首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Receptor neurones with high selectivity and sensitivity to plant odours were found within short sensilla trichodea on the antenna of both female and male Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) by using single-sensillum recording techniques. In 112 sensilla from females and forty-one from males, twenty-four different receptor neurone types were characterized according to their specificity. Altogether, twenty-six plant and three sex pheromone compounds were tested. Receptor neurones responding with high specificity to flower odours, green leaf volatiles, oviposition deterrents and other general host plant odours were identified. In twenty-one receptor neurone types, responses were elicited by one or several plant compounds, and in three types responses were elicited by sex pheromone compounds. The majority of the receptor neurones responded to only one or two of the tested compounds. In general, only one of the two receptor neurones in a sensillum responded to any of the compounds tested. An exception was a receptor neurone responding to plant odours (green leaf volatiles) and another receptor neurone responding to a sex pheromone compound ([Z]-7-dodecenyl (acetate), which occurred in the same sensillum. The majority of the receptor neurones displayed a high sensitivity to plant odours. No morphological difference was identified the different sensillum types.  相似文献   

2.
The morphological sensillum types on the antennae of male and female Cactoblastis cactorum were visualized by scanning electron microscopy. Electrophysiological recordings were performed for the first time on single olfactory sensilla of C. cactorum. The male sensilla trichodea house a receptor cell responding to the putative pheromone component (9Z,12E)-tetradecadienyl acetate. The sensilla trichodea of the females were much shorter than those of the males and contained specialized receptor cells responding to certain terpenoids, the most frequent being the nerolidol-sensitive cell. The sensilla auricillica and sensilla basiconica of both sexes contained cells responding less specifically to terpenoid compounds as well as to green leaf volatiles. Cells of the sensilla coeloconica responded to aliphatic aldehydes and acids. Eight volatile organic compounds emitted by Opuntia stricta, a host plant of C. cactorum, were identified using gas chromatography-mass spectrometry, beta-caryophyllene being the major compound. Five compounds identified by gas chromatography in the headspace of O. stricta elicited responses in olfactory receptor cells of C. cactorum, nonanal being the most active compound and therefore a candidate attractant of C. cactorum.  相似文献   

3.
In the Herald moth Scoliopteryx libatrix there are single superficial auricillic sensilla, as well as groups of s. auricillica located in cavities on the antennae. Two sensory neurones, with different dendrite diameters innervate each of these sensilla. The diameter of the smaller dendritic segment is roughly half that of the larger one. The larger dendritic outer segment branches profusely in the lumen of the sensillum, whereas the smaller dendrite has few branches. Electrophysiological recordings from s. auricillica located in the medial part of the cavity revealed a receptor neurone responding to Delta-3-carene. In addition to these neurones, recordings made deeper and more laterally into the cavity showed neurones that responded to (+/-)-linalool, alpha-pinene and green leaf volatiles.  相似文献   

4.
Abstract.Recordings from antennal olfactory receptor neurones in young adult Schistocerca gregaria Forskål (Orthoptera: Acrididae) showed that behaviourally important odours are detected by receptor neurones present in morphologically identifiable sensillum types. Both nymph- and adult-produced aggregation pheromones activate receptor neurones housed in sensilla basiconica. The receptor neurones in this sensillum type in solitary-reared locusts display a higher sensitivity to aggregation pheromones and to some other behaviourally relevant odours than the same type of neurones in gregarious locusts. Receptor neurones present in sensilla coeloconica respond to green leaf odours, organic acids, and nymphal odours but are inhibited by mature adult-produced aggregation pheromones. Receptor neurones housed in sensilla trichodea respond to a possible sex pheromone. No phase differences were found in the response of coeloconic- or trichoid-associated receptor neurones.  相似文献   

