首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Krox20 and mafB/kr are regulatory genes involved in hindbrain segmentation and anteroposterior (AP) patterning. They are expressed in rhombomeres (r) r3/r5 and r5/r6 respectively, as well as in the r5/r6 neural crest. Since several members of the fibroblast growth factor (FGF) family are expressed in the otic/preotic region (r2-r6), we investigated their possible involvement in the regulation of Krox20 and mafB/kr. Application of exogenous FGFs to the neural tube of 4- to 7-somite chick embryos led to ectopic expression in the neural crest of the somitic hindbrain (r7 and r8) and to the extension of the Krox20- or mafB/kr-positive areas in the neuroepithelium. Application of an inhibitor of FGF signalling led to severe and specific downregulation of Krox20 and mafB/kr in the hindbrain neuroepithelium and neural crest. These data indicate that FGFs are involved in the control of regional induction and/or maintenance of Krox20 and mafB/kr expression, thus identifying a novel function for these factors in hindbrain development, besides their proposed more general role in early neural caudalisation.  相似文献   

2.
3.
4.
5.
6.
Prior studies have shown that kreisler mutants display early inner ear defects that are related to abnormal hindbrain development and signaling. These defects in kreisler mice have been linked to mutation of the kr/mafB gene. To investigate potential relevance of kr/mafB and abnormal hindbrain development in inner ear patterning, we analyzed the ear morphogenesis in kreisler mice using a paint-fill technique. We also examined the expression patterns of a battery of genes important for normal inner ear patterning and development. Our results indicate that the loss of dorsal otic structures such as the endolymphatic duct and sac is attributable to the downregulation of Gbx2, Dlx5 and Wnt2b in the dorsal region of the otocyst. In contrast, the expanded expression domain of Otx2 in the ventral otic region likely contributes to the cochlear phenotype seen in kreisler mutants. Sensory organ development is also markedly disrupted in kreisler mutants. This pattern of defects and gene expression changes is remarkably similar to that observed in Gbx2 mutants. Taken together, the data show an important role for hindbrain cues, and indirectly, kr/mafB, in guiding inner ear morphogenesis. The data also identify Gbx2, Dlx5, Wnt2b and Otx2 as key otic genes ultimately affected by perturbation of the kr/mafB-hindbrain pathway.  相似文献   

7.
8.
Mouse fetuses carrying targeted inactivations of both the RAR(&agr;) and the RARbeta genes display a variety of malformations in structures known to be partially derived from the mesenchymal neural crest originating from post-otic rhombomeres (e.g. thymus and great cephalic arteries) (Ghyselinck, N., Dupé, V., Dierich, A., Messaddeq, N., Garnier, J.M., Rochette-Egly, C., Chambon, P. and Mark M. (1997). Int. J. Dev. Biol. 41, 425-447). In a search for neural crest defects, we have analysed the rhombomeres, cranial nerves and pharyngeal arches of these double null mutants at early embryonic stages. The mutant post-otic cranial nerves are disorganized, indicating that RARs are involved in the patterning of structures derived from neurogenic neural crest, even though the lack of RARalpha and RARbeta has no detectable effect on the number and migration path of neural crest cells. Interestingly, the double null mutation impairs early developmental processes known to be independent of the neural crest e.g., the initial formation of the 3rd and 4th branchial pouches and of the 3rd, 4th and 6th arch arteries. The double mutation also results in an enlargement of rhombomere 5, which is likely to be responsible for the induction of supernumerary otic vesicles, in a disappearance of the rhombomere 5/6 boundary, and in profound alterations of rhombomere identities. In the mutant hindbrain, the expression domain of kreisler is twice its normal size and the caudal stripe of Krox-20 extends into the presumptive rhombomeres 6 and 7 region. In this region, Hoxb-1 is ectopically expressed, Hoxb-3 is ectopically up-regulated and Hoxd-4 expression is abolished. These data, which indicate that retinoic acid signaling through RARalpha and/or RARbeta is essential for the specification of rhombomere identities and for the control of caudal hindbrain segmentation by restricting the expression domains of kreisler and of Krox-20, also strongly suggest that this signaling plays a crucial role in the posteriorization of the hindbrain neurectoderm.  相似文献   

