首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Construction and characterization of a gridded cattle BAC library   总被引:3,自引:0,他引:3  
A bovine genomic large-insert bacterial artificial chromosome (BAC) library has been constructed from leukocytes of a Holstein-Friesian male. Size fractionated DpnII-digested genomic DNA was ligated to the dephosphorylated BamH1 ends of a pBACe3.6 vector. Approximately 8.3 x 10(4) individual BAC clones were picked into 384-well plates. Two-hundred and sixty-seven randomly chosen clones were characterized by pulsed-field gel electrophoresis (PFGE). The average insert size was 104 kb with a frequency of clones without inserts of 5.5%. Thirty-four BAC clones were mapped by fluorescence in situ hybridization (FISH) to cattle chromosomes. Three showed signals at more than one location, one of them on the centromeric regions of all autosomes, indicating that the clone contains centromeric repeats. A subset of these BAC clones was used for the development of sequence tagged sites. Both subcloning and direct sequencing of the BACs were used for generating sequence tagged site information. The clones from the library were gridded onto high-density membranes, and PCR superpools were produced from the same set of clones. Membranes and superpools are available through the Resource Centre of the German Human Genome Project in Berlin (http:// www.rzpd.de).  相似文献   

2.
 Existing bacterial artificial chromosome (BAC) vectors were modified to have unique EcoRI cloning sites. This provided an additional site for generating representative libraries from genomic DNA digested with a variety of enzymes. A BAC library of lettuce was constructed following the partial digestion of genomic DNA with HindIII or EcoRI. Several experimental parameters were investigated and optimized. The BAC library of over 50,000 clones, representing one to two genome equivalents, was constructed from six ligations; average insert sizes for each ligation varied between 92.5 and 142 kb with a combined average insert size of 111 kb. The library was screened with markers linked to disease resistance genes; this identified 134 BAC clones from four regions containing resistance genes. Hybridization with low-copy genomic sequences linked to resistance genes detected fewer clones than expected from previous estimates of genome size. The lack of hybridization to chloroplast and mitochondrial sequences demonstrated that the library was predominantly composed of nuclear DNA. The unique EcoRI site in the BAC vector should allow the integration of BAC cloning with other technologies that utilize EcoRI digestion, such as AFLPTM markers and RecA-assisted restriction endonuclease (RARE) cleavage, to clone specific large EcoRI fragments from genomic DNA. Received: 5 August 1996 / Accepted: 23 August 1996  相似文献   

3.
《Gene》1997,191(1):69-79
We have constructed a human genomic bacterial artificial chromosome (BAC) library using high molecular weight DNA from a pre-pro-B cell line, FLEB14-14, with a normal male diploid karyotype. This BAC library consists of 96 000 clones with an average DNA insert size of 110 kb, covering the human genome approximately 3 times. The library can be screened by three different methods. (1) Probe hybridization to 31 high-density replica (HDR) filters: each filter contains 3072 BAC clones which were gridded in a 6×6 pattern. (2) Probe hybridization to two Southern blot filters to which 31 HindIII digests of the pooled 3072 BAC clones were loaded. This identifies a particular HDR filter for which further probe hybridization is performed to identify a particular clone(s). (3) Two-step polymerase chain reaction (PCR). First, PCR is applied to DNA samples prepared from ten superpools of 9600 BAC clones each to identify a particular superpool and the second PCR is applied to 40 unique DNA samples prepared from the four-dimensionally assigned BAC clones of the particular superpool. We present typical examples of the library screening using these three methods. The two-step PCR screening is particularly powerful since it allows us to isolate a desired BAC clone(s) within a day or so. The theoretical consideration of the advantage of this method is presented. Furthermore, we have adapted Vectorette method to our BAC library for the isolation of terminal sequences of the BAC DNA insert to facilitate contig formation by BAC walking.  相似文献   

