首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Four rumen fistulated Suffolk wethers were allocated to a 4×4 Latin square designed experiment. High nitrate (1.5 g NaNO3 kg−0.75 body weight), high nitrate with high L-cysteine (0.55 g sulphur equivalent kg−0.75 body weight), low nitrate (0.75 g NaNO3 kg−0.75 body weight), and low nitrate with low L-cysteine (0.275 g sulphur equivalent kg−0.75 body weight) were administered into the rumen through fistulae as a single dose after a morning meal. Gaseous exchanges were monitored by an open circuit respiratory system using a hood over the animal's head. High or low L-cysteine remarkably decreased nitrite production from ruminal reduction of high or low nitrate. Consequently, methaemoglobin formation was suppressed by L-cysteine in both levels of nitrate. Oxygen consumption, carbon dioxide production and metabolic rate were depressed as methaemoglobin was formed. L-cysteine suppressed the pulmonary dysfunction induced by methaemoglobin. L-cysteine equivalent to 60% of the upper allowance of dietary sulphur appeared to be useful as a prophylactic for acute poisoning of nitrate. Thus, dosage of L-cysteine can be adjusted to correspond with the nitrate content in feeds.  相似文献   

3.
The metabolic fate of nitrogen from 15N-labeled sodium nitrate has been investigated in four healthy Polish Merino ewes. 15N-labeled sodium nitrate was administered intravenously at the dosage of 400 micromol.kg(-1) body weight. Blood plasma and urine concentrations of nitrate, ammonia, and urea and 15N enrichment of ammonia and urea were estimated over a 50-h period following 15N-nitrate administration. Nitrate (NO3-) was slowly eliminated from the blood plasma, and the presence of NO3(-) in the blood plasma above the nitrate "background" was observed for 50 h. 15N enrichment of blood plasma urea already appeared at 15 min and reached the maximum 6 h after 15N-nitrate administration. The urinary excretion of nitrate occured during 50 h after 15N-nitrate injection; the total urine excretion of NO3(-) was 23.63+/-2.39% of the administered dose. The mean urinary recoveries of nitrogen as 15N-urea and 15N-ammonia were 14.76+/-1.32% and 0.096+/-0.015% of the administered 15N-nitrate dose, respectively. It should be pointed out that in total only 38.49% of the administered nitrate-N was excreted in urine (as nitrate, ammonia and urea nitrogen) during 50 h. The results obtained indicate that sheep are able to store nitrate nitrogen in their body. The fate of the remaining approximately 60% of the 15NO3(-) administered dose is unknown. The results obtained do not allow one to conclude what fraction of the unrecovered approximately 60% of the 15NO3(-) dose was utilized by gastrointestinal microorganisms, and (or) metabolized, or stored in sheep tissues.  相似文献   

4.
5.
The cytoplasmic NO3 concentration ([NO3]c) was estimated for roots of barley (Hordeum vulgare L. cv Klondike) using a technique based on measurement of in vivo nitrate reductase activity. At zero external NO3 concentration ([NO3]o), [NO3]c was estimated to be 0.66 mm for plants previously grown in 100 μm NO3. It increased linearly with [NO3]o between 2 and 20 mm, up to 3.9 mm at 20 mm [NO3]o. The values obtained are much lower than previous estimates from compartmental analysis of barley roots. These observations support the suggestion (MY Siddiqi, ADM Glass, TJ Ruth [1991] J Exp Bot 42: 1455-1463) that the nitrate reductase-based technique and compartmental analysis determine [NO3]c for two separate pools; an active, nitrate reductase-containing pool (possibly located in the epidermal cells) and a larger, slowly metabolized storage pool (possibly in the cortical cells), respectively. Given the values obtained for [NO3]c and cell membrane potentials of −200 to −300 mV (ADM Glass, JE Schaff, LV Kochian [1992] Plant Physiol 99: 456-463), it is very unlikely that passive influx of NO3 is possible via the high-concentration, low-affinity transport system for NO3. This conclusion is consistent with the suggestion by Glass et al. that this system is thermodynamically active and capable of transporting NO3 against its electrochemical potential gradient.  相似文献   