5.
The nature of neurone response of substance nigra (SN) to nociceptive stimulation of the cat's peroneal nerve has been studied. The recording of neurone SN firing rate revealed that the majority (71.0%) of the SN neurones responded to the nociceptive repetitive stimulation of the peroneal nerve. But the thresholds of nociceptive activation in SN neurones turned to be very high. As a result of it the number of SN neurones responding to repetitive peroneal stimulation was twice as many as the number of cells responding to single stimulation of the nerve. The intravenous injection of naloxone in dose 1.0 mg/kg changed both excitatory and inhibitory responses in majority (71.4%) of SN neurones responding to repetitive peroneal stimulation. Naloxone did not modify the firing rate of neurones nonresponsive to nociception.  相似文献   

6.
The antennae of the rhinoceros beetle, Oryctes rhinoceros (Coleoptera : Dynastidae), comprise 4 parts : the scape, the pedicel, a funicle, and a club of 3 lamellate segments. The inner surfaces of the lamellate club segments carry one type of trichoid sensilla, 2 types of sensilla coeloconica, and 3 types of multiporous pore plate sensilla. The total surface occupied by the sensilla on the antenna is 5.2±0.4 mm2 in males (mean±SD) and 5.4±0.5 mm2 in females. With a measured density of 8665±1254 sensilla per mm2 in males and 8952±1642 sensilla per mm2 in females, the total number of pore plate sensilla was estimated to be between 45,000 and 50,000. The structure of the 3 types of pore plate sensilla is described. SP1 are the most abundant type of placoid sensilla. They show a convex and rugged plate whose infoldings form a circle of irregular cavities. SP2 sensilla are characterised by a smooth and convex plate, surrounded by a furrow with a ridge. SP2 are localised on a wide band situated along the straight side of the lamella. The plate of SP3 is nearly flat and there is no furrow. SP3 are confined within a narrow margin along the convex edge of lamellae. The 3 types of pore plate sensilla house 2 neurones whose dendrites branch repeatedly under a plate of thin (0.2 μm) cuticle, which is pitted with numerous pores, 40 nm in diameter. Single sensillum recordings with tungsten microelectrodes revealed the firing activity of 2 neurones. These receptor neurones responded specifically to olfactory stimulus. Olfactory receptor neurones tuned to the male pheromone compound, ethyl 4-methyl octanoate, were found in male and female antennae. Other receptor neurones responded to plant volatiles. Morphological and electrophysiological data suggest the absence of a sexual dimorphism in the olfactory organs. The functional organisation of the olfactory organs is discussed in terms of their adaptation to the ecology of O. rhinoceros.  相似文献   

7.
The effect of insect age on the neural responsiveness of gustatory sensilla was investigated. Electrophysiological recordings were obtained from type A and type D sensilla on the pro- and meso-thoracic tarsi, and from sensilla on the labellum of the turnip root fly,Delia floralis (Fallen) in response to potassium chloride, sucrose and sinigrin. The age of the fly did have an effect on the numbers of sensilla responding to the test stimuli and on the magnitude of the response, but there was no consistent pattern in these effects among sensilla. The labellar sensilla were more responsive to sucrose than the tarsal sensilla and the proportion of flies whose labellar sensilla responded to sucrose was initially low, but increased after day 2 of adult life. In contrast, the number of flies whose tarsal sensilla responded to stimulation with sucrose was initially high and decreased as the flies aged. There was a similar decline in the proportion of tarsal sensilla responding to potassium chloride. Neither the proportion of flies whose tarsal sensilla responded to sinigrin nor the magnitude of the response was influenced by the age of the fly. These finding are discussed in relation to the feeding and host selection behaviour of the fly.  相似文献   