4.
For molecular and cytogenetic studies, two partial bacterial artificial chromosome (BAC) libraries of the garlic cultivar Allium sativum L. 'Danyang' were constructed using high molecular weight (HMW) garlic DNA, the pBAC1-SACB1 vector, and the pIndigoBAC536 vector. The average insert size of the BAC library was about 90 kb. The sequence compositions of the BAC clones were characterized by Southern hybridization with garlic genomic DNA and a repetitive sequence clone of garlic. Two BAC clones with weak signals (thus implying mostly unique sequences), GBC2-5e and GBC2-4d, were selected for FISH analysis. FISH analysis localized the GBC2-5e (approximately 100 kb) BAC clone on the long arm of garlic chromosome 7. The other BAC clone, GBC2-4d (approximately 110 kb), gave rise to discrete FISH signals on a mid-size early metaphase chromosome. The FISH screening with BAC clones proved to be a useful resource for molecular cytogenetic studies of garlic, and will be useful for further mapping and sequencing studies of important genes of this plant.  相似文献   

5.
Breast cancer is a widespread disease in Japan and across the world. Breast cancer cells, as well as most other types of cancer cells, have diverse chromosomal aberrations. Clarifying the character of these chromosomal aberrations should contribute to the development of more suitable therapies, along with the predictions of metastasis and prognosis. Twenty-four breast cancer cell lines were analyzed by bacterial artificial chromosome (BAC) array comparative genomic hybridization (CGH). The array slide contained duplicate spots of 4030 BAC clone DNAs covering the entire human genome with 1 Mbp resolution. In all 24 breast cancer cell lines, frequent and significant amplifications as well as deletions were detected by BAC array CGH. Common DNA copy number gains, detected in 60% (above 15 cell lines) of the 24 breast cancer cell lines were found in 76 BAC clones, located at 1q, 5p, 8q, 9p, 16p, 17q, and 20q. Moreover, common DNA copy number loss was detected in 136 BAC clones, located at 1q, 2q, 3p, 4p, 6q, 8p, 9p, 11p, 13q, 17p, 18q, 19p, Xp, and Xq. The DNA copy number abnormalities found included abnormality of the well-known oncogene cMYC (8q24.21); however, most of them were not reported to relate to breast cancer. BAC array CGH has great potential to detect DNA copy number abnormalities, and has revealed that breast cancer cell lines have substantial heterogeneity.  相似文献   

6.
Zhang P  Li W  Fellers J  Friebe B  Gill BS 《Chromosoma》2004,112(6):288-299
Fluorescence in situ hybridization (FISH) has been widely used in the physical mapping of genes and chromosome landmarks in plants and animals. Bacterial artificial chromosomes (BACs) contain large inserts making them amenable for FISH mapping. We used BAC-FISH to study genome organization and evolution in hexaploid wheat and its relatives. We selected 56 restriction fragment length polymorphism (RFLP) locus-specific BAC clones from libraries of Aegilops tauschii (the D-genome donor of hexaploid wheat) and A-genome diploid Triticum monococcum. Different types of repetitive sequences were identified using BAC-FISH. Two BAC clones gave FISH patterns similar to the repetitive DNA family pSc119; one BAC clone gave a FISH pattern similar to the repetitive DNA family pAs1. In addition, we identified several novel classes of repetitive sequences: one BAC clone hybridized to the centromeric regions of wheat and other cereal species, except rice; one BAC clone hybridized to all subtelomeric chromosome regions in wheat, rye, barley and oat; one BAC clone contained a localized tandem repeat and hybridized to five D-genome chromosome pairs in wheat; and four BAC clones hybridized only to a proximal region in the long arm of chromosome 4A of hexaploid wheat. These repeats are valuable markers for defined chromosome regions and can also be used for chromosome identification. Sequencing results revealed that all these repeats are transposable elements (TEs), indicating the important role of TEs, especially retrotransposons, in genome evolution of wheat.Communicated by P.B. Moens  相似文献   

