首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The synthesis and metabolism of leukotrienes (LTs) by endothelial cells was investigated using reverse-phase high-performance liquid chromatography. Cells were incubated with [14C]arachidonic acid. LTA4 or [3H]LTA4 and stimulated with ionophore A23187. The cells did not synthesize leukotrienes from [14C]arachidonic acid. LTA4 and [3H]LTA4 were converted to LTC4, LTD4, LTE4 and 5,12-diHETE. Endothelial cells metabolized [3H]LTC4 to [3H]LTD4 and [3H]LTE4. The metabolism of [3H]LTC4 was inhibited by L-serine-borate complex, phenobarbital and acivicin in a concentration-related manner, with maximal inhibition occurring at a concentration of 0.1 M, 0.01 M and 0.01 M, respectively. LTC4, LTB4 and LTD4 stimulated the synthesis of prostacyclin, measured by radioimmunoassays as 6-keto-PGF1 alpha. The stimulation by LTC4 was greater than that by LTD4 or LTB4. LTE4, 14,15-LTC4 and 14,15-LTD4 failed to stimulate the synthesis of prostacyclin. LTD4 and LTB4 also stimulated the release of PGE2, whereas LTC4 did not. Serine-borate and phenobarbital inhibited LTC4-stimulated synthesis of prostacyclin in a concentration-related manner. They also inhibited the release of prostacyclin by histamine, A23187 and arachidonic acid. Acivicin had no effect on the release of prostacyclin by LTC4, histamine or A23187. Furthermore, FPL-55712, an LT receptor antagonist, inhibited LTC4-stimulated prostacyclin synthesis but had no effect on histamine-stimulated release of prostacyclin or PGE2. Indomethacin inhibited both LTC4- and histamine-stimulated release. The results show that (a) endothelial cells metabolize LTA4, LTC4 and LTD4 but do not synthesize LTs from arachidonic acid; (b) LTC4 act directly at the leukotriene receptor to stimulation prostacyclin synthesis; (c) the presence of the glutathione moiety at the C-6 position of the eicosatetraenoic acid skeleton is necessary for leukotriene stimulation of prostacyclin release; and (d) the metabolism of LTC4 to LTD4 and LTE4 does not appear to alter the ability of LTC4 to stimulate the synthesis of PGI2.  相似文献   

2.
Arachidonate metabolites are potent biological mediators affecting multiple cellular functions. Although prostaglandins of the E series, which are products of the cyclooxygenase pathway, have been known as inhibitors or down-regulators of fibroblast proliferation and collagen synthesis, the more recently discovered products of the 5-lipoxygenase pathway have not been as extensively investigated with regard to fibroblast function. In this study, a sulfidopeptide product of the lipoxygenase pathway, leukotriene C4 (LTC4), was examined for its ability to modulate rat lung fibroblast collagen synthesis and proliferation in vitro. The data revealed the ability of LTC4 and to a lesser extent leukotriene D4 (LTD4) to stimulate collagen synthesis in a dose-dependent (10(-11)-10(-8) M) manner without affecting cellular proliferation as determined by radiolabeled thymidine incorporation; 1 nM LTC4 caused an 85% (p less than 0.02) increase above untreated controls in [3H]proline incorporation into collagenous protein in the media, which was blocked by the putative leukotriene receptor antagonist FPL55712 (10 microM) and inhibited by cycloheximide and actinomycin D. This LTC4 stimulatory effect was slightly more specific for collagen synthesis vs noncollagenous protein synthesis but was not accompanied with any change in the collagen type composition. Binding of [3H]LTC4 to these cells was specific, reversible, and saturable, with a Kd of 1.8 +/- 0.95 nM. Under equilibrium conditions, there was an estimated 2.39 X 10(4) receptors per cell. This binding was also inhibited by 10 microM FPL55712. Competitive binding studies show specificity of this binding for LTC4 relative to LTD4 and FPL55712. Furthermore, no significant conversion of LTC4 to LTD4 or leukotriene E4 was noted during the binding studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have studied the effects of a lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) on antagonism of leukotriene (LT) C4-induced contractions of isolated guinea-pig trachea and the results were compared to that of a cyclooxygenase inhibitor indomethacin. NDGA (30 microM) as well as indomethacin (5 microM) inhibited LTC4-induced contractions. But, in the presence of indomethacin NDGA was ineffective to inhibit the LTC4 response, whereas two other lipoxygenase inhibitors, phenidone (3-30 microM) and 5,8,11,14-eicosatetraynoic acid (ETYA, 10 microM), markedly inhibited it. The antagonist action of an LTD4 receptor antagonist FPL55712 against LTC4-induced contractions was significantly reduced by NDGA (10-30 microM), but indomethacin had no effect on it. NDGA possessed the same inhibitory effect on the LTC4 antagonism in the presence of indomethacin, but 0.3 microM phenidone and 1 microM ETYA which did not inhibit the LTC4 response had no effect on it. NDGA also inhibited the relaxant response of isoproterenol on the contraction elicited by 30 nM LTC4, but did not affect those of forskolin and aminophylline. The relaxant response of isoproterenol on the LTC4 response was not inhibited by indomethacin, 0.3 microM phenidone and 1 microM ETYA. In the presence of a gamma-glutamyltranspeptidase inhibitor, L-serine borate (SB, 45 mM), NDGA had no effect on the LTC4 antagonism and the relaxant response of isoproterenol. In contrast, NDGA significantly inhibited the relaxant response of isoproterenol on 30 microM histamine- and 30 microM acetylcholine-induced contractions, but it did not affect the histamine antagonism by a histamine H1-blocker pyrilamine. These results suggest that some putative non-prostanoids are involved in LTC4-induced contractions of guinea-pig trachea and which regulate the effects of LTD4 antagonism and beta-adrenoceptor activation.  相似文献   

