首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological Effects of Serial Impoundment on the Cotter River, Australia   总被引:1,自引:0,他引:1  
This study examines the ecological effects of serial impoundments (three dams) on a rocky upland stream in southeastern Australia. Physical, chemical and biological changes were quantified and interpreted within a three-level hierarchy of effects model developed previously by Petts [1984, Impounded Rivers. John Wiley and Sons, New York] and the Australian Rivers Assessment System (AUSRIVAS) to predict pre-dam biota. First-order effects were decreased median monthly discharges and floods of lesser magnitude following construction of the dams. No effect on water characteristics (pH, electrical conductivity and major ions) was evident. The second-order effect on channel morphology was a decrease in bank-full cross-sectional area by up to 75% because of reduced flows. At all sites, the predominantly cobble streambed was armoured and generally highly stable. The discharge required to initiate movement of the streambed surface sediments (38.9 m3 s−1) was 40% less frequent since construction of the dams, implying alteration to the natural disturbance regime for benthic biota. Benthic algal growth appeared more prolific at sites directly below dams. Fewer macroinvertebrate taxa than expected and modified assemblages within 1 km of all three dams were third-order effects. Compared to reference conditions, macroinvertebrate samples from the sites directly below the dams had relatively more Chironomidae larvae, Oligochaeta and Acarina, and fewer of the more sensitive taxa, Plecoptera, Ephemeroptera, Trichoptera and Coleoptera. Biological recovery to the macroinvertebrate assemblage was evident within 4 km downstream of the second dam.  相似文献   

2.
The ecological responses of aquatic macrophytes and benthic macroinvertebrates to deep-release dams in three impounded rivers of the Henares River Basin (Central Spain) were studied, specially focusing on the effects of nutrient enrichment caused by deep releases on these two freshwater communities. Three sampling sites, one upstream and two downstream from the reservoir, were established in each impounded river. Sampling surveys to collect submersed macrophytes and benthic macroinvertebrates at each sampling site were carried out in spring–summer of 2009 and 2011. Water temperature tended to decrease downstream from dams, whereas nitrate and phosphate concentrations tended to increase. These abiotic changes, particularly the downstream nutrient enrichment, apparently affected the macrophyte and macroinvertebrate communities. In the case of submersed macrophytes, total coverage and taxa richness increased downstream from dams. In the case of benthic macroinvertebrates, total density and total biomass also increased downstream, but taxa richness tended to decrease. Scrapers appeared to be the macroinvertebrate feeding group most favored downstream from dams as a probable consequence of the positive effect of nutrient enrichment on periphyton and perilithon abundance. Nutrients would ultimately come from water runoff over agricultural lands and over semi-natural forests and pastures, being subsequently accumulated in the hypolimnion of reservoirs.  相似文献   

3.
Environmental flows are the main restoration technique used to ameliorate the ecological effects of regulation in rivers. However, their effectiveness has yet to be unanimously accepted. This study assessed the potential ecological benefits of the application of an environmental flow regime downstream of four dams and two weirs in the Upper Nepean River system, Sydney, Australia. Aquatic macroinvertebrates in three habitat types were sampled at water‐supply and low‐flow sites and unregulated sites in 1995 and 1996, prior to the environmental flows and in 2013 and 2014, approximately 13 years following the environmental flows. The macroinvertebrate assemblage structure was significantly different between regulated and reference sites and the number of taxa lower at water‐supply sites prior to the implementation of the environmental flows. Following the environmental flows, the assemblage structure became more similar to, although still significantly different from, the unregulated sites and the number of taxa was not significantly different between regulated and unregulated sites. Thirteen or approximately 30% of taxa indicative of unregulated rivers increased in frequency at regulated sites following the environmental flows. Despite potentially similar dispersal capabilities the remainder of the taxa failed to respond the new flow regimes. The mechanisms resulting in recovery of some taxa but not others remain unclear and require further investigation as the basis of future research and monitoring. Such information and knowledge would support the application of future environmental flow regimes as the primary mechanism to ameliorate the ecological effects of river regulation.  相似文献   