7.
Selection of chromosomal sublibraries from total human genomic libraries is critical for chromosome-based physical mapping approaches. We have previously reported a method of screening total human genomic library using flow sorted chromosomal DNA as a hybridization probe and selection of a human chromosome 22-enriched sublibrary from a total human bacterial artificial chromosome (BAC) library (Nucleic Acids Res 1995; 23: 1838–1839). We describe here further details of the method of construction as well as characterization of the chromosome 22-enriched sublibrary thus constructed. Nearly 40% of the BAC clones that have been mapped by fluorescence in situ hybridization (FISH) analysis were localized to chromosome 22. By screening the sublibrary using chromosome 22-specific hybridization probes, we estimated that the sublibrary represents at least 2.5 × coverage of chromosome 22. This is in good agreement with the results from FISH mapping experiments. FISH map data also indicate that chromosome 22-specific BACs in the sublibrary represent all the subregions of chromosome 22.  相似文献   

8.
We have constructed a human chromosome 2-specific bacterial artificial chromosome (BAC) library using DNA from the somatic cell hybrid GM10826. The average size of the clones is about 63 kb. The coverage and distribution of the library were estimated by screening with known polymorphic genetic markers and fluorescence in situ hybridization (FISH). Twentyone markers tested positive when DNA pools prepared from approximately one-sixth of the library were screened with 33 known markers. This is consistent with the theoretical calculation of 63% coverage at one genomic equivalent. This suggested that the coverage of the library is approximately 5-6×. FISH analysis with 54 BACs revealed single site hybridization to chromosome 2, and the clones were distributed randomly on the chromosome. We have also performed direct sequencing of the BAC insert ends to generate sequence-tagged sites suitable for mapping and chromosome walking. This is the first reported human chromosome 2-specific BAC library and should provide a resource for physical mapping and disease searching for this chromosome.  相似文献   

9.
A bacterial artificial chromosome (BAC) library of banana (Musa acuminata) was used to select BAC clones that carry low amounts of repetitive DNA sequences and could be suitable as probes for fluorescence in situ hybridization (FISH) on mitotic metaphase chromosomes. Out of eighty randomly selected BAC clones, only one clone gave a single-locus signal on chromosomes of M. acuminata cv. Calcutta 4. The clone localized on a chromosome pair that carries a cluster of 5S rRNA genes. The remaining BAC clones gave dispersed FISH signals throughout the genome and/or failed to produce any signal. In order to avoid the excessive hybridization of repetitive DNA sequences, we subcloned nineteen BAC clones and selected their ‘low-copy’ subclones. Out of them, one subclone gave specific signal in secondary constriction on one chromosome pair; three subclones were localized into centromeric and peri-centromeric regions of all chromosomes. Other subclones were either localized throughout the banana genome or their use did not result in visible FISH signals. The nucleotide sequence analysis revealed that subclones, which localized on different regions of all chromosomes, contained short fragments of various repetitive DNA sequences. The chromosome-specific BAC clone identified in this work increases the number of useful cytogenetic markers for Musa.  相似文献   

10.
FISH physical mapping with barley BAC clones   总被引:7,自引:0,他引:7  
Fluorescence in situ hybridization (FISH) is a useful technique for physical mapping of genes, markers, and other single- or low-copy sequences. Since clones containing less than 10 kb of single-copy DNA do not reliably produce detectable signals with current FISH techniques in plants, a bacterial artificial chromosome (BAC) partial library of barley was constructed and a FISH protocol for detecting unique sequences in barley BAC clones was developed. The library has a 95 kb average barley insert, representing about 20% of a barley genome. Two BAC clones containing hordein gene sequences were identified and partially characterized. FISH using these two BAC clones as probes showed specific hybridization signals near the end of the short arm of one pair of chromosomes. Restriction digests of these two BAC clones were compared with restriction patterns of genomic DNA; all fragments contained in the BAC clones corresponded to bands present in the genomic DNA, and the two BAC clones were not identical. The barley inserts contained in these two BAC clones were faithful copies of the genomic DNA. FISH with four BAC clones with inserts varying from 20 to 150 kb, showed distinct signals on paired chromatids. Physical mapping of single- or low-copy sequences in BAC clones by FISH will help to correlate the genetic and physical maps. FISH with BAC clones also provide an additional approach for saturating regions of interest with markers and for constructing contigs spanning those regions.  相似文献   