4.
Leukotrienes (LTs) are active lipid mediators derived in the 5-lipoxygenase pathway. LTC(4), the primary cysteinyl LT, is cleaved by gamma-glutamyl transpeptidase (GGT), resulting in LTD(4). We studied the synthesis and metabolism of LTs in three patients with GGT deficiency. LTs were analyzed in urine, plasma, and monocytes after HPLC separation by enzyme immunoassays, radioactivity detection, and electrospray tandem mass spectrometry. Analysis of LTs in urine revealed increased concentrations of LTC(4) (12.8-17.9 nmol/mol creatinine; controls, <0.005 nmol/mol creatinine), whereas LTE(4) was below the detection limit (<0.005 nmol/mol creatinine; controls, 32.2 +/- 8.6 nmol/mol creatinine). In plasma of one patient, LTC(4) was found to be increased (17.3 ng/ml; controls, 9.6 +/- 0.4 ng/ml), whereas LTD(4) and LTE(4) were below the detection limit (<0.005 ng/ml). LTB(4) was found within normal ranges. In contrast to controls, the synthesis of LTD(4) and LTE(4) in stimulated monocytes was below the detection limit (<0.1 ng/10(6) cells; controls, 37.1 +/- 4.8 cells and 39.4 +/- 5.6 ng/10(6) cells, respectively). The formation of [(3)H]LTD(4) from [(3)H]LTC(4) in monocytes was completely deficient (<0.1%; controls, 85 +/- 7%). Our data demonstrate a complete deficiency of LTD(4) biosynthesis in patients with a genetic deficiency of GGT. GGT deficiency represents a new inborn error of cysteinyl LT synthesis and provides a unique model in which to study the pathobiological coherence of LT and glutathione metabolism.  相似文献   

5.
Human arterial rings incubated in modified Tyrode solution released small amounts of leukotriene (LT) C4-like material spontaneously and larger amounts upon stimulation with the ionophore A23187 as determined by radioimmunoassay. By reversed phase high pressure liquid chromatography (HPLC) LTC4-like material was found to comigrate with authentic LTC4, LTD4 and LTE4. Nordihydroguaiaretic acid (NDGA) significantly inhibited the ionophore A23187-induced release of LTC4-like material, while indomethacin was without effect. Simultaneously the arterial rings released much larger amounts of 6-keto-prostaglandin (PG) F1 alpha, which were significantly decreased by indomethacin. The results demonstrate that human arterial tissue has the capacity to synthesize cysteinyl-containing LT from endogenous arachidonic acid.  相似文献   

