首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Insulin-like growth factor binding protein-6 (IGFBP-6) differs from IGFBPs 1-5 in that it binds IGF-II with marked preferential affinity over IGF-I. Human and rat IGFBP-6 lack 2 and 4 N-terminal cysteines and therefore the Gly-Cys-Gly-Cys-Cys motif present in IGFBPs 1-5. IGFBP-6 is O-glycolsylated, and five serine/threonine glycosylation sites in the non-conserved mid-region of human IGFBP-6 have been identified. O-Glycosylation inhibits proteolysis of IGFBP-6 by chymotrypsin and trypsin, but has no effect on high affinity IGF binding. IGFBP-6 is a relatively specific inhibitor of IGF-II actions; it has not been shown to potentiate IGF actions. IGFBP-6 is only cell-associated to a very limited extent, if at all. IGFBP-6 is often expressed in non-proliferative, quiescent states in vitro and differentiating agents increase its expression. IGFBP-6 expression is associated with inhibition of growth of tumour cells in vitro and in vivo. Although many questions remain regarding the biological role of IGFBP-6, its major function appears to be the regulation of IGF-II actions. This could be especially significant since IGF-II has been implicated as an autocrine tumour growth factor.  相似文献   

2.
3.
The insulin-like growth factor (IGF) binding proteins (IGFBPs) have several functions, including transporting the IGFs in the circulation, mediating IGF transport out of the vascular compartment, localizing the IGFs to specific cell types, and modulating both IGF binding to receptors and growth-promoting actions. The functions of IGFBPs appear to be altered by posttranslational modifications. IGFBP-3, -4, -5, and -6 have been shown to be glycosylated. Likewise all the IGFBPs have a complex disulfide bond structure that is required for maintenance of normal IGF binding. IGFBP-2, -3, -4, and -5 are proteolytically cleaved, and specific proteases have been characterized for IGFBP-3, -4, and -5. Interestingly, attachment of IGF-I or II to IGFBP-4 results in enhancement of proteolysis, whereas attachment of either growth factor to IGFBP-5 results in inhibition of proteolytic cleavage. Cleavage of IGFBP-3 results in the appearance of a 31 kDa fragment that is 50-fold reduced in its affinity for the IGF-I or IGF-II. In spite of the reduction in its affinity, this fragment is capable of potentiating the effect of IGF-I on cell growth responses; therefore, proteolysis may be a specific mechanism that alters IGFBP modulation of IGF actions. Other processes that result in a reduction in IGF binding protein affinity are associated with potentiation of cellular responses to IGF-I and -II. Specifically, the binding of IGFBP-3 to cell surfaces is associated with its ability to enhance IGF action and with a ten- to 12-fold reduction in its affinity for IGF-I and IGF-II. Likewise, binding of IGFBP-5 to extracellular matrix (ECM) results in an eightfold reduction in its affinity and a 60% increase in cell growth in response to IGF-I. Another post-translational modification that modifies IGFBP activity is phosphorylation. IGFBP-1, -2, -3, and -5 have been shown to be phosphorylated. Phosphorylation of IGFBP-1 results in a sixfold enhancement in its affinity for IGF-I and -II. Following this enhancement of IGFBP-1 affinity, this binding protein loses its capacity to potentiate IGF-I growth-promoting activity. Future studies using site-directed mutagenesis to modify these proteins should enable us to determine the effect of these posttranslational modifications on the ability of IGFBPs to modulate IGF biologic activity. © 1993 Wiley-Liss, Inc.  相似文献   

4.
5.
IGF-II stimulates both mitogenesis and myogenesis through its binding and activation of the IGF-I receptor (IGF-IR). How this growth factor pathway promotes these two opposite cellular responses is not well understood. We investigate whether local IGF binding protein-5 (IGFBP-5) promotes the myogenic action of IGF-II. IGFBP-5 is induced before the elevation of IGF-II expression during myogenesis. Knockdown of IGFBP-5 impairs myogenesis and suppresses IGF-II gene expression. IGF-II up-regulates its own gene expression via the PI3K-Akt signaling pathway. Adding IGF-II or constitutively activating Akt rescues the IGFBP-5 knockdown-caused defects. However, an IGF analogue that binds to the IGF-IR but not IGFBP has only a limited effect. When added with low concentrations of IGF-II, IGFBP-5 restores IGF-II expression and myogenic differentiation, whereas an IGF binding–deficient IGFBP-5 mutant has no effect. These findings suggest that IGFBP-5 promotes muscle cell differentiation by binding to and switching on the IGF-II auto-regulation loop.  相似文献   