4.
The study assessed the impact of damming on water quality and macroinvertebrate assemblages. It also assessed the response of macroinvertebrate‐based indices of water quality to damming. Macroinvertebrate community and physicochemical variables data were collected from 86 sites. Twenty‐nine sites downstream of dams were compared with 27 sites above impoundments and 30 sites on nearby unregulated streams. Of the downstream sites, 13 were situated <1 km from a dam while the other 16 were situated >1 km from a dam. A decrease in temperature, dissolved oxygen, conductivity and total dissolved solids was observed in sites immediately downstream of impoundments. Macroinvertebrate community structure and South African Scoring System (SASS) scores closely followed the damming‐induced changes in water quality. However, water quality variables, macroinvertebrate community structure and SASS scores reverted back to typical upstream conditions in distances around 1 km from dams. Stream recovery from dam‐induced changes was demonstrated with streams recovering at distances around 1 km from the point of regulation in corroboration with predictions of the serial discontinuity concept (SDC). These dam‐induced changes also reflected themselves in SASS scores suggesting potential usefulness of SASS in monitoring ecological integrity of tropical rivers following disturbances like damming.  相似文献   

5.
Models are developed which predict changes in macrofloral and macroinvertebrate assemblages in response to surface water acidification. Empirical relationships between assemblage type and water chemistry are used to predict the probabilities of species occurrences during acidification, as recreated by the hydrochemical model, MAGIC. The water chemistry of two streams is simulated between 1844 and 2124. From 1958, alternative scenarios involved either moorland or conifer forest. From 1984, sulphate deposition was either constant or reduced by 50%. Alternative ecological models driven by pH or total hardness are compared. The floral model showed minor differences between scenarios, probabilities of species occurrence changing gradually and reaching stable values by around 1964. For certain invertebrate species the occurrence probabilities changed rapidly over relatively short periods, for example in the late 20 h century under moorland with constant deposition. Reduced sulphate deposition prevented decrease of acid sensitive species in moorland scenarios but not under forest, which greatly accelerated faunal changes irrespective of deposition pattern. Differences between the pH and hardness models indicated that the effects of these parameters should be separated in future studies. Where an earlier model showed only step changes in invertebrate assemblage type, this new approach can model more precise taxonomic shifts occurring with acidification. Such changes could be important to conservation, or as early indicators of response to pollution. The tentative simulations here suggest that large taxonomic changes may occur over relatively short periods during acidification.  相似文献   

6.
Prudent management of lotic systems requires information on their ecological status that can be estimated by monitoring water quality and biodiversity attributes. To understand environmental conditions in Gatharaini drainage basin in Central Kenya, a study was carried out to establish the relationship between water quality and macroinvertebrate assemblages between the months of March and September 1996. Six sampling sites, each 25 m long were selected along a 24‐km stretch of the stream, which drained land under agricultural, residential and industrial use. Water physico‐chemical data was explored using multivariate analysis of Principal Component Analysis to detect environmental trends downstream. Both macroinvertebrates and water physico‐chemical data of suggested trends were analysed for variations and correlations. Temperatures and invertebrate densities changed significantly between the dry and wet season (P < 0.01) but the fluctuations were not evident downstream. Water physico‐chemical characteristics (total dissolved solids (TDS), pH, turbidity, dissolved oxygen) and biodiversity indices (species richness, diversity, dominance, evenness) changed markedly downstream (P < 0.01). Biodiversity indices correlated inversely with TDS, pH and turbidity but positively with dissolved O2. It was evident macroinvertebrate assemblages changed significantly downstream as opposed to functional feeding groups. Diptera was important in most sites whilst Oligochaeta dominance increased downstream corresponding to the deterioration in water quality. Collectors/browsers were the dominant functional feeding groups at most sites. This study showed that significant changes in aquatic macroinvertebrate assemblages were primarily due to water quality rather than prevailing climatic conditions.  相似文献   