6.
The contractile activities of peptide leukotrienes (LT) on isolated spiral strips of ferret trachea were characterized pharmacologically. LTC4 and LTD4 contracted ferret tracheal strips in a concentration-related manner and were 3- to 8-fold more potent than carbachol. In contrast, high concentrations of LTE4 evoked either weak contractions or none at all, whereas LTC4 and D4 were partial agonists compared to carbachol. In tissues which were unresponsive to LTE4, this compound antagonized contractile responses to LTC4 and D4 in an apparently competitive manner: Carbachol-induced contractions were not altered by LTE4. The cyclooxygenase inhibitor, indomethacin (5 microM), LT antagonist, FPL55712 (10 microM), atropine (1 microM), phenoxybenzamine (10 microM), and LTB4 (10 microM) failed to alter LTC4 and D4 concentration-response curves. The results indicate that ferret trachea is sensitive to the contractile activity of LTC4 and LTD4 but not LTE4. The LT-induced contractions appear to be mediated by a direct action of the LT rather than indirectly through release of secondary mediators such as thromboxane, prostaglandin, or acetylcholine. LT receptors in ferret trachea are insensitive to FPL55712 but are antagonized by LTE4.  相似文献   

7.
The following communicates the pharmacology of Wy-48,252 (1,1,1-trifluoro-N-[3-(2-quinolinylmethoxy)phenyl]methanesulfonamide) a chemically novel and orally potent leukotriene (LT) D4 receptor antagonist. In the isolated guinea-pig trachea pretreated with indomethacin (5 microM) and L-cysteine (10 mM), Wy-48,252 antagonized TD4-induced contraction with a pKB = 7.6. Against LTC4 on tissues pretreated with IND and glutathione (10 mM), Wy-48,252 had a pKB greater than 5. Wy-48,252 (10 microM) did not antagonize pilocarpine-, histamine- or PGF2 alpha-induced tracheal contraction. Further, in the presence of indomethacin and chlorpheniramine (1 microM), Wy-48,252 dose-dependently inhibited the antigen-induced contraction of guinea-pig trachea in a manner consistent with antagonism at the LTD4 receptor and inhibition of LT synthesis. In the Konzett-Rossler model of i.v. LTD4-induced bronchoconstriction in indomethacin treated guinea pigs, intragastric Wy-48,252 (2 hr) had an ID50 of 100 micrograms/kg and a functional half-life of 5 hr. Against i.v. antigen-induced bronchoconstriction in guinea pigs treated with indomethacin and chlorpheniramine, intragastric Wy-48,252 (2 hr) had an ID50 of 0.6 mg/kg and a 5 hr half life. Intragastric Wy-48,252 also selectively blocked the cutaneous wheal reaction to intradermal LTD4 but not histamine. We conclude that Wy-48,252 is distinguished from other selective LTD4 receptor antagonists by its oral potency and should be useful in ascertaining the role of LTD4 mediated processes in asthma, allergy and animal models.  相似文献   

8.
The effects of six leukotriene (LT) antagonists on LTC4-, D4- and E4-induced contraction of isolated guinea-pig tracheal spirals were examined. Concentration-response effects of the leukotrienes were determined by cumulative addition in the presence of indomethacin (5 microM) alone for LTE4, or with 10 mM of either glutathione or L-cysteine to inhibit metabolism of LTC4 or LTD4, respectively. Concentration-response curves to the LTs were obtained in the absence and presence of Wy-45,911, Wy-44,329, FPL-55,712, Ly-171,883, Wy-48,252 and ICI-198,615 representing three structurally different chemical groups of LT antagonists. At 30 microM, the antagonists produced little or no antagonism of LTC4-induced contractions. Analysis of the Schild plots for antagonism of LTD4 and E4 suggested two receptors for the agonist effects of LTD4 and a single receptor for the agonist effects of LTE4. Comparison of pA2 values for Wy-45,911, FPL-55,712, LY-171,883 and Wy-48,252 provided evidence that LTE4 is acting at the antagonist high affinity LTD4 receptor to produce contractile effects. From the data, we conclude that there are three LT receptors (one for LTC4 and two LTD4 subtypes) through which exogenously applied LTs evoke contraction of the isolated guinea-pig trachea.  相似文献   

