首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

2.
The effect of glucagon on the phosphorylation of pyruvate kinase in 32P-labelled slices from rat liver was investigated. Pyruvate kinase was isolated by immunoadsorbent chromatography. The enzyme was partially phosphorylated in the absence of added hormone (0.2 mol of phosphate/mol of enzyme subunit). Upon incubation with 10?7 M glucagon, the incorporation of [32P]phosphate was 0.6–0.7 mol/mol of enzyme subunit. Concomitantly, the concentration of intracellular cyclic 3′,5′-AMP increased from 0.3 to 3.2 μM. The phosphorylation inhibited the enzyme activity at low concentrations of phosphoenolpyruvate (60% at 0.5 mM). Almost maximal phosphorylation of the enzyme was reached within 2 min after the addition of glucagon. The concentration of hormone giving half maximal effect on the pyruvate kinase phosphorylation was about 7×10?9M. The inactivation of the enzyme paralleled the increase in phosphorylation. It is concluded that pyruvate kinase is phosphorylated in the intact liver cell.  相似文献   

3.
Pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) type L was partly purified from rat kidney. During the last two purification steps, the incorporation of [32P]phosphate into protein on incubation with [32P]ATP and cyclic 3',5'-AMP-dependent protein kinase was found to parallel the pyruvate kinase activity. After phosphorylation of the enzyme, a major radioactive band with a molecular weight of 57 000 was found on polyacrylamide gel electrophoresis [32P]Phosphorylserine was isolated from the kidney pyruvate kinase. Immunological identity was found between the liver and kidney pyruvate kinases type L. By autoradiography of high-voltage electropherograms after partial acid hydrolysis of the phosphorylated rat liver and kidney pyruvate kinases type L, identical results were obtained. The affinity for phosphoenolpyruvate was found to be decreased by phosphorylation of the enzyme with a change in the apparent Km from 0.15 mM to 0.35 mM. After incubation of the phosphorylated kidney pyruvate kinase with phosphatase the phosphoenolpyruvate saturation curve was found to be identical to that for the unphosphorylated enzyme. Thus, the activity of the rat kidney pyruvate kinase type L is with all probability regulated by a reversible phosphorylation-dephosphorylation reaction, thereby indicating that hormonal regulation of gluconeogenesis via cyclic AMP may be of importance in the renal cortex.  相似文献   

4.
smg p21B/rap1B p21, a member of ras p21-like small GTP-binding protein superfamily, has been shown to be phosphorylated by cyclic AMP-dependent protein kinase (protein kinase A). We show here that this protein was also phosphorylated by cyclic GMP-dependent protein kinase (protein kinase G) in a cell-free system. The same serine residue (Ser179) in the C-terminal region was phosphorylated by both protein kinases G and A. The Km and Vmax values of smg p21B for protein kinase G were 5 x 10(-7) M and 4 x 10(-9) mol/min/mg, and those values for protein kinase A were 1 x 10(-7) M and 3 x 10(-8) mol/min/mg.  相似文献   