11.
Sorting of human--mouse or human--hamster hybrid cells with particular human chromosomes was performed by in situ hybridization. Total human genomic DNA was heavily labelled with. H and hybridized to metaphase spreads from hybrid clone cells. The method allowed us to not only identify human chromosomes in hybrid cells but also to detect terminal translocations and insertions from 1-2 bands in length to large ones. Biochemical markers of some human chromosomes were analysed using electrophoretic technique in the clones selected. Cytogenetic analysis (G staining) of these clones was made to visualize human chromosomes. Total 99 initial hybrid human--hamster and 26 human--mouse clones were obtained. 53 clones were analysed by in situ hybridization, only one of them being monochromosomal; the latter contained human X chromosome on the background of Chinese hamster chromosomes. Two other monochromosomal clones containing particular 15 and 21 chromosomes, respectively, were obtained by more complicated way from human--mouse hybrid clones using back selection, repeated hybridization and passing through a number of subsequent subclonings.  相似文献   

12.
The generation of a 7.5x dog genome assembly provides exciting new opportunities to interpret tumor-associated chromosome aberrations at the biological level. We present a genomic microarray for array comparative genomic hybridization (aCGH) analysis in the dog, comprising 275 bacterial artificial chromosome (BAC) clones spaced at intervals of approximately 10 Mb. Each clone has been positioned accurately within the genome assembly and assigned to a unique chromosome location by fluorescence in situ hybridization (FISH) analysis, both individually and as chromosome-specific BAC pools. The microarray also contains clones representing the dog orthologues of 31 genes implicated in human cancers. FISH analysis of the 10-Mb BAC clone set indicated excellent coverage of each dog chromosome by the genome assembly. The order of clones was consistent with the assembly, but the cytogenetic intervals between clones were variable. We demonstrate the application of the BAC array for aCGH analysis to identify both whole and partial chromosome imbalances using a canine histiocytic sarcoma case. Using BAC clones selected from the array as probes, multicolor FISH analysis was used to further characterize these imbalances, revealing numerous structural chromosome rearrangements. We outline the value of a combined aCGH/FISH approach, together with a well-annotated dog genome assembly, in canine and comparative cancer studies.  相似文献   

13.
染色体畸变是恶性肿瘤细胞的重要遗传学特征, 文章旨在应用BAC DNA克隆鉴定食管癌细胞中的染色体臂和染色体区段的畸变。针对染色体各区段选取5~10个1 Mb BAC DNA, 分别混合制备成特定染色体区段的BAC DNA混合克隆, 然后将染色体臂上覆盖所有区段的上述混合克隆进一步混合制备成特定染色体臂BAC DNA混合克隆。利用简并寡核苷酸引物聚合酶链反应(Degenerate oligonucleotide primed PCR, DOP-PCR)标记染色体臂探针, 利用切口平移法(Nick translation)标记染色体区段探针, 并对食管癌细胞中期染色体进行荧光原位杂交(Fluorescence in situ hybridization, FISH)分析。正常人外周血淋巴细胞中期染色体FISH结果显示, 上述方法标记的探针具有较高的特异性。进一步利用染色体臂混合探针, 确定了多个食管癌细胞中的染色体重排所涉及的特定染色体臂; 利用染色体区段混合探针, 鉴定出KYSE140的t(1q;7q)衍生染色体中1q上的断点范围位于1q32-q41。文章成功建立了1 Mb BAC DNA混合克隆探针标记技术, 并鉴定出多个食管癌细胞中的染色体臂和染色体区段畸变, 不仅为利用M-FISH技术鉴定肿瘤细胞中的染色体畸变提供了更为准确的方法, 而且还可能进一步将该法推广应用于恶性血液病的核型分析以及产前诊断。  相似文献   