6.
Insulin-like growth factor binding protein-6 (IGFBP-6) is an O-linked glycoprotein which specifically inhibits insulin-like growth factor (IGF)-II actions. The effects of O-glycosylation of IGFBP-6 on binding to glycosaminoglycans and proteolysis, both of which reduce the IGF binding affinity of other IGFBPs were studied. Binding of recombinant human nonglycosylated (n-g) IGFBP-6 to a range of glycosaminoglycans in vitro was approximately threefold greater than that of glycosylated (g) IGFBP-6. When bound to glycosaminoglycans, IGFBP-6 had approximately 10-fold reduced binding affinity for IGF-II. Exogenously added n-gIGFBP-6 but not gIGFBP-6 also bound to partially purified rat PC12 phaeochromocytoma membranes. Binding of n-gIGFBP-6 was inhibited by increasing salt concentrations, which is typical of glycosaminoglycan interactions. O-glycosylation also protected human IGFBP-6 from proteolysis by chymotrypsin and trypsin. Proteolysis decreased the binding affinity of IGFBP-6 for IGF-II, even with a relatively small reduction in apparent molecular mass as observed with chymotrypsin. Analysis by ESI-MS of IGFBP-6 following limited chymotryptic digestion showed that a 4.5-kDa C-terminal peptide was removed and peptide bonds involved in the putative high affinity IGF binding site were cleaved. The truncated, multiply cleaved IGFBP-6 remained held together by disulphide bonds. In contrast, trypsin cleaved IGFBP-6 in the mid-region of the molecule, resulting in a 16-kDa C-terminal peptide which did not bind IGF-II. These results indicate that O-glycosylation inhibits binding of IGFBP-6 to glycosaminoglycans and cell membranes and inhibits its proteolysis, thereby maintaining IGFBP-6 in a high-affinity, soluble form and so contributing to its inhibition of IGF-II actions.  相似文献   

7.
The binding kinetics of human insulin-like growth factor binding protein (IGFBP) 1-6 for recombinant human insulin-like growth factor (IGF) I and II were measured and compared in the present study using surface plasmon resonance biosensor technique. Different concentrations of IGFBPs (5-100 nM) were allowed to interact with the immobilized IGF-I or IGF-II on sensor chip surface. Both des(1-3)IGF-I and insulin are known to bind weakly to the IGFBPs and therefore are used as negative controls for the binding experiments. The resultant sensorgrams were analyzed by using simple 1:1 binding model to derive both the association rate (k(a)) and dissociation rate (k(d)) constants for IGFBP-IGF interactions. The k(a) values of IGFBPs are in the range of 1x10(4) to 9x10(5) M(-1) s(-1) for IGF-I and 7x10(3) to 1.7x10(6) M(-1) s(-1) for IGF-II, respectively. The orders of k(a) for both IGF-I and IGF-II are IGFBP-3>IGFBP-5>IGFBP-6>IGFBP-4>IGFBP-2>++ +IGFBP-1. The k(d) values of IGFBPs are in the range of 1.5x10(-5) to 2x10(-4) s(-1) for IGF-I and 3.6x10(-5) to 3.7x10(-4) s(-1) for IGF-II, respectively. The order of k(d) for IGF-I is IGFBP-6>IGFBP-5>IGFBP-4>IGFBP-3>IGFBP-2>++ +IGFBP-1 and that for IGF-II is IGFBP-5>IGFBP-6>IGFBP-2>IGFBP-4>IGFBP-3>++ +IGFBP-1, respectively. The equilibrium affinity constants (K(A)) were calculated based on the ratio of k(a)/k(d) and were more precise than the published literature values based on competitive radioligand binding assays. The systematic study enables a direct comparison on the IGF-binding properties among the various IGFBPs, and the kinetic data provide additional information to delineate the physiological role of different IGFBPs in vivo.  相似文献   