9.
The present study investigated the effects of piriprost (U-60,257B; an inhibitor of LT synthesis) and various LTs on alkaline phosphatase (ALP) activity of rat endometrial stromal cells in vitro. Mature ovariectomized rats were pretreated with hormones to sensitize their uteri for the decidual cell reaction. Endometrial stromal cells were isolated and cultured for up to 72 hr with various treatments. The ALP activity in all experiments was significantly (p less than 0.01) higher at 72 hr than at 24 hr, irrespective of treatment. We examined the effects of 100 microM piriprost, with or without 1 microM LTB4, 0.01 microM LTC4, 0.1 microM LTD4 or 0.001 microM LTE4 on ALP activity. At 72 hr, as indicated by analyses of variance, there were significant interactions (p less than 0.01) between the effects of piriprost and the LTs. Piriprost by itself increased (p less than 0.01) ALP activity in all experiments, and a further increase (p less than 0.01) in ALP activity was observed when either LTB4, LTC4, LTD4 or LTE4 was added with piriprost. LTB4, LTD4, or LTE4 alone had inhibitory effects (p less than 0.01) while LTC4 alone had no effect. These studies suggest LTs may be involved in decidualization which, in vitro, is accompanied by an increase in endometrial ALP activity. However the exact role of LTs is still unclear.  相似文献   

10.
Canine tracheal epithelial cells freshly isolated from mongrel dog trachea were used to study relationships between arachidonic acid metabolism and chloride ion movement. High performance liquid chromatography (HPLC) analysis of the cell incubation media after the addition of A23187 showed the presence of prostaglandin H synthase and lipoxygenase-derived metabolites. The major prostaglandin H synthase metabolite identified by HPLC, gas chromatography, and mass spectrometry was prostaglandin (PG) D2. The major lipoxygenase metabolites were leukotriene (LT) C4 and LTB4. LTB4 was identified by HPLC, UV spectroscopy, and gas chromatography. Straight phase HPLC of the methyl esters indicated only a minor formation of LTB4 isomers. LTC4 was identified by HPLC, UV spectroscopy, and conversion to LTD4 by gamma-glutamyl transpeptidase. Analysis by radioimmunoassays indicated approximately 1-2 ng of LTB4 and peptide LT formed by 10(6) cells after A23187 stimulation. The addition of ionophore A23187 caused a rapid release of arachidonic acid metabolites which was completed within 5 min of stimulation. Cl- secretion was measured in parallel studies of excised tracheas in Ussing chambers. Cl- secretion occurred at 2-3 min after the addition of ionophore, and the most rapid change occurred with the highest PGD2 concentrations. Indomethacin produced a concentration-dependent inhibition of PGD2 formation and Cl- movement. The addition of PGE2, PGD2, and PGH2 effectively stimulated Cl- secretion. LTC4 also stimulated Cl- secretion, but the stimulation was inhibited by indomethacin. These results indicate that canine tracheal epithelial cells metabolize arachidonic acid via both prostaglandin H synthase and lipoxygenase enzymes. It appears that endogenous PGD2 formation is the important variable controlling the Cl- ion movement in canine trachea.  相似文献   

11.
Prostaglandin (PG) E2 synthesis elicited by adrenergic agonists in the guinea pig trachea has been shown to be mediated via activation of beta-adrenergic receptors. The purpose of this study was to examine arachidonic acid (AA) metabolism and to characterize the subtype of beta receptor involved in PG synthesis. [14C]AA was incubated with guinea pig tracheal rings, and the radiolabelled products were extracted from the medium. Thin layer chromatographic analysis and radioimmunoassay of the extract showed that [14C]AA was incorporated into guinea pig tracheal rings and metabolized mainly into radiolabeled and immunoreactive PGE2 (iPGE2) and smaller amounts into PGF2 alpha. Trace amounts of PGD2, TxB2 and 6-keto-PGF1 alpha but not LTB4 or LTC4 were detected by enzyme immunoassay. Incubation of guinea pig tracheal rings for 10 min with isoproterenol or salbutamol resulted in a significant increase in PGE2 synthesis (optimum concentration 0.1 microM for both compounds). In contrast, dobutamine, BRL 37344, BRL 28410, norepinephrine, phenylephrine, and xylazine (up to 1 microM) did not significantly increase PGE2 production. Isoproterenol-induced iPGE2 production was inhibited by the selective beta 2 receptor antagonist butoxamine (0.1-1.0 microM) and somewhat reduced by the beta 1 receptor antagonist practolol (1 microM). The increase in PGE2 synthesis was diminished with increasing concentrations of isoproterenol (0.5-5.0 microM) or salbutamol (0.5-1.0 microM); but it was reversed by pretreatment of tracheal rings with the protein synthesis inhibitors cycloheximide (0.9 microM) and actinomycin D (2 microM) but not by phenylisopropyl adenosine (0.1-1.0 microM), an inhibitor of adenylyl cyclase. These data suggest that isoproterenol-induced iPGE2 synthesis is primarily via activation of a beta 2 adrenergic receptor. Failure to enhance iPGE2 synthesis by a high concentration of isoproterenol is likely to be due to an induction of new inhibitory protein synthesis.  相似文献   