5.
Both the triple-helical and denatured forms of nonfibrillar bovine dermal type I collagen were tested as substrates for the catalytic subunit of cAMP-dependent protein kinase in an in vitro reaction. Native, triple-helical collagen was not phosphorylated, but collagen that had been thermally denatured into individual alpha chains was a substrate for the protein kinase. Catalytic subunit of cAMP-dependent protein kinase phosphorylated denatured collagen to between 3 to 4 mol of phosphate/mol of (alpha 1(I)2 alpha 2(I). Pepsin-solubilized and intact collagens were phosphorylated similarly, as long as each was in a nonhelical conformation. The first 2 mol of phosphate incorporated into type I collagen by the protein kinase were present in the alpha 2(I) chain. The alpha 1(I) chain was only phosphorylated during long incubations in which the stoichiometry exceeded 2 mol of phosphate/mol of (alpha 1(I)2 alpha 2(I). Phosphoserine was the only phosphoamino acid identified in collagen that had been phosphorylated to any degree by the protein kinase. The 2 mol of phosphate incorporated into the alpha 2(I) chain were localized to the alpha 2(I)CB4 cyanogen bromide fragment. The catalytic subunit of cAMP-dependent protein kinase phosphorylated denatured pepsin-solubilized collagen with a Km of 8 microM and a Vmax of approximately 0.1 mumol/min/mg of enzyme. Denatured, but not triple-helical, type I collagen was also phosphorylated by cGMP-dependent protein kinase, although it was a poorer substrate for this enzyme than for the cAMP-dependent protein kinase. Collagen was not a substrate for phospholipid-sensitive Ca2+-dependent protein kinase. These results suggest the potential for nascent alpha chains of type I collagen to be susceptible to phosphorylation by cAMP-dependent protein kinase in vivo prior to triple-helix formation. Such a phosphorylation of collagen could be relevant to the action of cAMP to increase the intracellular degradation of newly synthesized collagen.  相似文献   

6.
Phosphorylation of pure fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase from bovine heart by cAMP-dependent protein kinase and protein kinase C was investigated. The major enzyme form (subunit Mr of 58,000) was rapidly phosphorylated by both cAMP-dependent protein kinase and protein kinase C, incorporating 0.8 and 1.0 mol/mol of subunit, respectively. The rate of phosphorylation of the heart enzyme by cAMP-dependent protein kinase was 10 times faster than that of the rat liver enzyme. The minor enzyme (subunit Mr of 54,000), however, was phosphorylated only by protein kinase C and was phosphorylated much more slowly with a phosphate incorporation of less than 0.1 mol/mol of subunit. Phosphorylation by either cAMP-dependent protein kinase or protein kinase C activated the enzyme, but each phosphorylation affected different kinetic parameters. Phosphorylation by cAMP-dependent protein kinase lowered the Km value for fructose 6-phosphate from 87 to 42 microM without affecting the Vmax, whereas the phosphorylation by protein kinase C increased the Vmax value from 55 to 85 milliunits/mg without altering the Km value. The phosphorylated peptides were isolated, and their amino acid sequences were determined. The phosphorylation sites for both cAMP-dependent protein kinase and protein kinase C were located in a single peptide whose sequence was Arg-Arg-Asn-Ser-(P)-Phe-Thr-Pro-Leu-Ser-Ser-Ser-Asn-Thr(P)-Ile-Arg-Arg-Pro. The seryl residue nearest the N terminus was the residue specifically phosphorylated by cAMP-dependent protein kinase, whereas the threonine residue nearest the C terminus was phosphorylated by protein kinase C.  相似文献   

7.
The alpha subunit of the sodium channel purified from rat brain is rapidly and selectively phosphorylated by the catalytic subunit of cAMP-dependent protein kinase to a level of 3 to 4 mol of 32P/mol of saxitoxin-binding activity. The rate of phosphorylation is comparable to that of the synthetic peptide analog of the phosphorylation site of pyruvate kinase, one of the best substrates for cAMP-dependent protein kinase. An endogenous cAMP-dependent protein kinase that is present in the partially purified sodium channel preparations also selectively phosphorylates the alpha subunit. The specificity and rapidity of the phosphorylation reaction are consistent with the hypothesis that the alpha subunit is phosphorylated by cAMP-dependent protein kinase in vivo.  相似文献   

8.
Alkali-inactivated pig liver pyruvate kinase, type L, and a cyanogen bromide fragment from the same enzyme were shown to be phosphorylated by (32P)ATP and cyclic 3′,5′-AMP-stimulated protein kinase. In both cases the rate of phosphorylation was higher than with the native enzyme. Pyruvate kinases types A and M were not phosphorylated under the same conditions. From the 32P-labelled cyanogen bromide fragment (32P)phosphorylserine was isolated. The electrophoretic pattern of (32P)phosphopeptides obtained on partial acid hydrolysis of the fragment indicated that the phosphorylated site of the fragment was identical with that of the native pyruvate kinase.  相似文献   