7.
8.
This paper investigates spatial, seasonal and long-term changes in benthic macroinvertebrates in riffles of a cold tailwater. Cold tailwaters initially disrupt previously existing macroinvertebrate assemblages, but little is known about the long-term biological effects of a stable cold thermal regime. Assemblages at an upstream and downstream site of the Little Red River, Arkansas were investigated almost 30 years apart (1971 and 1999). Based upon published literature demonstrating the stability of benthic assemblages within unaltered environments, we predicted that the assemblages would be similar for each variable investigated. The benthic macroinvertebrate assemblages can be characterized as low diversity, with a total of 17 taxa identified. Isopods and Diptera comprised ~80% of all individuals. Other than chironomids, insects and particularly EPT taxa were poorly represented. Recent macroinvertebrate densities were significantly greater compared to the historical study period for the downstream site. Assemblage comparisons revealed moderate differences between study periods. Macroinvertebrate density was significantly greater upstream than downstream in the 1971 study period, yet taxa richness was significantly greater downstream for both study periods. Faunal composition was significantly different for upstream and downstream sites. Seasonal differences in numerical standing crop were identified for the 1971 upstream and 1999 downstream data sets. Low to moderate levels of seasonal, spatial and historical variation among benthic macroinvertebrate assemblages were attributed to environmental (temperature and flow) stability. The lack of aquatic insects other than chironomids over a 30-year period is indicative of the extreme constraints placed upon insect development within this cold regulated river.  相似文献   

9.
1. In sub‐Saharan Africa, tropical forests are increasingly threatened by accelerating rates of forest conversion and degradation. In East Africa, the larger tracts of intact rainforest lie largely in protected areas surrounded by converted landscape. Thus, there is critical need to understand the functional links between large‐scale land use and changes in river conditions, and the implications of park boundaries on catchment integrity. 2. The objective of this study was to use the mosaic of heavily converted land and pristine forest created by the protection of the high‐altitude rainforest in Bwindi Impenetrable National Park, Uganda to explore effects of deforestation on aquatic systems and the value of forest in buffering effects of adjacent land conversion. A set of 16 sites was selected over four drainages to include four categories of deforestation: agricultural land, deforested upstream (of the park boundary), forest edge (park boundary) and forest. We predicted that forest buffer (downstream or on the edge) would moderate effects of deforestation. To address this prediction, we quantified relationships between disturbance level and both physicochemical characters and traits of the macroinvertebrate assemblages during six sampling periods (February 2003 and June 2004). 3. Results of both principal components analysis and cluster analyses indicated differences in limnological variables among deforestation categories. PC1 described a gradient from deforested sites with poor water quality to pristine forested sites with relatively good water quality. Agricultural sites and deforested upstream sites generally had the highest turbidity, total dissolved solids (TDS), and conductivity values and low transparency values. Forest sites and boundary site groups generally exhibited low turbidity, TDS, and conductivity values and high water transparency values. Sites also clustered according to deforestation categories; forest and forested edge sites formed a cluster independent of both agricultural land and deforested‐upstream. 4. Water transparency, water temperature, and pH were the most important factors predicting benthic macroinvertebrate assemblages. Sensitive invertebrate families of Trichoptera, Ephemeroptera, Plecoptera, and Odonata dominated forested sites with high water transparency, low water temperature, and low pH while the tolerant families of Ephemeroptera, Diptera, Hemiptera, and Coleoptera were abundant in agriculturally impacted sites with low water transparency, high water temperature, and high pH. 5. This study provides support for the importance of riparian buffers in moderating effects of deforestation. Forest and forested edge sites were more similar in both limnological and macroinvertebrate assemblage structure than sites within or downstream from agricultural lands. If the protected area cannot encompass the catchment, the use of rivers as park boundaries may help to maintain the biological integrity of the rivers by buffering one side of the watercourse.  相似文献   