6.
7.
Nitrogen assimilation was studied in the deciduous, perennial climber Clematis vitalba. When solely supplied with NO3 in a hydroponic system, growth and N-assimilation characteristics were similar to those reported for a range of other species. When solely supplied with NH4+, however, nitrate reductase (NR) activity dramatically increased in shoot tissue, and particularly leaf tissue, to up to three times the maximum level achieved in NO3 supplied plants. NO3 was not detected in plant material that had been solely supplied with NH4+, there was no NO3 contamination of the hydroponic system, and the NH4+-induced activity did not occur in tobacco or barley grown under similar conditions. Western Blot analysis revealed that the induction of NR activity, either by NO3 or NH4+, was matched by NR and nitrite reductase protein synthesis, but this was not the case for the ammonium assimilation enzyme glutamine synthetase. Exposure of leaf disks to N revealed that NO3 assimilation was induced in leaves directly by NO3 and NH4+ but not glutamine. Our results suggest that the NH4+-induced potential for NO3 assimilation occurs when externally sourced NH4+ is assimilated in the absence of any NO3 assimilation. These data show that the potential for nitrate assimilation in C. vitalba is induced by a nitrogenous compound in the absence of its substrate and suggest that NO3 assimilation in C. vitalba may have a significant role beyond the supply of reduced N for growth.  相似文献   

8.
The regulation of the development of nitrate reductase (NR) activity in Chlamydomonas reinhardii has been compared in a wild-type strain and in a mutant (nit-A) which possesses a modified nitrate reductase enzyme that is non-functional in vivo. The modified enzyme cannot use NAD(P)H as an electron donor for nitrate reduction and it differs from wild-type enzyme in that NR activity is not inactivated in vitro by incubation with NAD(P)H and small quantities of cyanide; it is inactivated when reduced benzyl viologen or flavin mononucleotide is present. After short periods of nitrogen starvation mutant organisms contain much higher levels of terminal-NR activity than do similarly treated wild-type ones. Despite the inability of the mutant to utilize nitrate, no nitrate or nitrite was found in nitrogen-starved cultures; it is therefore concluded that the appearance of NR activity is not a consequence of nitrification. After prolonged nitrogen starvation (22 h) the NR level in the mutant is low. It increases rapidly if nitrate is then added and this increase in activity does not occur in the presence of ammonium, tungstate or cycloheximide. Disappearance of preformed NR activity is stimulated by addition of tungstate and even more by addition of ammonium. The results are interpreted as evidence for a continuous turnover of NR in cells of the mutant with ammonium both stimulating NR breakdown and stopping NR synthesis. Nitrate protects the enzyme from breakdown. Reversible inactivation of NR activity is thought to play an insignificant rôle in the mutant.Abbreviations NR nitrate reductase - BV benzyl viologen  相似文献   

9.
10.
Summary Comparative trials with sodium nitrate and calcium nitrate on the potato indicate a certain superiority of the former, probably due to a greater utilization of potassium and hence improved carbohydrate metabolism.  相似文献   

11.
An in situ method for measuring nitrate reductase (NR) activity in Dunaliella viridis was optimized in terms of incubation time, concentration of KNO3, permeabilisers (1-propanol and toluene), pH, salinity, and reducing power (glucose and NADH). NR activity was measured by following nitrite production and was best assayed with 50 mM KNO3, 1.2 mM NADH, 5% 1-propanol (v/v), at pH 8.5. The estimated half-saturation constant (Ks) for KNO3 was 5 mM. Glucose had no effect as external reducing power source, and NADH concentrations >1.2 mM inhibited NR activity. Nitrite production was linear up to 20 min; longer incubation did not lead to higher nitrate reduction. The use of the optimized assay predicted the rate of NO 3 removal from the external medium by D. viridis with high degree of precision. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

