首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Regulation of NF-kappaB transactivation function is controlled at several levels, including interactions with coactivator proteins. Here we show that the transactivation function of NF-kappaB is also regulated through interaction of the p65 (RelA) subunit with histone deacetylase (HDAC) corepressor proteins. Our results show that inhibition of HDAC activity with trichostatin A (TSA) results in an increase in both basal and induced expression of an integrated NF-kappaB-dependent reporter gene. Chromatin immunoprecipitation (ChIP) assays show that TSA treatment causes hyperacetylation of the wild-type integrated NF-kappaB-dependent reporter but not of a mutant version in which the NF-kappaB binding sites were mutated. Expression of HDAC1 and HDAC2 repressed tumor necrosis factor (TNF)-induced NF-kappaB-dependent gene expression. Consistent with this, we show that HDAC1 and HDAC2 target NF-kappaB through a direct association of HDAC1 with the Rel homology domain of p65. HDAC2 does not interact with NF-kappaB directly but can regulate NF-kappaB activity through its association with HDAC1. Finally, we show that inhibition of HDAC activity with TSA causes an increase in both basal and TNF-induced expression of the NF-kappaB-regulated interleukin-8 (IL-8) gene. Similar to the wild-type integrated NF-kappaB-dependent reporter, ChIP assays showed that TSA treatment resulted in hyperacetylation of the IL-8 promoter. These data indicate that the transactivation function of NF-kappaB is regulated in part through its association with HDAC corepressor proteins. Moreover, it suggests that the association of NF-kappaB with the HDAC1 and HDAC2 corepressor proteins functions to repress expression of NF-kappaB-regulated genes as well as to control the induced level of expression of these genes.  相似文献   

2.
3.
4.
African swine fever virus (ASFV) A224L is a member of the inhibitor of apoptosis protein (IAP) family. We have investigated the antiapoptotic function of the viral IAP both in stably transfected cells and in ASFV-infected cells. A224L was able to substantially inhibit caspase activity and cell death induced by treatment with tumor necrosis factor alpha and cycloheximide or staurosporine when overexpressed in Vero cells by gene transfection. We have also observed that ASFV infection induces caspase activation and apoptosis in Vero cells. Furthermore, using a deletion mutant of ASFV lacking the A224L gene, we have shown that the viral IAP modulates the proteolytic processing of the effector cell death protease caspase-3 and the apoptosis which are induced in the infected cells. Our findings indicate that A224L interacts with the proteolytic fragment of caspase-3 and inhibits the activity of this protease during ASFV infection. These observations could indicate a conserved mechanism of action for ASFV IAP and other IAP family members to suppress apoptosis.  相似文献   

5.
6.
7.
8.
9.
Tumor necrosis factor (TNF) is a pro-inflammatory cytokine that controls expression of inflammatory genetic networks. Although the nuclear factor-kappaB (NF-kappaB) pathway is crucial for mediating cellular TNF responses, the complete spectrum of NF-kappaB-dependent genes is unknown. In this study, we used a tetracycline-regulated cell line expressing an NF-kappaB inhibitor to systematically identify NF-kappaB-dependent genes. A microarray data set generated from a time course of TNF stimulation in the presence or absence of NF-kappaB signaling was analyzed. We identified 50 unique genes that were regulated by TNF (Pr(F)<0.001) and demonstrated a change in signal intensity of+/-3-fold relative to control. Of these, 28 were NF-kappaB-dependent, encoding proteins involved in diverse cellular activities. Quantitative real-time PCR assays of eight characterized NF-kappaB-dependent genes and five genes not previously known to be NF-kappaB-dependent (Gro-beta and-gamma, IkappaBepsilon, interleukin (IL)-7R, and Naf-1) were used to determine whether they were directly or indirectly NF-kappaB regulated. Expression of constitutively active enhanced green fluorescent.NF-kappaB/Rel A fusion protein transactivated all but IL-6 and IL-7R in the absence of TNF stimulation. Moreover, TNF strongly induced all 12 genes in the absence of new protein synthesis. High probability NF-kappaB sites in novel genes were predicted by binding site analysis and confirmed by electrophoretic mobility shift assay. Chromatin immunoprecipitation assays show the endogenous IkappaBalpha/epsilon, Gro-beta/gamma, and Naf-1 promoters directly bound NF-kappaB/Rel A in TNF-stimulated cells. Together, these studies systematically identify the direct NF-kappaB-dependent gene network downstream of TNF signaling, extending our knowledge of biological processes regulated by this pathway.  相似文献   

10.
11.
12.
The inhibitor of NF-kappaB (IkappaB) family of proteins is believed to regulate NF-kappaB activity by cytoplasmic sequestration. We show that in cells depleted of IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins, a small fraction of p65 binds DNA and leads to constitutive activation of NF-kappaB target genes, even without stimulation, whereas most of the p65 remains cytoplasmic. These results indicate that although IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins could be dispensable for cytoplasmic retention of NF-kappaB, they are essential for preventing NF-kappaB-dependent gene expression in the basal state. We also show that in the absence of IkappaBalpha, IkappaBbeta and IkappaBepsilon proteins, cytoplasmic retention of NF-kappaB by other cellular proteins renders the pathway unresponsive to activation.  相似文献   