10.
Much recent work on patch-occupancy dynamics has been concentrated in terrestrial ecosystems, with few examples evident from soft-sediment marine habitats. Seagrass landscapes have recently been recognised to be potentially ideal marine models for the study of such ecological concepts. Infaunal macroinvertebrate assemblages of two patch sizes of the seagrass Zostera marina were compared: small (<15 m diameter) and large (>30 m diameter), using an unreplicated random block design. Further comparison was made between infaunal assemblage composition at the edge and centre of each patch. Univariate statistical analysis of data indicated significantly greater total numbers of taxa in samples from large patches than in small. Multivariate analyses indicated significant differences in assemblage composition due to both patch size and in-patch location, and revealed that differences were due to small changes in the relative abundances of many taxa. Possible mechanisms underlying the observed variations of assemblage composition with patch size and in-patch location are discussed. Although the present results support some of the theories relating to the control of infaunal assemblage composition, explanations are not applicable across all taxonomic groups. At the scale of the present study, seagrass patch size and edge-effects appear to be less significant than 'regional' factors, which relate to relatively small variation in environmental parameters, for the structuring of infaunal macroinvertebrate assemblages.  相似文献   

11.
山地河流潜流层大型无脊椎动物群落组成及分布   总被引:1,自引:1,他引:0  
潜流层大型无脊椎动物是河流生态系统重要的组成部分.2013年8月(夏季)、12月(冬季)和2014年4月(春季),在黑水滩河上游河段,采用人工基质法调查潜流层大型无脊椎动物.结果表明: 3个季节共采集大型无脊椎动物27种,其中夏季22种、冬季和春季各16种,各季节水生昆虫种类所占比例均较高,分别为81.8%、75.0%和62.5%;夏季群落密度显著低于冬季和春季,春季最高;冬季群落生物量显著高于夏季和春季,夏季最低;3个季节群落的物种丰富度指数、Shannon多样性指数和Pielou均匀度指数均没有显著性差异.空间分布上,大型无脊椎动物的密度和丰富度均随潜流层深度增加而呈现降低的趋势,大多数个体均分布在0~20 cm深度.群落以滤食者和收集者组成的集食者为绝对优势功能群.动物的相互作用、生活史策略和潜流层的理化条件影响着潜流层大型无脊椎动物的群落结构和时空分布.  相似文献   

12.
As part of the extensive field sampling programme within the European Union STAR project, replicate macroinvertebrate samples were taken using the STAR-AQEM sampling method at each of 2–13 sites of varying ecological quality within each of 15 stream types spread over 12 countries throughout Europe. The STAR-AQEM method requires the sub-sampling and taxonomic identification of at least one-sixth of the sample and at least 700 individuals. Replicate sub-samples were also taken at most of these sites. Sub-sampling effects caused more than 50% of the overall variance between replicate samples values for 12 of the 27 macroinvertebrate metrics analysed and was generally greatest for metrics that depend on the number of taxa present. The sampling precision of each metric was estimated by the overall replicate sampling variance as a percentage Psamp of the total variance in metric values within a stream type. Average over all stream types, the three Saprobic indices had the lowest percentage sampling variances with median values of only 3–6%. Most of the metrics had typical replicate sampling variances of 8–18% of the total variability within a stream type; this gives rise to estimated rates of mis-classifying sites to ecological status class of between 22 and 55% with an average of about 40%. This suggests that the precision of such metrics based on the STAR-AQEM method is only sufficient to indicate gross changes in the ecological status of sites, but there will be considerable uncertainty in the assignment of sites to adjacent status classes. These estimates can be used to provide information on the effects of STAR-AQEM sampling variation on the expected uncertainty in multi-metric assessments of the ecological status of sites in the same or similar stream types, where only one sample has been taken at a point in time and thus there is no replication.  相似文献   