9.
10.
We report here the development and rescue of the truncated hindbrain of retinoid-deprived quail embryos. The embryo is completely rescued by an injection of retinol into the egg; this confirms retinol, or a related retinoid, as a required molecule in hindbrain development. Staging the retinoid replacement enabled us to determine that the 3-4 somite stage is the period when retinoids are required for normal development. Analysis of the development of the retinoid-deprived hindbrain phenotype through somitogenesis has revealed a pathway of retinoid action in early hindbrain regionalization. The hindbrain of the retinoid-deprived embryo is normal in size, during early somitogenesis, but has a respecified pattern of Krox-20 expression. From the earliest expression of Krox-20, at the 5 somite stage, the rhombomere 3 stripe fills the caudal third of the developing hindbrain to the level of the first somite. Morphologically only 2, instead of the normal 5, rhombomere bulges form. These 2 bulges express genes and, later, develop morphology characteristic of rhombomeres 1 and 2 and rhombomere 3. Posterior hindbrain specific genes, Hoxb-1, Fgf3, MafB, and the rhombomere 5 stripe of Krox-20 are never expressed in the head neuroepithelium of these embryos. From the initial formation of the neural plate, there is no evidence of rhombomere 4-7 specific characteristics. These results indicate the specification of the posterior hindbrain is lost and its cells participate in the formation of an enlarged anterior hindbrain. In our previous study, we reported the absence of the posterior hindbrain in retinoid-deprived quails (Maden, M., Gale, E., Kostetskii, I., Zile, M., 1996. Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr. Biol. 6, 417-426). Here, we show this phenotype to be the result of respecification of the hindbrain cells. This provides evidence for a region specific response to a single stimulus, retinol, which suggests a pre-rhombomeric regionalization of the hindbrain.  相似文献   

11.
12.
13.
14.
Retinoic acid is a very potent teratogen and has also been implicated as an endogenous developmental signalling molecule in vertebrate embryos. One of the regions of the embryo reliably affected by exogenously applied RA is the hindbrain. In this paper, we describe in detail the hindbrain of Xenopus laevis embryos briefly treated with various levels of RA at gastrula stages. Such treatments lead to development of embryos with loss of anterior structures. In addition, RA has a general effect on rhombomere morphology and specific effects on the development of the anterior rhombomeres. This effect is demonstrated using neurofilament antibodies, HRP staining and in situ hybridisation using a probe for expression of the Xenopus Krox-20 gene. Anatomically it is evident that the development of the hindbrain normally anterior to the otocyst (rhombomeres 1-4) is abnormal following RA treatment. Sensory and motor axons of cranial nerves V and VII form a single root and the peripheral paths of V and VII and IX and X are also abnormal, as is the more anterior location of the otocyst. These anatomical changes are accompanied by changes in the pattern of expression for the gene XKrox-20, which normally expresses in rhombomeres 3 and 5, but is found in a single band in the anterior hindbrain of treated embryos which standardly fail to generate the normal external segmental appearance. The results are discussed in terms of both the teratogenic and possible endogenous roles of RA during normal development of the central nervous system. We conclude that low doses of RA applied during gastrulation have specific effects on the anterior Xenopus hindbrain which appear to be evolutionarily conserved in the light of similar recent findings in zebrafish.  相似文献   

15.
The segmentation of the vertebrate hindbrain into rhombomeres is highly conserved, but how early hindbrain patterning is established is not well understood. We show that rhombomere 4 (r4) functions as an early-differentiating signaling center in the zebrafish hindbrain. Time-lapse analyses of zebrafish hindbrain development show that r4 forms first and hindbrain neuronal differentiation occurs first in r4. Two signaling molecules, FGF3 and FGF8, which are both expressed early in r4, are together required for the development of rhombomeres adjacent to r4, particularly r5 and r6. Transplantation of r4 cells can induce expression of r5/r6 markers, as can misexpression of either FGF3 or FGF8. Genetic mosaic analyses also support a role for FGF signaling acting from r4. Taken together, our findings demonstrate a crucial role for FGF-mediated inter-rhombomere signaling in promoting early hindbrain patterning and underscore the significance of organizing centers in patterning the vertebrate neural plate.  相似文献   

16.
Respiration is a rhythmic motor behavior that appears in the fetus and acquires a vital importance at birth. It is generated within central pattern-generating neuronal networks of the hindbrain. This region of the brain is of particular interest since it is the most understood part with respect to the cellular and molecular mechanisms that underlie its development. Hox paralogs and Hox-regulating genes kreisler/mafB and Krox20 are required for the normal formation of rhombomeres in vertebrate embryos. From studies of rhombomeres r3 and r4, the authors review mechanisms whereby these developmental genes may govern the early embryonic development of para-facial neuronal networks and specify patterns of motor activities operating throughout life. A model whereby the regional identity of progenitor cells can be abnormally specified in r3 and r4 after a mutation of these genes is proposed. Novel neuronal circuits may develop from some of these misspecified progenitors while others are eliminated, eventually affecting respiration and survival after birth.  相似文献   