12.
We have investigated the effects of leukotrienes (LTs) on isolated tracheal smooth muscle from sheep sensitive to Ascaris suum antigen. LTC4 and LTD4 produced dose-dependent contractions of sheep trachea, but LTE4 was virtually inactive. YM-17690, a non-analogous LT agonist, produced no contractile response up to 100 microM. Indomethacin (5 microM) had no effect on LTC4- and LTD4-induced contractions. L-Serine borate (45 mM), an inhibitor of gamma-glutamyl transpeptidase, shifted the dose-response curve of LTC4 to the left by 161-fold, and L-cysteine (6 mM), an inhibitor of aminopeptidase, shifted the dose-response curves of LTC4 and LTD4 to the left by 67- and 23-fold, respectively. YM-16638 (1 microM), an LT antagonist, shifted the dose-response curves of LTC4 and LTD4 to the right with pKB values of 6.57 and 7.13, respectively. YM-16638 did not affect LTC4-induced contractions of L-serine borate-treated tissues, indicating that the compound acts only on LTD4 receptors in sheep trachea, LTE4 (1 microM) shifted the dose-response curves of LTC4 and LTD4 to the right with pKB values of 6.87 and 7.31, respectively. YM-17690 (10 microM) showed effects similar to LTE4, suggesting that the compound acts as an LTE4 agonist in sheep trachea. These results suggest that in sheep tracheal smooth muscle (a) LTC4 and LTD4 produce contractions, (b) these LT-induced contractions are not mediated by cyclooxygenase products, (c) LTC4 is converted to LTD4 and then to LTE4, and (d) the potency of the LTC4- and LTD4-induced contractions is increased when their conversion to LTE4 is inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We studied the characteristics of the leukotriene (LT) C4 and D4 receptors on a cultured smooth muscle cell line, BC3H-1. Specific [3H]LTC4 binding to the cell membrane was greater than 80% of total binding and saturable at a density of 3.96 +/- 0.39 pmol/mg protein, with an apparent dissociation constant (Kd) of 14.3 +/- 2.0 nM (n = 9). The association and dissociation of [3H]LTC4 binding were rapid and apparent equilibrium conditions were established within 5 min. Calculated Kd value of [3H]LTC4 binding from the kinetic analysis was 9.9 nM. From the competition analysis, calculated Ki value of unlabeled LTC4 to compete for the specific binding of [3H]LTC4 was 9.2 nM and was in good agreement with the Kd value obtained from the Scatchard plots or kinetic analysis. The rank order of potency of the unlabeled competitors for competing specific [3H]LTC4 binding was LTC4 much greater than LTD4 greater than LTE4 greater than FPL-55712. The maximum number of binding sites (Bmax) of [3H]LTD4 in the membrane of BC3H-1 cell line was about 11 times lower than that of the [3H]LTC4. The calculated values of Kd and Bmax of [3H]LTD4 binding were 9.3 +/- 0.8 nM and 0.37 +/- 0.04 pmol/mg protein, respectively (n = 3). The rank order of potency or the unlabeled competitors for competing specific [3H]LTD4 binding was LTD4 = LTE4 greater than FPL-55712 much greater than LTC4. These findings demonstrate that BC3H-1 cell line possess both LTC4 and LTD4 receptors with a predominance of LTC4 receptors. Thus BC3H-1 cell line is a good model to study the regulation of LTC4 and LTD4 receptors.  相似文献   