13.
Five distinct macroinvertebrate assemblages were identified using cluster analysis of the rank-order abundances of 13 orders in 15 freshwater springs of central Pennsylvania, U.S.A. A principal components analysis of 20 environmental factors indicated that an insect-dominated assemblage occurred in low pH, softwater sandstone springs and an amphipod-dominated assemblage was associated with medium to hardwater springs with a silt to gravel substratum. Three other assemblages were found in hardwater limestone springs: the peracaridan-hydrobiid assemblage was characterized by dense macrophyte beds and a silt to cobble substratum, the peracaridan-triclad-glossosomatid assemblage by a rubbly, gravel-cobble substratum and relatively high discharge, and the peracaridan-hydrobiid-oligochaete assemblage by a silty substratum and dense mats of green algae.Most of the common macroinvertebrate species were associated with specific physical, chemical, and (or) vegetational factors, but abundance associations between species pairs were generally lacking. We infer that assemblages are primarily determined by the match between the environmental mosaic of individual springs and the ecological requirements of the available species, rather than by strong interspecific interactions.Species-environment associations were assessed in an additional study of five closely neighboring springs in which some environmental variables of the wider study were nearly constant.  相似文献   

14.
An assessment of water and habitat quality, based on macroinvertebrate assemblage indices and qualitative habitat scores (QHS), was undertaken in the Honi and Naro Moru rivers, Kenya, in 2011. The two rivers are important as water sources for the local communities and as habitat for organisms such as invertebrates in the national parks there. The Naro Moru upstream site (QHS: 83%) is unmodified, with minimal human influence. The Honi downstream site and the Naro Moru midstream and downstream sites experienced moderate to large modifications in habitat and biota (QHS: 40–80%). South African scoring system (SASS) scores ranged from 43 (Naro Moru downstream) to 165 (Honi upstream), and there was a decrease in SASS scores with distance downstream. Based on the multimetric index (MI), the Honi and Naro Moru upstream and midstream sites have good water quality (MI: 0.6–0.8), whereas the Honi midstream and downstream sites, and the Naro Moru downstream site, have moderate water quality (MI: 0.4–0.6). Human activities had a negative effect on water quality and habitats. Preventive and conservation measures should be taken in the usage of the Naro Moru and Honi rivers.  相似文献   

15.
We examined responses of macroinvertebrate assemblages to environmental and temporal variations along spring source‐spring brook transects in two fen habitats, sharply differing in groundwater chemistry, and compared the patterns among individual taxonomical groups. We hypothesised a different importance of environmental heterogeneity and seasonal changes primarily linked to strong tufa precipitation, which causes stronger environmental filtering in the calcareous fen. In concordance, we observed that assemblages of the more homogenous calcareous fen primarily changed over time, due to seasonal shifts in source availability and favourable conditions. Their spatial distribution was determined by the amount of CPOM, tufa crusts and temperature variation, but a substantial part of the assemblage exhibited spatial uniformity (Plecoptera, Clitellata, and especially Trichoptera and Diptera). The assemblages of the more heterogeneous Sphagnum ‐fen were primarily driven by water pH and substrate and the season was a notably weaker predictor. We found that different macroinvertebrate groups can display various responses to the measured variables shaping the overall pattern obtained based on the whole community. Further, greater environmental heterogeneity can result in temporally stable species distribution patterns even at very small spatial scales within a single site. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The structural characteristics of the macroinvertebrate community can effectively reflect the health status of lake ecosystems and the quality of the lake ecological environment. It is therefore important to identify the limiting factors of macroinvertebrate community structure for the maintenance of lake ecosystem health. In this study, the community composition of macroinvertebrate assemblages and their relationships with environmental variables were investigated in 13 small lakes within Lianhuan Lake in northern China. A self‐organizing map and K‐means clustering analysis grouped the macroinvertebrate communities into five groups, and the indicator species reflected the environmental characteristics of each group. Principal component analysis indicated that the classification of the macroinvertebrate communities was affected by environmental variables. The Kruskal–Wallis test results showed that environmental variables (pH, total phosphorus, nitrate, water temperature, dissolved oxygen, conductivity, permanganate index, and ammonium) had a significant effect on the classification of the macroinvertebrate communities. Redundancy analysis showed that mollusks were significantly negatively correlated with pH and chlorophyll a, while annelids and aquatic insects were significantly positively correlated with chlorophyll a and dissolved oxygen. Spearman correlation analysis showed that the species richness and Shannon''s diversity of macroinvertebrates were significantly negatively correlated with total phosphorus, while the biomass of macroinvertebrates was significantly negatively correlated with pH. High alkalinity and lake eutrophication have a serious impact on the macroinvertebrate community. Human disturbances, such as industrial and agricultural runoff, negatively impact the ecological environment and affect macroinvertebrate community structure. Thus, macroinvertebrate community structure should be improved by enhancing the ecological environment and controlling environmental pollution at a watershed scale.  相似文献   