14.
BAC FISH (fluorescence in situ hybridization using bacterial artificial chromosome probes) is a useful cytogenetic technique for physical mapping, chromosome marker screening, and comparative genomics. As a large genomic fragment with repetitive sequences is inserted in each BAC clone, random BAC FISH without adding competitive DNA can unveil complex chromosome organization of the repetitive elements in plants. Here we performed the comparative analysis of the random BAC FISH in monocot plants including species having small chromosomes (rice and asparagus) and those having large chromosomes (hexaploid wheat, onion, and spider lily) in order to understand a whole view of the repetitive element organization in Poales and Asparagales monocots. More unique and less dense dispersed signals of BAC FISH were observed in species with smaller chromosomes in both the Poales and Asparagales species. In the case of large-chromosome species, 75-85% of the BAC clones were detected as dispersed repetitive FISH signals along entire chromosomes. The BAC FISH of Lycoris did not even show localized repetitive patterns (e.g., centromeric localization) of signals.  相似文献   

15.
Itoh Y  Kampf K  Arnold AP 《Chromosoma》2008,117(2):111-121
The zebra finch (Taeniopygia guttata) has a large Z chromosome and highly condensed W chromosome. We used the random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) technique to isolate female-specific sequences ZBM1 and ZBM2. Southern blot hybridization to male and female zebra finch genomic DNA suggested that these sequences were located on the W chromosome, although homologous sequences appeared to be autosomal or Z-linked. Fluorescent in situ hybridization (FISH) using bacterial artificial chromosome (BAC) clones corresponding to ZBM sequences showed hybridization to the whole W chromosome, suggesting that the BACs encode sequences that are repeated across the entire W chromosome. Based on the sequencing of a ZBM repetitive sequence and Z chromosome derived BAC clones, we demonstrate a random distribution of repeat sequences that are specific to the W chromosome or encoded by both Z and W. The positions of ZW-common repeat sequences mapped to a noncoding region of a Z chromosome BAC clone containing the CHD1Z gene. The apparent lineage-specificity of W chromosome repeat sequences in passerines and galliform birds suggest that the W chromosome had not differentiated well from the Z at the time of divergence of these lineages. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
BACKGROUND: Array-based comparative genomic hybridization (aCGH) enables genome-wide quantitative delineation of genomic imbalances. A high-resolution contig array was developed specifically for chromosome 8q because this chromosome arm is frequently altered in many human cancers. METHODS: A minimal tiling path contig of 702 8q-specific bacterial artificial chromosome (BAC) clones was generated with a novel computational tool (BAC Contig Assembler). BAC clones were amplified by degenerative oligonucleotide primer (DOP) polymerase chain reaction and subsequently printed onto glass slides. For validation of the array DNA samples of gastroesophageal and prostate cancer cell lines, and chronic myeloid leukemia specimens were used, which were previously characterized by multicolor fluorescence in situ hybridization and conventional CGH. RESULTS: Single and double copy gains were confidently demonstrated with the 8q array. Single copy loss and high-level amplifications were accurately detected and confirmed by bicolor fluorescence in situ hybridization experiments. The 8q array was further tested with paraffin-embedded prostate cancer specimens. In these archival specimens, the copy number changes were confirmed. In fresh and archival samples, additional alterations were disclosed. In comparison with conventional CGH, the resolution of the detected changes was much improved, which was demonstrated by an amplicon of 0.7 Mb and a deletion of 0.6 Mb, both spanned by only six BAC clones. CONCLUSIONS: A comprehensive array is presented, which provides a high-resolution method for mapping copy number alterations on chromosome 8q.  相似文献   