14.
Inhibition of leukotriene D4 catabolism by D-penicillamine   总被引:5,自引:0,他引:5  
Inhibition of the catabolism of the most biologically potent cysteinyl leukotriene, LTD4, was studied in rat hepatoma cells in vitro and in the rat in vivo. LTD4 dipeptidase, an ectoenzyme on the surface of AS-30D hepatoma cells, exhibited an apparent Km value of 6.6 microM for LTD4. D-Penicillamine and L-penicillamine inhibited this enzyme activity with apparent Ki values of 0.46 mM and 0.21 mM respectively. Bestatin, an inhibitor of the aminopeptidase activity of hepatoma cells, did not affect LTD4 hydrolysis at concentrations as high as 5 mM, indicating that the aminopeptidase did not contribute to LTD4 catabolism. In the rat in vivo, D-penicillamine also inhibited LTD4 catabolism. After intravenous injection of [3H]LTC4 an accumulation of [3H]LTD4 and a retarded formation of [3H]LTE4 were observed in the circulating blood after D-penicillamine pretreatment. Within 1 h after intravenous [3H]LTC4 injection, about 80% of the administered radioactivity was recovered in bile. After D-penicillamine pretreatment [3H]LTD4 was the major biliary leukotriene metabolite, whereas in untreated controls leukotriene metabolites more polar than LTC4 predominated in bile. After stimulation of endogenous leukotriene production in vivo by platelet-activating factor, N-acetyl-LTE4 was the major cysteinyl leukotriene detected in bile. D-Penicillamine treatment prior to platelet-activating factor resulted in the accumulation of LTD4, which under these circumstances was the major endogenous leukotriene metabolite detected in bile.  相似文献   

15.
The presence of binding sites for [3H]leukotriene (LT) C4 in bovine corpora lutea of pregnancy was investigated with quantitative light microscopic autoradiography. Silver grains were found over small (15-20 microns) and large (20-50 microns) luteal cells and arteriolar smooth muscle. Vascular endothelial cells, erythrocytes in arteriolar lumen, and fibroblasts, on the other hand, contained very few or no net grains. The grain distribution over luteal cells and arteriolar smooth muscle was reduced (p less than 0.001) after coincubation with excess unlabeled LTC4 but not with excess unlabeled LTA4, LTB4, LTD4, LTE4, prostaglandin (PG)E2, PGF2 alpha or PGI2. The large luteal cells contained 16.1 net grains per cell, which was 6.4 and 7.0 times the number of specific grains as in small luteal and arteriolar smooth muscle cells, respectively (p less than 0.001). When the net grains were corrected for cell area differences, large luteal cells and arteriole smooth muscle cells contained a similar number of grains-which was two times as many as those found in small luteal cells. These findings suggest that LTC4 can potentially regulate functions of not only luteal cells but also luteal vasculature.  相似文献   

16.
Miles EA  Allen E  Calder PC 《Cytokine》2002,20(5):215-223
INTRODUCTION: Prostaglandins (PG) and leukotrienes (LT) are usually formed from arachidonic acid (e.g. PGE(2), LTB(4), LTC(4)). The anti-inflammatory effects of fish oil may be mediated through the production of alternative PG and/or LT formed from eicosapentaenoic acid (e.g. PGE(3), LTC(5)). This study examines the effects of PG and LT derived from different fatty acid precursors on lipopolysaccharide-induced cytokine production by cultured human whole blood.Methods Human whole blood was diluted 1:5 and incubated for 48h with lipopolysaccharide. PGE and LT were added and the concentrations of inflammatory cytokines in the cell culture supernatants determined. RESULTS: Tumour necrosis factor (TNF)-alpha concentrations were significantly decreased by the addition of PGE. At the maximum concentration used (10(-6)M) TNF-alpha concentration was reduced to 100%, 90% and 70% by PGE(1), PGE(2) and PGE(3) respectively. Likewise, interleukin (IL)-1beta concentration was decreased to 60%, 30% and 40% by 10(-6)M PGE(1), PGE(2) and PGE(3), respectively. IL-6 and IL-10 concentrations were not altered by PG. LTB(4), LTC(4) or LTC(5) did not significantly affect cytokine concentrations. CONCLUSIONS: PGE inhibit lipopolysaccharide-stimulated TNF-alpha and IL-1beta production in human whole blood cultures. PGE(1), PGE(2) and PGE(3) show a similar pattern and magnitude of effect. This suggests that the anti-inflammatory effects of dietary fish oil may not be mediated through a simple substitution of one family of eicosanoids for another.  相似文献   