13.
14.
15.
Thalidomide ([+]-alpha-phthalimidoglutarimide), a psychoactive drug that readily crosses the blood-brain barrier, has been shown to exhibit anti-inflammatory, antiangiogenic, and immunosuppressive properties through a mechanism that is not fully established. Due to the central role of NF-kappaB in these responses, we postulated that thalidomide mediates its effects through suppression of NF-kappaB activation. We investigated the effects of thalidomide on NF-kappaB activation induced by various inflammatory agents in Jurkat cells. The treatment of these cells with thalidomide suppressed TNF-induced NF-kappaB activation, with optimum effect occurring at 50 microg/ml thalidomide. These effects were not restricted to T cells, as other hematopoietic and epithelial cell types were also inhibited. Thalidomide suppressed H(2)O(2)-induced NF-kappaB activation but had no effect on NF-kappaB activation induced by PMA, LPS, okadaic acid, or ceramide, suggesting selectivity in suppression of NF-kappaB. The suppression of TNF-induced NF-kappaB activation by thalidomide correlated with partial inhibition of TNF-induced degradation of an inhibitory subunit of NF-kappaB (IkappaBalpha), abrogation of IkappaBalpha kinase activation, and inhibition of NF-kappaB-dependent reporter gene expression. Thalidomide abolished the NF-kappaB-dependent reporter gene expression activated by overexpression of TNFR1, TNFR-associated factor-2, and NF-kappaB-inducing kinase, but not that activated by the p65 subunit of NF-kappaB. Overall, our results clearly demonstrate that thalidomide suppresses NF-kappaB activation specifically induced by TNF and H(2)O(2) and that this may contribute to its role in suppression of proliferation, inflammation, angiogenesis, and the immune system.  相似文献   

16.
Evodiamine, an alkaloidal component extracted from the fruit of Evodiae fructus (Evodia rutaecarpa Benth., Rutaceae), exhibits antiproliferative, antimetastatic, and apoptotic activities through a poorly defined mechanism. Because several genes that regulate cellular proliferation, carcinogenesis, metastasis, and survival are regulated by nuclear factor-kappaB (NF-kappaB), we postulated that evodiamine mediates its activity by modulating NF-kappaB activation. In the present study, we investigated the effect of evodiamine on NF-kappaB and NF-kappaB-regulated gene expression activated by various carcinogens. We demonstrate that evodiamine was a highly potent inhibitor of NF-kappaB activation, and it abrogated both inducible and constitutive NF-kappaB activation. The inhibition corresponded with the sequential suppression of IkappaBalpha kinase activity, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation, p65 nuclear translocation, and p65 acetylation. Evodiamine also inhibited tumor necrosis factor (TNF)-induced Akt activation and its association with IKK. Suppression of Akt activation was specific, because it had no effect on JNK or p38 MAPK activation. Evodiamine also inhibited the NF-kappaB-dependent reporter gene expression activated by TNF, TNFR1, TRADD, TRAF2, NIK, and IKK but not that activated by the p65 subunit of NF-kappaB. NF-kappaB-regulated gene products such as Cyclin D1, c-Myc, COX-2, MMP-9, ICAM-1, MDR1, Survivin, XIAP, IAP1, IAP2, FLIP, Bcl-2, Bcl-xL, and Bfl-1/A1 were all down-regulated by evodiamine. This down-regulation potentiated the apoptosis induced by cytokines and chemotherapeutic agents and suppressed TNF-induced invasive activity. Overall, our results indicated that evodiamine inhibits both constitutive and induced NF-kappaB activation and NF-kappaB-regulated gene expression and that this inhibition may provide a molecular basis for the ability of evodiamine to suppress proliferation, induce apoptosis, and inhibit metastasis.  相似文献   

17.
18.
The IkappaB kinase (IKK)-related kinase NAK (also known as TBK or T2K) contributes to the activation of NF-kappaB-dependent gene expression. Here we identify NAP1 (for NAK-associated protein 1), a protein that interacts with NAK and its relative IKK epsilon (also known as IKKi). NAP1 activates NAK and facilitates its oligomerization. Interestingly, the NAK-NAP1 complex itself effectively phosphorylated serine 536 of the p65/RelA subunit of NF-kappaB, and this activity was stimulated by tumor necrosis factor alpha (TNF-alpha). Overexpression of NAP1 specifically enhanced cytokine induction of an NF-kappaB-dependent, but not an AP-1-dependent, reporter. Depletion of NAP1 reduced NF-kappaB-dependent reporter gene expression and sensitized cells to TNF-alpha-induced apoptosis. These results define NAP1 as an activator of IKK-related kinases and suggest that the NAK-NAP1 complex may protect cells from TNF-alpha-induced apoptosis by promoting NF-kappaB activation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号