8.
This study describes time course and ultrastructural changes during axonal degeneration of different neurones within the tympanal nerve of the locust Schistocerca gregaria. The tympanal nerve innervates the tergit and pleurit of the first abdominal segment and contains the axons of both sensory and motor neurones. The majority of axons (approx. 97%) belong to several types of sensory neurones: mechano- and chemosensitive hair sensilla, multipolar neurones, campaniform sensilla and sensory cells of a scolopidial organ, the auditory organ. Axons of campaniform sensilla, of auditory sensory cells and of motor neurones are wrapped by glial cell processes. In contrast, the very small and numerous axons (diameter <1 microm) of multipolar neurones and hair sensilla are not separated individually by glia sheets. Distal parts of sensory and motor axons show different reactions to axotomy: 1 week after separation from their somata, distal parts of motor axons are invaded by glial cell processes. This results in fascicles of small axon bundles. In contrast, distal parts of most sensory axons degenerate rapidly after being lesioned. The time to onset of degeneration depends on distance from the lesion site and on the type of sensory neurone. In axons of auditory sensory neurones, ultrastructural signs of degeneration can be found as soon as 2 days after lesion. After complete lysis of distal parts of axons, glial cell processes invade the space formerly occupied by sensory axons. The rapid degeneration of distal auditory axon parts allows it to be excluded that they provide a structure that leads regenerating axons to their targets. Proximal parts of severed axons do not degenerate.  相似文献   

9.
In cotton, Gossypium hirsutum (Malvacae), the volatiles emitted from the plant change in response to herbivory. Ovipositing females of the Egyptian cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) can discriminate between cotton plants subjected to larval feeding and undamaged plants during oviposition. In this study we investigate whether females of this moth can detect the herbivore-induced cotton volatiles. The response of female S. littoralis antennae to volatiles collected from cotton plants subjected to larval feeding was studied using GC-EAD (coupled gas chromatography electroantennographic-detection). By GC-EAD, responses to over 10 different cotton volatiles were observed. Using single sensillum technique the responses of short sensilla trichodea on the antennae of S. littoralis females to 19 cotton volatiles and 12 general plant volatiles were investigated. Responses to these volatiles were recorded from 108 receptor neurones. Several neurones activated by herbivore-induced cotton volatiles were recorded. For example, a neurone type responding to two homoterpenes [(E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene and (E)-4,8-dimethyl-1,3,7-nonatriene] and (E,E)-α-farnesene was frequently found. We also observed sensitive neurones responding specifically to the herbivore-induced volatiles (+/–)-linalool and indole. In general, a stimulus load of less than 1 ng was needed to activate these neurones. In addition, specific neurones were found for constitutive cotton volatiles released in connection with damage to the plant. An abundant neurone type responded to β-caryophyllene and α-humulene. Another neurone type responded specifically to the non-induced cotton volatile (Z)-jasmone. These results show that females of S. littoralis have receptor neurones that would make it possible to discriminate between damaged and undamaged plants using volatile signals.  相似文献   

10.
Abstract The sex attractant of the female redbanded leafroller moth, Argyrotaenia velutinana (Walker), is a blend of seven compounds. Specialized olfactory receptor neurones had been found for only two of the compounds, (Z)-11-tetradecenyl acetate (Z11-14:Ac) and (E)-11-tetradecenyl acetate (E11–14:Ac). These receptor neurones were always found in pairs within the long trichoid sensilla, which are the most abundant multi-pored sensilla on the male antenna. A systematic survey of all regions of the male antenna with standard extracellular recording techniques was undertaken to find receptor neurones responsive to the remaining five minor components of the female pheromone. Of the 113 long trichoid sensilla sampled, all contained two receptor neurones, one specialized for Z11–14:Ac and a second specialized for Ell –14:Ac. A comparable number of recordings were then obtained from the less abundant classes of multi-pored sensilla. Two new receptor neurone types were found, responsive to the minor pheromone components (E)-9-dodecenyl acetate (E9-12:Ac) and (Z)-9-dodecenyl acetate (Z9-12:Ac). Scanning electron micrographs indicated that these recordings were obtained from shorter, narrower trichoid sensilla. The majority of these sensilla appeared to contain three neurones capable of spontaneous action potential production. In each sensillum, only one receptor neurone appeared to respond to stimulation with a minor component of the female blend. The remaining two neurones did not respond to the chemical stimuli evaluated.  相似文献   