8.
In the absence of a complete tertiary structure to define the molecular basis of the high affinity binding interaction between insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs), we have investigated binding of IGFs by discrete amino-terminal domains (amino acid residues 1-93, 1-104, 1-132, and 1-185) and carboxyl-terminal domains (amino acid residues 96-279, 136-279, and 182-284) of bovine IGFBP-2 (bIGFBP-2). Both halves of bIGFBP-2 bound IGF-I and IGF-II in BIAcore studies, albeit with different affinities ((1-132)IGFBP-2, K(D) = 36.3 and 51.8 nm; (136-279)IGFBP-2HIS, K(D) = 23.8 and 16.3 nm, respectively). The amino-terminal half appears to contain components responsible for fast association. In contrast, IGF binding by the carboxyl-terminal fragment results in a more stable complex as reflected by its K(D). Furthermore, des(1-3)IGF-I and des(1-6)IGF-II exhibited reduced binding affinity to (1-279)IGFBP-2HIS, (1-132)IGFBP-2, and (136-279)IGFBP-2HIS biosensor surfaces compared with wild-type IGF. A charge reversal at positions 3 and 6 of IGF-I and IGF-II, respectively, affects binding interactions with the amino-terminal fragment and full-length bIGFBP-2 but not the carboxyl-terminal fragment.  相似文献   

9.
A family of six insulin-like growth factor (IGF) binding proteins (IGFBP-1-6) binds IGF-I and IGF-II with high affinity and thus regulates their bioavailability and biological functions. IGFBPs consist of N- and C-terminal domains, which are highly conserved and cysteine-rich, joined by a variable linker domain. The role of the C-domain in IGF binding is not completely understood in that C-domain fragments have very low or even undetectable IGF binding affinity, but loss of the C-domain dramatically disrupts IGF binding by IGFBPs. We recently reported the solution structure and backbone dynamics of the C-domain of IGFBP-2 (C-BP-2) and identified a pH-dependent heparin binding site [Kuang, Z., Yao, S., Keizer, D. W., Wang, C. C., Bach, L. A., Forbes, B. E., Wallace, J. C., and Norton, R. S. (2006) Structure, dynamics and heparin binding of the C-terminal domain of insulin-like growth factor-binding protein-2 (IGFBP-2), J. Mol. Biol. 364, 690-704]. Here, we have analyzed the molecular interactions among the N-domain of IGFBP-2 (N-BP-2), C-BP-2, and IGFs using cross-linking and nuclear magnetic resonance (NMR) spectroscopy. The binding of C-BP-2 to the IGF-I.N-BP-2 binary complex was significantly stronger than the binding of C-BP-2 to IGF-I alone, switching from intermediate exchange to slow exchange on the NMR time scale. A conformational change or stabilization of the IGF-I Phe49-Leu54 region and the Phe49 aromatic ring upon binding to the N-domains, as well as an interdomain interaction between N-BP-2 and C-BP-2 (which is also detectable in the absence of ligand), may contribute to this cooperativity in IGF binding. Glycosaminoglycan binding by IGFBPs can affect their IGF binding although the effects appear to differ among different IGFBPs; here, we found that heparin bound to the IGF-I.N-BP-2.C-BP-2 ternary complex, but did not cause it to dissociate.  相似文献   