17.
18.
The inner ear, the sensory organ responsible for hearing and balance, contains specialized sensory and non-sensory epithelia arranged in a highly complex three-dimensional structure. To achieve this complexity, a tight coordination between morphogenesis and cell fate specification is essential during otic development. Tissues surrounding the otic primordium, and more particularly the adjacent segmented hindbrain, have been implicated in specifying structures along the anteroposterior and dorsoventral axes of the inner ear. In this work we have first characterized the generation and axial specification of the otic neurogenic domain, and second, we have investigated the effects of the mutation of kreisler/MafB - a gene transiently expressed in rhombomeres 5 and 6 of the developing hindbrain - in early otic patterning and cell specification. We show that kr/kr embryos display an expansion of the otic neurogenic domain, due to defects in otic patterning. Although many reports have pointed to the role of FGF3 in otic regionalisation, we provide evidence that FGF3 is not sufficient to govern this process. Neither Krox20 nor Fgf3 mutant embryos, characterized by a downregulation or absence of Fgf3 in r5 and r6, display ectopic neuroblasts in the otic primordium. However, Fgf3−/−Fgf10−/− double mutants show a phenotype very similar to kr/kr embryos: they present ectopic neuroblasts along the AP and DV otic axes. Finally, partial rescue of the kr/kr phenotype is obtained when Fgf3 or Fgf10 are ectopically expressed in the hindbrain of kr/kr embryos. These results highlight the importance of hindbrain-derived signals in the regulation of otic neurogenesis.  相似文献   

19.
The mouse kreisler gene is expressed in rhombomeres (r) 5 and 6 during neural development and kreisler mutants have patterning defects in the hindbrain that are not fully understood. Here we analyzed this phenotype with a combination of genetic, molecular, and cellular marking techniques. Using Hox/lacZ transgenic mice as reporter lines and by analyzing Eph/ephrin expression, we have found that while r5 fails to form in these mice, r6 is present. This shows that kreisler has an early role in the formation of r5. We also observed patterning defects in r3 and r4 that are outside the normal domain of kreisler expression. In both heterozygous and homozygous kreisler embryos some r5 markers are induced in r3, suggesting that there is a partial change in r3 identity that is not dependent upon the loss of r5. To investigate the cellular character of r6 in kreisler embryos we performed heterotopic grafting experiments in the mouse hindbrain to monitor its mixing properties. Control experiments revealed that cells from even- or odd-numbered segments only mixed freely with themselves, but not with cells of opposite character. Transposition of cells from the r6 territory of kreisler mutants reveals that they adopt mature r6 characteristics, as they freely mix only with cells from even-numbered rhombomeres. Analysis of Phox2b expression shows that some aspects of later neurogenesis in r6 are altered, which may be associated with the additional roles of kreisler in regulating segmental identity. Together these results suggest that the formation of r6 has not been affected in kreisler mutants. This analysis has revealed phenotypic and mechanistic differences between kreisler and its zebrafish equivalent valentino. While valentino is believed to subdivide preexisting segmental units, in the mouse kreisler specifies a particular segment. The formation of r6 independent of r5 argues against a role of kreisler in prorhombomeric segmentation of the mouse hindbrain. We conclude that the mouse kreisler gene regulates multiple steps in segmental patterning involving both the formation of segments and their A-P identity.  相似文献   

20.
Development in the chick hindbrain is founded on a segmented pattern. Groups of cells are allocated to particular segmental levels early in development, the cells of each segment (rhombomere) mixing freely with each other, but not with those of adjacent segments. After rhombomere formation, cells in the boundary regions become increasingly specialised. Rhombomeres are thus separate territories that will ultimately pursue different developmental fates. We are investigating the mechanisms that establish and maintain the pattern of rhombomeres and their boundaries. Donor-to-host transplantation experiments were used to confront tissue from different axial levels within the hindbrain. The frequency of boundary regeneration and patterning in the hindbrain was then assessed, based on gross morphology, arrangement of motor neurons and immunohistochemistry. We found that when rhombomeres from adjacent positions or positions three rhombomeres distant from one another were confronted, a normal boundary was invariably reconstructed. Juxtaposition of rhombomere 5 with 7 also yielded a new boundary. By contrast, donor and host tissue of the same positional origin combined without forming a boundary. The same result was obtained in combinations of rhombomeres 3 and 5. Confrontation of tissue from even-numbered rhombomeres 4 with 6 or 2 with 4 also failed to regenerate a boundary in the majority of cases. These results suggest that cell surface properties vary according to rhombomeric level in the hindbrain, and may support the idea of a two-segment periodicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号