11.
The electrophysiological response of chemoreceptor neurones from the antennal chaetoid taste sensilla of the omnivorous ground beetle Pterostichus oblongopunctatus to several plant alkaloids and glucosides is investigated. A quinine‐sensitive neurone responding to quinine and quinine hydrochloride is found, most probably related to the granivorous feeding habit of P. oblongopunctatus. The response to quinine hydrochloride is concentration‐dependent at 0.001–50 mm , with the response threshold at 0.01 mm and a maximum rate of firing of 67 spikes/s at 50 mm . The stimulatory effect of caffeine is very weak, where the firing rate increases by only 1.4 spikes/s at a concentration of 10 mm compared with that evoked by a control stimulus. In addition, both quinine and quinine hydrochloride strongly inhibit spike production by the salt‐ and pH‐sensitive neurones when presented in mixtures with 10 mm NaCl. Several tested plant secondary compounds (i.e. salicin, sinigrin, caffeine and nicotine), which have only little or no effect on the firing rate of the quinine‐sensitive neurone, greatly reduce the responses of the salt‐ and pH‐sensitive neurones. The results of the present study suggest that the antennal taste sensilla of P. oblongopunctatus may detect plant defensive compounds both through the activation of a quinine‐sensitive neurone and via peripheral inhibition of other chemoreceptor neurones of the taste sensillum.  相似文献   

12.
The stimulation of sexual behavior by a synthetic mixture of volatile aliphatic acids (acetic, propanoic, methylpropanoic, butanoic, methylbutanoic, methylpentanoic) was studied in male rhesus monkeys. Twelve intact adult males and 12 long-ovariectomized adult females were used in 24 paired combinations (541 tests each of 1 hr). A mixture of authentic acids similar to that found in the vaginal secretions of estrogenized females was applied to the sexual skin area of ovariectomized females immediately before tests with males. There was marked between-pair variability during the application of both control and test substances. However, using rigorous behavioral criteria, there was a well-marked stimulation either of male mounting attempts or of ejaculations in 12 of 24 pairs involving 9 of 12 males. Three males responded with both female partners, three responded with neither female partner, and six responded with one partner only. In the responding pairs, there were highly significant increases in mounting attempts and ejaculations, an effect that could be attributed only to treatment. We conclude, therefore, that these aliphatic acids (copulins), which act via olfactory pathways, have communicatory significance in rhesus monkeys.  相似文献   

13.
The stimulation of sexual behavior by a synthetic mixture of volatile aliphatic acids (acetic, propanoic, methylpropanoic, butanoic, methylbutanoic, methylpentanoic) was studied in male rhesus monkeys. Twelve intact adult males and 12 long-ovariectomized adult females were used in 24 paired combinations (541 tests each of 1 hr). A mixture of authentic acids similar to that found in the vaginal secretions of estrogenized females was applied to the sexual skin area of ovariectomized females immediately before tests with males. There was marked between-pair variability during the application of both control and test substances. However, using rigorous behavioral criteria, there was a well-marked stimulation either of male mounting attempts or of ejaculations in 12 of 24 pairs involving 9 of 12 males. Three males responded with both female partners, three responded with neither female partner, and six responded with one partner only. In the responding pairs, there were highly significant increases in mounting attempts and ejaculations, an effect that could be attributed only to treatment. We conclude, therefore, that these aliphatic acids (copulins), which act via olfactory pathways, have communicatory significance in rhesus monkeys.  相似文献   