17.
We describe the relationship between macroinvertebrate community composition, the physicochemical environment and anthropogenic impacts, in running water sites across a range of water qualities in England and Wales. We have also investigated the degree of spatial structure present in both the macroinvertebrate community and the measured environment. Selected explanatory variables could account for 26% of the variation in lotic macroinvertebrate assemblage composition across England and Wales. The explanatory power of the CCA model was based predominantly on a combination of local scale variables (substrate, alkalinity, urban run-off) and regional scale variables (discharge category, northing). The physicochemical gradient associated with changes in stream type from headwaters to estuary dominated assemblage composition. The influence of pollution and habitat modification were of secondary importance. There was a substantial level of spatial structure to both the physicochemical (47% of its explanatory power spatially structured) and anthropogenic stress data (63% of its explanatory power spatially structured), which resulted in a high level of predictable spatial structuring in macroinvertebrate assemblages. Almost 40% of the variation in assemblage composition accounted for by the explanatory model exhibited spatial structure. Positive spatial autocorrelation in macroinvertebrate community composition extended to sites up to 150km apart. As a consequence, community composition could be described from northing and easting with 75% of the explanatory power of the eight physicochemical variables. Our study has confirmed the importance of the longitudinal gradient within catchments, as well as the geographical position of the catchment to macroinvertebrate communities. We have also demonstrated how quantifying the spatial structure in the dataset can improve our understanding of the factors influencing macroinvertebrate community structure.  相似文献   