12.
A study was done to relate the in vivo reduction of nitrate to nitrate uptake, nitrate accumulation, and induction of nitrate reductase activity in intact barley seedlings (Hordeum vulgare L. var. `Numar'). The characteristics of nitrate uptake in response to both time and ambient concentration of nitrate regulated reduction and accumulation. Uptake, accumulation, and in vivo reduction achieved steady state rates in 3 to 4 hours, whereas extractable (in vitro) nitrate reductase activity was still increasing at 12 hours. In vivo reduction of nitrate was better correlated exponentially than linearly over time with in vitro activity of nitrate reductase. A similar relationship occurred over increasing concentration of nitrate in the ambient solution. The results suggest that the rate of in vivo reduction of nitrate in barley seedlings may be regulated by the rate of uptake at the ambient concentrations of nitrate employed in the study.  相似文献   

13.
14.
15.
1. A method was developed to examine the turnover of nitrate reductase by the use of tungstate. 2. Evidence is presented which suggests that the disappearance of nitrate reductase activity from Neurospora mycelia exposed to non-inducing conditions is due to the disappearance of the enzyme protein(s) from the mycelia, and not merely due to the disappearance of its (their) catalytic power. 3. The presence of NO(3) (-) in the culture medium slows down the rate of degradation of nitrate reductase in Neurospora in vivo.  相似文献   

16.
17.
Development of the omasum in sheep   总被引:1,自引:0,他引:1  
D Lubis  J D O'Shea 《Acta anatomica》1978,100(4):400-410
Data are presented on the histogenesis of the omasal mucosa in sheep from the 2.5 cm crown-rump (c-r) length fetus to the adult. 11 stages of fetal development, and 4 post-natal stages, were studies. The distribution of glycogen in the omasal epithelium was also studied. During fetal life the omasal epithelium was initially stratified cuboidal in type, but the superficial layers of cells became flattened in later stages of gestation. This epithelium became extremely thick by the late stages of fetal life, reaching a maximum of 358 micron, and consisting of greater than 20 layers of cells, in the 45 cm c-r fetus (approximatelay 140 days). After birth the epithelium became markedly reduced in thickness, being approximately 77 micron in the adult, and had differentiated into a cornified stratified squamous epithelium of the adult type by 12 weeks after birth. Glycogen was extremely abundant in the omasal epithelium of the 2.5 cm fetus, and declined gradually thereafter to be almost completely absent in post-natal specimens. 4 orders of laminae were present in the adult omasum, distributed in the seqeunce 1-4-3-4-2-4-3-4-1. The 1st order was already present in fetuses of 2.5 cm c-r length, with the 2nd, 3rd and 4th appearing by the 3.5, 5.5 and 11.0 cm stages, respectively. Initial stages in the development of conical papillae were first seen in 15.0 cm fetuses, but the development of these papillae was not completed until after birth.  相似文献   

18.
The impact of nitrate (5–15 m M , 2 to 7 days) on nitrogenase activity and nodule-oxygen limitation was investigated in nodulated, 21-day-old plants of a near-isogenic nitrate reductase-deficient pea mutant (A3171) and its wild-type parent ( Pisum sativum L. cv. Juneau). Within 2 days, 10 or 15 m M nitrate, but not 5 m M nitrate, inhibited the apparent nitrogenase activity (measured as in situ hydrogen evolution from nodules of intact plants) of wild-type plants; none of these nitrate levels inhibited the apparent nitrogenase activity of A3171 plants. Nodule-oxygen limitation, measured as the ratio of total nitrogenase activity to potential nitrogenase activity, was increased in both wild-type and A3171 plants by all nitrate treatments. By 3 to 4 days the apparent nitrogenase activity of A3171 and wild-type plants supplied with 5 m M nitrate declined to 53 to 69% of control plants not receiving nitrate. By 6 to 7 days the apparent nitrogenase activity of A3171 plants was similar to the control value whereas that of the wild-type plants continued to decline. From 3 to 7 days, no significant differences in nodule-oxygen limitation were observed between the nitrate (5 m M ) and control treatments. The results are interpreted as evidence for separate mechanisms in the initial (O2 limitation) and longer-term (nitrate metabolism) effects of nitrate on nitrogen fixation by effectively nodulated pea.  相似文献   

19.
20.
Luteotrophic factors in the sheep   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号