10.
In blood, circulating IGFs are bound to six high-affinity IGFBPs, which modulate IGF delivery to target cells. Serum IGFs and IGFBP-3, the main carrier of IGFs, are upregulated by GH. The functional role of serum IGFBP-3-bound IGFs is not well understood, but they constitute the main reservoir of IGFs in the circulation. We have used an equation derived from the law of mass action to estimate serum IGFBP-3-bound IGF-I and IGFBP-3-bound IGF-II, as well as serum free IGF-I and free IGF-II, in 129 control children and adolescents (48 girls and 81 boys) and in 13 patients with GHD. Levels of serum total IGF-I, total IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 were determined experimentally, while those of IGFBP-4, IGFBP-5 and IGFPB-6, as well as the 12 affinity constants of association of the two IGFs with the six IGFBPs, were taken from published values. A correction for in vivo proteolysis of serum IGFBP-3 was also considered. In controls, serum total IGF-I, total IGF-II, IGFBP-3, IGFBP-3-bound IGF-I, IGFBP-3-bound IGF-II and free IGF-I increased linearly with age, from less than 1 to 15 years, in the two sexes. The concentrations of serum free IGF-I and free IGF-II were approximately two orders of magnitude below published values, as well as below the affinity constant of association of IGF-I with the type-1 IGF receptor. Therefore, it is unlikely that these levels can interact with the receptor. In the 13 patients with GHD, mean (+/- SD) SDS of serum IGFBP-3-bound IGF-I was -2.89 +/- 0.97. It was significantly lower than serum total IGF-I, free IGF-I or IGFBP-3 SDSs (-2.35 +/- 0.83, -1.12 +/- 0.78 and -2.55 +/- 1.07, respectively, p = 0.0001). The mean SDS of serum total IGF-II, IGFBP-3-bound IGF-II and free IGF-II were -1.25 +/- 0.68, -2.03 +/- 0.87 and 0.59 +/- 1.10, respectively, in GHD. In control subjects, 89.8 +/- 4.47% of serum total IGF-I and 77.3 +/- 9.4% of serum total IGF-II were bound to serum IGFBP-3. In patients with GHD, the mean serum IGFBP-3-bound IGF-I and IGFBP-3-bound IGF-II were 8.63 +/- 8. 53 and 19.1 +/- 14.7% below the respective means of control subjects (p < 0.02). In conclusion, in GHD there was a relative change in the distribution of serum IGFs among IGFBPs, due to the combined effects of the decrease in both total IGF-I and IGFBP-3. As a result, serum IGFBP-3-bound IGF-I and IGFBP-3 bound IGF-II, the main reservoirs of serum IGFs, were severely affected. This suggests that the decrease in serum IGFPB-3-bound IGF-I and IGFBP-3-bound IGF-II might have a negative effect for growth promotion and other biological effects of IGF-I and IGF-II. Finally, the estimation of serum IGFBP-3-bound IGF-I, or the percentage of total IGF-I and IGF-II bound to IGFBP-3, might be useful markers in the diagnosis of GHD.  相似文献   

11.
Insulin-like growth factors (IGFs) in the circulation are predominantly sequestered into ternary complexes comprising IGF, IGF-binding protein-3 (IGFBP-3), and the acid-labile subunit (ALS). Besides its role in regulating IGF bioavailability in the circulation, IGFBP-3 has both IGF-dependent and IGF-independent actions on cell proliferation. As part of our studies into the structure-function relationships of the multifunctional IGFBP-3, we have evaluated the efficiency of an adenovirus-mediated expression system for rapid, medium-scale production of functional, glycosylated IGFBP-3. Replication-deficient adenovirus containing human IGFBP-3 cDNA was generated using standard techniques. Secreted, recombinant IGFBP-3 (IGFBP-3(Ad)) was purified from the culture medium of virus-infected cells by IGF-I affinity chromatography followed by reverse-phase HPLC. When analyzed by SDS-PAGE, IGFBP-3(Ad) was similar in size (43- to 45-kDa glycoform doublet) to IGFBP-3(Pl) derived from plasma. In addition, IGFBP-3(Ad) was detected by immunoblot using an antibody specific for human IGFBP-3 and by ligand blot using radiolabeled IGF-I. IGFBP-3(Ad) had similar affinities for IGF-I and ALS and an approximately 25% decreased affinity for IGF-II compared to IGFBP-3(Pl). IGFBP-3(Ad) showed no significant difference in its susceptibility to an IGFBP-3 protease present in medium conditioned by MCF-7 breast cancer cells compared to IGFBP-3(Pl), but appeared more resistant to the IGFBP-3 protease present in pregnancy serum. IGFBP-3(Ad) also exhibited increased binding to T47D cells which may be related to the glycosylation state of the protein.  相似文献   

12.
Insulin-like growth factor binding proteins (IGFBPs) modulate the activity and distribution of insulin-like growth factors (IGFs). IGFBP-6 differs from other IGFBPs in being a relatively specific inhibitor of IGF-II actions. Another distinctive feature of IGFBP-6 is its unique N-terminal disulfide linkages; the N-domains of IGFBPs 1-5 contain six disulfides and share a conserved GCGCC motif, but IGFBP-6 lacks the two adjacent cysteines in this motif, so its first three N-terminal disulfide linkages differ from those of the other IGFBPs. The contributions of the N- and C-domains of IGFBP-6 to its IGF binding properties and their structure-function relationships have been characterized in part, but the structure and function of the distinctive N-terminal subdomain of IGFBP-6 are unknown. Here we report the solution structure of a polypeptide corresponding to residues 1-45 of the N-terminal subdomain of IGFBP-6 (NN-BP-6). The extended structure of the N-terminal subdomain of IGFBP-6 is very different from that of the short two-stranded beta-sheet of the N-terminal subdomain of IGFBP-4 and, by implication, the other IGFBPs. NN-BP-6 contains a potential cation-binding motif; lanthanide ion binding was observed, but no significant interaction was found with physiologically relevant metal ions like calcium or magnesium. However, this subdomain of IGFBP-6 has a higher affinity for IGF-II than IGF-I, suggesting that it may contribute to the marked IGF-II binding preference of IGFBP-6. The extended structure and flexibility of this subdomain of IGFBP-6 could play a role in enhancing the rate of ligand association and thereby be significant in IGF recognition.  相似文献   