18.
Anderson CB  Rosemond AD 《Oecologia》2007,154(1):141-153
Species invasions are of global significance, but predicting their impacts can be difficult. Introduced ecosystem engineers, however, provide an opportunity to test the underlying mechanisms that may be common to all invasive engineers and link relationships between changes in diversity and ecosystem function, thereby providing explanatory power for observed ecological patterns. Here we test specific predictions for an invasive ecosystem engineer by quantifying the impacts of habitat and resource modifications caused by North American beavers (Castor canadensis) on aquatic macroinvertebrate community structure and stream ecosystem function in the Cape Horn Biosphere Reserve, Chile. We compared responses to beavers in three habitat types: (1) forested (unimpacted) stream reaches, (2) beaver ponds, and (3) sites immediately downstream of beaver dams in four streams. We found that beaver engineering in ponds created taxonomically simplified, but more productive, benthic macroinvertebrate assemblages. Specifically, macroinvertebrate richness, diversity and number of functional feeding groups were reduced by half, while abundance, biomass and secondary production increased three- to fivefold in beaver ponds compared to forested sites. Reaches downstream of beaver ponds were very similar to natural forested sections. Beaver invasion effects on both community and ecosystem parameters occurred predominantly via increased retention of fine particulate organic matter, which was associated with reduced macroinvertebrate richness and diversity (via homogenization of benthic microhabitat) and increased macroinvertebrate biomass and production (via greater food availability). Beaver modifications to macroinvertebrate community structure were largely confined to ponds, but increased benthic production in beaver-modified habitats adds to energy retention and flow for the entire stream ecosystem. Furthermore, the effects of beavers on taxa richness (negative) and measures of macroinvertebrate biomass (positive) were inversely related. Thus, while a generally positive relationship between diversity and ecosystem function has been found in a variety of systems, this work shows how they can be decoupled by responding to alterative mechanisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
SUMMARY 1. Surprisingly few data compare the apparent responses of diatoms and macroinvertebrates to metals in streams. We examined variation in metals, diatoms and macroinvertebrates between 51 streams in metal‐mining areas of Wales and Cornwall, U.K., using a survey design with multiple reference and polluted sites. 2. To quantify variations in metals between sites, we calculated cumulative criterion unit (CCU) scores, a recently defined measure of total stream metal concentration and toxicity, to account for additive effects of each metal relative to putative toxic thresholds. We compared assemblage responses among epilithic diatoms and macroinvertebrates to CCU scores or individual metal concentrations using correlation and detrended correspondence analysis (DCA). 3. Macroinvertebrate diversity, richness and total abundance declined and evenness increased with increasing copper concentrations. Trends with CCU scores were significant but less pronounced. Some individual macroinvertebrate taxa varied significantly in abundance with CCU scores, copper or zinc, but overall assemblage composition correlated only with manganese, pH and nitrate. 4. Among diatoms, pH and conductivity explained the major variations in assemblage composition, and neither diversity, richness nor evenness varied with metal concentration. Nevertheless, the single strongest predictor of diatom assemblages on ordination axis 2 was the CCU score. The abundances of some macroinvertebrate taxa, particularly grazers, also explained significant variations in diatom assemblages that were linked to both metals and acid–base status. 5. Diatom species apparently tolerant of high metal concentrations included Psammothidium helveticum, Eunotia subarcuatoides, Pinnularia subcapitata and Sellaphora seminulum. Of these, P. helveticum, E. subarcuatoides and P. subcapitata were abundant at lower pH than S.seminulum and might indicate metal enrichment over different pH ranges. Sensitive species included Fragilaria capucina var. rumpens, Achnanthes oblongella and Tabellaria flocculosa. 6. We conclude that macroinvertebrates at these sites reflected metal pollution most strongly through variations in diversity while effects on diatoms were best reflected by changes in assemblage composition. We suggest that, with further refinement, CCU scores might be useful in evaluating the possible effects of metal pollution on benthic organisms in European rivers.  相似文献   

20.
济南河流大型底栖动物摄食功能群多样性及时空动态   总被引:2,自引:0,他引:2  
王博涵  吴丹  张吉  殷旭旺  赵长森  窦同文 《生态学报》2017,37(21):7128-7139
2014年春季(5月)、夏季(8月)和秋季(11月)对济南地区24个样点的大型底栖动物和水环境理化因子进行了野外调查。利用多样性指数以及典范对应分析等方法,分析了大型底栖动物群落组成和空间结构特征。结果表明:共采集到大型底栖动物3门57种,分别为节肢动物门、软体动物门和环节动物门。春季、夏季和秋季采集到大型底栖动物45种、35种和33种,春季优势种为霍甫水丝蚓(Limnodrilus hoffmeisteri)和豆螺(Bithynia fuchsiana),夏季优势种为溪流摇蚊(Chironomus riparius)和豆螺(Bithynia fuchsiana),秋季优势种为喜盐摇蚊(Chironomus salinarius)和豆螺(Bithynia fuchsiana)。春季、夏季和秋季密度平均值为2.49×10~3、0.56×10~3、1.03×10~3个体/m~2;生物量平均值为495.59、137.26、109.45 g/m2;Shannon-Wiener指数平均值分别为1.37、1.33和1.17;均匀度指数平均值分别为0.55、0.67和0.59。全地区共划分出大型底栖动物功能摄食类群5类,春季收集者种类最多为20种,夏季刮食者种类最多为12种,秋季收集者与刮食者种类最多为11种,3个季节中收集者密度均占绝对优势,其次为刮食者。典范对应分析表明,春季影响黄河流域和淮河流域大型底栖动物功能摄食类群的主要环境因子是总磷和总氮;夏季影响黄河流域和淮河流域大型底栖动物功能摄食类群的主要环境因子是pH和溶解氧;秋季影响黄河流域和淮河流域大型底栖动物功能摄食类群的主要环境因子是溶解氧和pH。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号