17.
The construction of representative large insert DNA libraries is critical for the analysis of complex genomes. The predominant vector system for such work is the yeast artificial chromosome (YAC) system. Despite the success of YACs, many problems have been described including: chimerism, tedious steps in library construction and low yields of YAC insert DNA. Recently a new E.coli based system has been developed, the bacterial artificial chromosome (BAC) system, which offers many potential advantages over YACs. We tested the BAC system in plants by constructing an ordered 13,440 clone sorghum BAC library. The library has a combined average insert size, from single and double size selections, of 157 kb. Sorghum inserts of up to 315 kb were isolated and shown to be stable when grown for over 100 generations in liquid media. No chimeric clones were detected as determined by fluorescence in situ hybridization of ten BAC clones to metaphase and interphase S.bicolor nuclei. The library was screened with six sorghum probes and three maize probes and all but one sorghum probe hybridized to at least one BAC clone in the library. To facilitate chromosome walking with the BAC system, methods were developed to isolate the proximal ends of restriction fragments inserted into the BAC vector and used to isolate both the left and right ends of six randomly selected BAC clones. These results demonstrate that the S. bicolor BAC library will be useful for several physical mapping and map-based cloning applications not only in sorghum but other related cereal genomes, such as maize. Furthermore, we conclude that the BAC system is suitable for most large genome applications, is more 'user friendly' than the YAC system, and will likely lead to rapid progress in cloning biologically significant genes from plants.  相似文献   

18.
A cDNA clone of the argininosuccinate lyase gene (ASL) was isolated from an adult human liver library by probing with synthetic oligonucleotide probes. This clone and a yeast genomic DNA fragment containing the ASL gene were sequenced using the M13-dideoxynucleotide method. Comparison of the yeast and human clones at the nucleotide and putative amino acid sequence levels indicated identities of 50 and 54%, respectively. The most conserved region of the yeast gene was used to detect human clones in the liver cDNA library to test phylogenetic screening capabilities of conserved genes. ASL was mapped to human chromosome 7pter----q22 using human-mouse somatic cell hybrid DNA and further mapped by in situ hybridization to chromosome 7cen----q11.2 on human metaphase chromosomes. The probe also detected a sequence on chromosome 22. Somatic cell hybrid DNA digested with PvuII revealed a mouse polymorphism between Balb/c and C3H mice in the ASL gene.  相似文献   

19.
Libraries constructed in bacterial artificial chromosome (BAC) vectors have become the choice for clone sets in high throughput genomic sequencing projects primarily because of their high stability. BAC libraries have been proposed as a source for minimally over-lapping clones for sequencing large genomic regions, and the use of BAC end sequences (i.e. sequences adjoining the insert sites) has been proposed as a primary means for selecting minimally overlapping clones for sequencing large genomic regions. For this strategy to be effective, high throughput methods for BAC end sequencing of all the clones in deep coverage BAC libraries needed to be developed. Here we describe a low cost, efficient, 96 well procedure for BAC end sequencing. These methods allow us to generate BAC end sequences from human and Arabidoposis libraries with an average read length of >450 bases and with a single pass sequencing average accuracy of >98%. Application of BAC end sequences in genomic sequen-cing is discussed.  相似文献   

20.
A human bacterial artificial chromosome (BAC) library was constructed with high molecular weight DNA extracted from the blood of a male Korean. This Korean BAC library contains 100,224 clones of insert size ranging from 70 to 150 kb, with an average size of 86 kb, corresponding to a 2.9-fold redundancy of the genome. The average insert size was determined from 288 randomly selected BAC clones that were well distributed among all the chromosomes. We developed a pooling system and three-step PCR screen for the Korean BAC library to isolate desired BAC clones, and we confirmed its utility using primer pairs designed for one of the clones. The Korean BAC library and screening pools will allow PCR-based screening of the Korean genome for any gene of interest. We also determined the allele types of HLA-DRA and HLA-DRB3 of clone KB55453, located in the HLA class II region on chromosome 6p21.3. The HLA-DRA and DRB3 genes in this clone were identified as the DRA*010202 and DRB3*01010201 types, respectively. The haplotype found in this library will provide useful information in future human disease studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号