13.
Insulin-like growth factor (IGF)-I and IGF-II play a number of important roles in growth and differentiation, and IGF-binding proteins (IGFBPs) modulate IGF biological activity. IGF-I has been shown previously to be essential for normal uterine development. Therefore, we used in situ hybridization assays to characterize the unique tissue- and developmental stage-specific pattern of expression for each IGF and IGFBP gene in the rat uterus during perinatal development (gestational day [GD]-20 to postnatal day [PND]-24). IGF-I and IGFBP-1 mRNAs were expressed in all uterine tissues throughout this period. IGFBP-3 mRNA was not detectable at GD-20 but became detectable beginning at PND-5, and the signal intensity appeared to increase during stromal and muscle development. IGFBP-4 mRNA was abundant throughout perinatal development in the myometrium and in the stroma, particularly near the luminal epithelium. IGFBP-5 mRNA was abundantly expressed in myometrium throughout perinatal development. IGFBP-6 mRNA was detected throughout perinatal development in both the stroma and myometrium in a diffuse expression pattern. IGF-II and IGFBP-2 mRNAs were not detected in perinatal uteri. Our results suggest that coordinated temporal and spatial expression of IGF-I and its binding proteins (IGFBP-1,-3,-4,-5, and -6) could play important roles in perinatal rodent uterine development.  相似文献   

14.
Signaling through the IGF-I receptor by locally synthesized IGF-I or IGF-II is critical for normal skeletal development and for bone remodeling and repair throughout the lifespan. In most tissues, IGF actions are modulated by IGF-binding proteins (IGFBPs). IGFBP-5 is the most abundant IGFBP in bone, and previous studies have suggested that it may either enhance or inhibit osteoblast differentiation in culture and may facilitate or block bone growth in vivo. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5 in bone, we studied its effects in differentiating osteoblasts and in primary bone cultures. Purified wild-type (WT) mouse IGFBP-5 or a recombinant adenovirus expressing IGFBP-5WT each prevented osteogenic differentiation induced by the cytokine bone morphogenetic protein (BMP)-2 at its earliest stages without interfering with BMP-mediated signaling, whereas an analog with reduced IGF binding (N domain mutant) was ineffective. When added at later phases of bone cell maturation, IGFBP-5WT but not IGFBP-5N blocked mineralization, prevented longitudinal growth of mouse metatarsal bones in short-term primary culture, and inhibited their endochondral ossification. Because an IGF-I variant (R3IGF-I) with diminished affinity for IGFBPs promoted full osteogenic differentiation in the presence of IGFBP-5WT, our results show that IGFBP-5 interferes with IGF action in osteoblasts and provides a framework for discerning mechanisms of collaboration between signal transduction pathways activated by BMPs and IGFs in bone.  相似文献   

15.
IGF-II gut drives mucosal growth during gestation. IGF binding protein-2 (IGFBP-2) has a high affinity for IGF-II and tightly regulates IGF-II availability during fetal and early neonatal growth. We have previously demonstrated that glucocorticoids alter IGF homeostasis in the neonatal ileum, but the mechanism(s) by which this occurs is poorly understood. We hypothesized that dexamethasone alters proteolytic regulation of IGFBP-2 in ileal crypt cells. To test this, ileal crypt [ileal epithelial (IEC)-18] cells were cultured in serum-free media and used to study IGFBP-2 catabolism by immunochemistry, gene array analysis, and pharmacological perturbation with dexamethasone. In addition, isolated human IGFBP-2, IGF-II, and cathepsins B, D, and L were utilized for in vitro protease assays. We found IGFBP-2 to be highly abundant in IEC-18 culture, and sequestration of carboxyl IGFBP-2 antigen was seen within vesicular bodies of some cells. Dexamethasone significantly decreased the number of these cells and decreased IGFBP-2 in the media. On gene array analysis, cathepsin L's message abundance was significantly increased by dexamethasone, and, by in vitro assay, cathepsin L created a 14-kDa carboxyl fragment that corresponded to the sole antigen detected in IEC-18 cell lysates as well as a 16.5-kDa fragment found in the media. The sequestered fragment size was formed preferentially when IGF-II was present, whereas the larger fragment size was formed preferentially when IGF-II was absent. Cathepsins B and D did not produce these fragments in vitro and were not detected in IEC-18 media. We conclude that dexamethasone alters IGFBP-2 catabolism through its effects on cathepsin L.  相似文献   