17.
The contractions elicited by leukotriene (LT) C4 and D4 in isolated guinea pig trachea were characterized under conditions in which LTC4 to LTD4 metabolism was blocked by the presence of 45 mM l-serine-borate complex (SB). The presence of SB caused a shift of the LTC4-concentration-response curve to the left by 7.5-fold, and blocked the bioconversion of LTC4 to LTD4 by the trachea as estimated by HPLC analysis of the LTs present in the tissue bath fluid. The potency of FPL 55712 as an antagonist of the LTC4-induced contractions in the presence of SB was 15-30-fold less than its potency as an antagonist of the LTD4-induced contractions. In contrast, another LT antagonist, SK&F 101132, equally antagonized the contractions elicited by LTC4 and LTD4 in either the presence or absence of SB. The differential antagonism of LTC4 and LTD4 implies the existence of multiple pharmacologic receptors for the LTs. The calcium channel entry blockers, nifedipine and verapamil, at concentrations as high as 10 microM, suppressed the maximal LTC4-induced contraction by no more than 20%, whereas the purported intracellular calcium antagonist, TMB-8, completely suppressed the LTC4 concentration-response curve in the presence of SB, a profile identical to that previously reported for LTD4. Thus, if multiple LT receptors exist, they appear to mobilize calcium in a qualitatively similar fashion following LT stimulation.  相似文献   

18.
Augmentation of the phytohemagglutinin (PHA)-induced lymphoproliferation of peripheral blood mononuclear cells by indomethacin, a drug which blocks prostaglandin (PG) synthesis, was assessed in 37 patients with squamous cell carcinoma of the head and neck. Indomethacin enhanced the uptake of 3H-thymidine in stimulated cultures both from patients and normal individuals. However, because lymphoid cells from cancer patients were less reactive than those from normal controls, the proportionate increase in PHA-stimulated 3H-thymidine incorporation caused by indomethacin was greater in this population than in the normal population. The degree of enhancement induced by indomethacin did not correlate with the percent of esterase-positive mononuclear cells in the preparations. The amounts of PGE synthesized at 48 h by patients' or normal cells were similar. Cell populations that exhibited elevated levels of augmentation in the presence of indomethacin were approximately 3 times as sensitive to inhibition by 3 nM PGE2. The degree of augmentation detected in the presence of Ro-20-5720, which also prevents PG synthesis, was related to that produced by indomethacin. These results suggested that: the enhancing effect of indomethacin on lymphoproliferation in vitro was related to its inhibition of PG synthesis; and the sensitivity of lymphoid cells to inhibition by PGE2 was slightly, but significantly, increased in individuals with elevated augmentation values.  相似文献   

19.
The biosynthesis of leukotrienes (LT) C4 and B4 is followed by an export of these mediators into the extracellular space. This transport was characterized using plasma membrane vesicles prepared from mastocytoma cells and identified as an ATP-dependent primary active process. The apparent Km-values were 110 nM for LTC4 and 48 microM for ATP. The transport rate was highest for LTC4, whereas LTD4, LTE4, and N-acetyl-LTE4 were transported with relative rates of 31, 12 and 8%, respectively, at a concentration of 10 nM. LTB4 transport was also dependent on ATP. LTC4 transport was inhibited by LTD4 receptor antagonists (IC50 = 1.0 microM for MK-571 and 1.3 microM for LY245769) and by the inhibitor of leukotriene biosynthesis MK-886 (IC50 = 1.8 microM). The ATP-dependent export carrier for leukotrienes in leukotriene-synthesizing cells represents a novel member of the family of ATP-dependent exit pumps.  相似文献   

20.
Reactive mastocytosis (RM) in epithelial surfaces is a consistent Th2-associated feature of allergic disease. RM fails to develop in mice lacking leukotriene (LT) C4 synthase (LTC4S), which is required for cysteinyl leukotriene (cys-LT) production. We now report that IL-4, which induces LTC4S expression by mast cells (MCs), requires cys-LTs, the cys-LT type 1 receptor (CysLT1), and Gi proteins to promote MC proliferation. LTD4 (10-1000 nM) enhanced proliferation of human MCs in a CysLT1-dependent, pertussis toxin-sensitive manner. LTD4-induced phosphorylation of ERK required transactivation of c-kit. IL-4-driven comitogenesis was likewise sensitive to pertussis toxin or a CysLT1-selective antagonist and was attenuated by treatment with leukotriene synthesis inhibitors. Mouse MCs lacking LTC4S or CysLT1 showed substantially diminished IL-4-induced comitogenesis. Thus, IL-4 induces proliferation in part by inducing LTC4S and cys-LT generation, which causes CysLT1 to transactivate c-kit in RM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号