14.
The expression of both swimmeret and postural motor patterns in crayfish (Pacifastacus leniusculus) were affected by stimulation of a second root of a thoracic ganglion. The response of the swimmeret system depended on the state of the postural system. In most cases, the response of the swimmeret system outlasted the stimulus.Stimulation of a thoracic second root also elicited coordinated responses from the postural system, that outlasted the stimulus. In different preparations, either the flexor excitor motor neurones or the extensor excitor motor neurones were excited by this stimulation. In every case, excitation of one set of motor neurones was accompanied by inhibition of that group's functional antagonists.This stimulation seemed to coordinate the activity of both systems; when stimulation inhibited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were excited. When stimulation excited the flexor motor neurones, then the extensor motor neurones and the swimmeret system were inhibited.Two classes of interneurones that responded to stimulation of a thoracic second root were encountered in the first abdominal ganglion. These interneurones could be the pathway that coordinates the response of the postural and swimmeret systems to stimulation of a thoracic second root.Abbreviations TSR thoracic second root - epsp excitatory post-synaptic potential - ipsp inhibitory post-synaptic potential - EJP excitatory jonctional potential - PS power-stroke - RS return-stroke - INT interneurone - N1 first segmental nerve - N2 second segmental nerve - N3 third segmental nerve - A1 abdominal ganglion 1  相似文献   

15.
1. The anatomical arrangement of the cardioregulatory nerves and their physiological activity during cardiac modulation were analysed in Procambarus clarkii. 2. The bilaterally arranged pairs of cardioinhibitors and cardioaccelerator axons, in nerves SN II and SN III respectively, were physiologically identified by correlating spikes in SN II and SN III with the same spikes in the dorsal nerve, which innervates the heart. 3. The cardioinhibitor neurone fired tonically in varied sporadic bursts. During periods of cardiac inhibition, however, this neurone discharged in a long chain of spikes at a characteristic frequency of 40-50Hz. 4. The cardioaccelerator neurone fired tonically at 2-3 Hz but on occasion its activity reached 12 Hz. 5. Three inhibitory cardiac reflexes were analysed. The sensory modalities for the reflexes included (a) stretch of the dorsal pericardial wall, (b) chemical stimulation of coxal hair sensilla with glucose and (c) tactile stimulation of hair sensilla in and below the gill chamber, on the antennae, the antennules and on the anterior cephalothorax. 6. The discharge of both cardioinhibitor neurones showed a weak temporal correlation suggesting a common presynaptic drive, while the pair of cardioaccelerators appeared to have a reciprocal relationship with the cardioinhibitors.  相似文献   

16.
Extracellular electrophysiological recordings were made from individual type-A trichoid sensilla on the antenna of the female sphinx moth Manduca sexta. A single annulus of the antenna bears about 1,100 of these sensilla, and each is innervated by two olfactory receptor cells. We tested the responses of these receptor cells to a panel of 102 volatile compounds, as well as three plant-derived odor mixtures, and could discern three different functional types of type-A trichoid sensilla. One subset of receptor cells exhibited an apparently narrow molecular receptive range, responding strongly to only one or two terpenoid odorants. The second subset was activated exclusively by aromatics and responded strongly to two to seven odorants. The third subset had a broad molecular receptive range and responded strongly to odorants belonging to several chemical classes. We also found receptor cells that did not respond to any of the odorants tested but were spontaneously active. Certain odorants elicited excitatory responses in some sensilla but inhibitory responses in others, and some receptor cells were strongly excited by certain odorants but inhibited by others. Impregnation of groups of receptor cells in type-A trichoid sensilla with rhodamine-dextran demonstrated that their axons project mainly to the large female glomeruli of the antennal lobe.  相似文献   

17.
Single sensillum recordings on the antennae of female Anopheles gambiae s.s. mosquitoes revealed neurons sensitive to aliphatic carboxylic acids within (a) subtype(s) sensilla trichodea. The aliphatic acids, acetic acid, propionic acid, butyric acid, iso-butyric acid and iso-valeric acid evoked an inhibition reaction in one of the cell types recorded from. A different cell type was excited in response to the former aliphatic acids, but showed a broader range of sensitivity, as acids with a longer carbon chain length, like caproic acid, elicited excitations as well. In addition, occasionally 1-octen-3-ol elicited an excitation reaction. This article focuses on the carboxylic acid inhibited cell type and its temporal pattern of response to different doses of the compounds. Furthermore, in order to compare the stimulatory effectiveness of the compounds on a per molecule basis, corrections were made for differences in volatility by determining the absolute number of molecules in the stimulus puff.  相似文献   

