in optimising pre-natal nutrition and growth, and most imprinted genes are expressed and imprinted in the placenta and developing fetus. In marsupials, however, the placental attachment is short-lived, and most growth and development occurs post-natally, supported by a changing milk composition tailor-made for each stage of development. Therefore there is a much greater demand on marsupial females during post-natal lactation than during pre-natal placentation, so there may be greater selection for genomic imprinting in the mammary gland than in the short-lived placenta. Recent studies in the tammar wallaby confirm the presence of genomic imprinting in nutrient-regulatory genes in the adult mammary gland. This suggests that imprinting may influence infant post-natal growth via the mammary gland as it does pre-natally via the placenta. Similarly, an increasing number of imprinted genes have been implicated in regulating feeding and nurturing behaviour in both the adult and the developing neonate/offspring in mice. Together these studies provide evidence that genomic imprinting is critical for regulating growth and subsequently the survival of offspring not only pre-natally but also post-natally.  相似文献   

19.
This review summarizes the chromosomal changes detected by molecular cytogenetic approaches in esophageal squamous cell carcinoma (ESCC), the ninth most common malignancy in the world. Whole genome analyses of ESCC cell lines and tumors indicated that the most frequent genomic gains occurred at 1, 2q, 3q, 5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q and X, with focal amplifications at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3 and 20p11.2. Recurrent losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18, 19p, 20, 22, Xp and Y. Gains at 5p and 7q, and deletions at 4p, 9p, and 11q were significant prognostic factors for patients with ESCC. Gains at 6p and 20p, and losses at 10p and 10q were the most significant imbalances, both in primary carcinoma and in metastases, which suggested that these regions may harbor oncogenes and tumor suppressor genes. Gains at 12p and losses at 3p may be associated with poor relapse-free survival. The clinical applicability of these changes as markers for the diagnosis and prognosis of ESCC, or as molecular targets for personalized therapy should be evaluated.  相似文献   

20.
Genomic copy number aberrations (CNAs) in gastric cancer have already been extensively characterized by array comparative genomic hybridization (array CGH) analysis. However, involvement of genomic CNAs in the process of submucosal invasion and lymph node metastasis in early gastric cancer is still poorly understood. In this study, to address this issue, we collected a total of 59 tumor samples from 27 patients with submucosal-invasive gastric cancers (SMGC), analyzed their genomic profiles by array CGH, and compared them between paired samples of mucosal (MU) and submucosal (SM) invasion (23 pairs), and SM invasion and lymph node (LN) metastasis (9 pairs). Initially, we hypothesized that acquisition of specific CNA(s) is important for these processes. However, we observed no significant difference in the number of genomic CNAs between paired MU and SM, and between paired SM and LN. Furthermore, we were unable to find any CNAs specifically associated with SM invasion or LN metastasis. Among the 23 cases analyzed, 15 had some similar pattern of genomic profiling between SM and MU. Interestingly, 13 of the 15 cases also showed some differences in genomic profiles. These results suggest that the majority of SMGCs are composed of heterogeneous subpopulations derived from the same clonal origin. Comparison of genomic CNAs between SMGCs with and without LN metastasis revealed that gain of 11q13, 11q14, 11q22, 14q32 and amplification of 17q21 were more frequent in metastatic SMGCs, suggesting that these CNAs are related to LN metastasis of early gastric cancer. In conclusion, our data suggest that generation of genetically distinct subclones, rather than acquisition of specific CNA at MU, is integral to the process of submucosal invasion, and that subclones that acquire gain of 11q13, 11q14, 11q22, 14q32 or amplification of 17q21 are likely to become metastatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号