16.
17.
Signaling through the IGF-I receptor by locally produced IGF-I or -II is critical for normal skeletal muscle development and repair after injury. In most tissues, IGF action is modulated by IGF binding proteins (IGFBPs). IGFBP-5 is produced by muscle cells, and previous studies have suggested that when overexpressed it may either facilitate or inhibit IGF actions, and thus potentially enhance or diminish IGF-mediated myoblast differentiation or survival. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5, we studied its effects in cultured muscle cells. Purified wild-type (WT) mouse IGFBP-5 or a variant with diminished extracellular matrix binding (C domain mutant) each prevented differentiation at final concentrations as low as 3.5 nm, whereas analogs with reduced IGF binding (N domain mutant) were ineffective even at 100 nm. None of the IGFBP-5 variants altered cell number. An IGF-I analog (R(3)IGF-I) with diminished affinity for IGFBPs promoted full muscle differentiation in the presence of IGFBP-5(WT), showing that IGFBP-5 interferes with IGF-dependent signaling pathways in myoblasts. When IGFBP-5(WT) or variants were overexpressed by adenovirus-mediated gene transfer, concentrations in muscle culture medium reached 500 nm, and differentiation was inhibited, even by IGFBP-5(N). As 200 nm of purified IGFBP-5(N) prevented activation of the IGF-I receptor by 10 nm IGF-II as effectively as 2 nm of IGFBP-5(WT), our results not only demonstrate that IGFBP-5 variants with reduced IGF binding affinity impair muscle differentiation by blocking IGF actions, but underscore the need for caution when labeling effects of IGFBPs as IGF independent because even low-affinity analogs may potently inhibit IGF-I or -II if present at high enough concentrations in biological fluids.  相似文献   

18.
19.
20.
Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) can stimulate apoptosis and inhibit cell proliferation directly and independently of binding IGFs or indirectly by forming complexes with IGF-I and IGF-II that prevent them from activating the IGF-I receptor to stimulate cell survival and proliferation. To date, IGF-independent actions only have been demonstrated in a limited number of cells that do not synthesize or respond to IGFs. To assess the general importance of IGF-independent mechanisms, we have generated human IGFBP-3 mutants that cannot bind IGF-I or IGF-II by substituting alanine for six residues in the proposed IGF binding site, Ile(56)/Tyr(57)/Arg(75)/Leu(77)/Leu(80)/Leu(81), and expressing the 6m-hIGFBP-3 mutant construct in Chinese hamster ovary cells. Binding of both IGF-I and IGF-II to 6m-hIGFBP-3 was reduced >80-fold. The nonbinding 6m-hIGFBP-3 mutant still was able to inhibit DNA synthesis in a mink lung epithelial cell line in which inhibition by wild-type hIGFBP-3 previously had been shown to be exclusively IGF-independent. 6m-hIGFBP-3 only can act by IGF-independent mechanisms since it is unable to form complexes with the IGFs that inhibit their action. We next compared the ability of wild-type and 6m-hIGFBP-3 to stimulate apoptosis in serum-deprived PC-3 human prostate cancer cells. PC-3 cells are known to synthesize and respond to IGF-II, so that IGFBP-3 could potentially act by either IGF-dependent or IGF-independent mechanisms. In fact, 6m-hIGFBP-3 stimulated PC-3 cell death and stimulated apoptosis-induced DNA fragmentation to the same extent and with the same concentration dependence as wild-type hIGFBP-3. These results indicate that IGF-independent mechanisms are major contributors to IGFBP-3-induced apoptosis in PC-3 cells and may play a wider role in the antiproliferative and antitumorigenic actions of IGFBP-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号