18.
Extracellular electrophysiological recordings were made from individual type-A trichoid sensilla on the antenna of the female sphinx moth Manduca sexta. A single annulus of the antenna bears about 1,100 of these sensilla, and each is innervated by two olfactory receptor cells. We tested the responses of these receptor cells to a panel of 102 volatile compounds, as well as three plant-derived odor mixtures, and could discern three different functional types of type-A trichoid sensilla. One subset of receptor cells exhibited an apparently narrow molecular receptive range, responding strongly to only one or two terpenoid odorants. The second subset was activated exclusively by aromatics and responded strongly to two to seven odorants. The third subset had a broad molecular receptive range and responded strongly to odorants belonging to several chemical classes. We also found receptor cells that did not respond to any of the odorants tested but were spontaneously active. Certain odorants elicited excitatory responses in some sensilla but inhibitory responses in others, and some receptor cells were strongly excited by certain odorants but inhibited by others. Impregnation of groups of receptor cells in type-A trichoid sensilla with rhodamine-dextran demonstrated that their axons project mainly to the large female glomeruli of the antennal lobe.  相似文献   

19.
Taste receptors, or basiconic sensilla, are distributed over the legs of the locust and respond to direct contact with chemical stimulants. The same chemosensory neurones that responded to contact with salt solutions also responded to particular acidic odours. Odours of food and other chemicals had no effect on the chemosensory neurones. In locusts free to move, an acid odour presented to the tarsus of a hind leg evoked a rapid avoidance movement in which the tarsus was levated, the tibia flexed and the femur levated. Intracellular recordings from motor neurones that innervate muscles of the hind leg showed that when an acid odour was directed towards basiconic sensilla on the leg there was a reciprocal activation of antagonistic motor pools that move the leg segments about each joint. Thus an extensor tibiae motor neurone was inhibited while a flexor tibiae motor neurone was excited, and the tarsal depressor and retractor unguis motor neurones were inhibited while the tarsal levator motor neurone was excited. This method of odour stimulation of taste receptors generates less adaptation than direct contact with chemicals, and therefore represents an ideal method for stimulating taste receptors for further studies on the central pathways processing taste signals. Accepted: 2 June 1998  相似文献   

20.
In the locustid Locusta migratoria and the tettigoniids Decticus verrucivorus and Tettigonia cantans, comparative aspects of physiological properties of vibratory/auditory ventral-cord neurones were studied by single cell recordings.These neurones all receive inputs from both vibratory and auditory receptors. Nevertheless, they can be classified into “V neurones” responding preferentially to vibration stimuli, “VS neurones” responding to vibration and airborne sound, and “S neurones” responding preferentially to airborne sound. In every group, there are several types with different physiological properties, normally represented by one neurone on each body side.In Locusta and in the tettigoniid species, the same physiological types of vibratory/auditory neurones were found, although there are differences in the synaptic connectivity of the vibration receptors of the different legs. In Locusta, the middle leg receptors have the strongest influence on the generation of suprathreshold responses of the central neurones, whereas in the tettigoniids the receptors of the ipsilateral fore leg are the most influential.Two of the V neurones receive inputs mainly from campaniform sensilla and other low-frequency vibration receptors, the other V and VS neurones are mainly influenced by the subgenual receptors. Central information processing results in preferential responses to different frequency/intensity ranges in different neurones.Most VS neurone types show the same response characteristics (e.g. time pattern of response, habituation) either to vibration or to airborne-sound stimuli. Simultaneous presentation of both stimuli leads to qualitative changes in the response characteristics. Therefore, the co-processing of auditory and vibratory signals seems to be very important in the acoustic behaviour of grasshoppers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号