9.
Cyclic AMP dependent protein kinase (PKA) from Pichia pastoris yeast cells was found to be activated by either cAMP or cGMP. Analogs of cAMP such as 8-chloro-cAMP and 8-bromo-cAMP were as potent as cAMP in PKA activation while N6,2'-O-dibutyryl-cAMP did not stimulate the enzyme activity. It was shown that protamine sulfate was almost equally phosphorylated in the presence of 1-2 x 10(-6)M cAMP or cGMP while other substrates such as Kemptide, ribosomal protein S6, were phosphorylated to a lower extent in the presence of cGMP. It was demonstrated that pyruvate kinase is a substrate of PKA which co-purified with the P.pastoris enzyme. Moreover, pyruvate kinase was phosphorylated by PKA in the presence of cAMP and cGMP to comparable levels.  相似文献   

10.
Smooth muscle myosin light chain kinase is phosphorylated in vitro by protein kinase C purified from human platelets. When myosin light chain kinase which has calmodulin bound is phosphorylated by protein kinase C, 0.8-1.1 mol of phosphate is incorporated per mol of myosin light chain kinase with no effect on its enzyme activity. Phosphorylation of myosin light chain kinase with no calmodulin bound results in the incorporation of 2-2.4 mol of phosphate and significantly decreases the rate of myosin light chain kinase activity. The decrease in myosin light chain kinase activity is due to a 3.3-fold increase in the concentration of calmodulin necessary for the half-maximal activation of myosin light chain kinase. The sites phosphorylated by protein kinase C and the catalytic subunit of cAMP-dependent protein kinase were compared by two-dimensional peptide mapping following extensive tryptic digestion of phosphorylated myosin light chain kinase. The single site phosphorylated by protein kinase C when calmodulin is bound to myosin light chain kinase (site 3) is different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 1). The additional site that is phosphorylated by protein kinase C when calmodulin is not bound appears to be the same site phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 2). These studies confirm the important role of site 2 in binding calmodulin to myosin light chain kinase. Sequential studies using both protein kinase C and the catalytic subunit of cAMP-dependent protein kinase suggest that the phosphorylation of site 1 also plays a part in decreasing the affinity of myosin light chain kinase for calmodulin.  相似文献   

11.
Chromosomal high-mobility-group (HMG) proteins have been examined as substrates for calcium/phospholipid-dependent protein kinase C. Protein kinase C from rat brain phosphorylated efficiently both HMG 14 and HMG 17 derived from calf thymus and the reactions were calcium/phospholipid-dependent. About 1 mol of 32P was incorporated per mol of HMG 14 and HMG 17. Phosphopeptide mapping suggested that the same major site was phosphorylated in both proteins at serine. The apparent Km values for HMG 14 and HMG 17 were about 5 μM. HMG 14, HMG 17 and the five histone H1 subtypes prepared from rat thymus, liver and spleen were phosphorylated by the kinase. HMG 14 and HMG 17 from transformed human lymphoblasts (Wi-L2) were also phosphorylated in a calcium/phospholipid-dependent manner. HMG 1 and HMG 2 from the tissues examined were found to be poor substrates for the kinase.  相似文献   

12.
In the absence of glycolytic intermediate, fructose-1,6-bisphosphate, pyruvate kinase type K exists in the dimeric form and is readily phosphorylated, whereas in the same sample and the same conditions pyruvate kinase type M is present as a tetramer and is not phosphorylated. Addition of fructose-1,6-bisphosphate results in the association of dimeric K2 molecules to a tetrameric K4 enzyme as determined by gel filtration and cellulose acetate electrophoresis, with concomitant loss of the capacity of the K isozyme to become phosphorylated. Phosphorylated K2 dimers can also tetramerize, but with a low recovery of the radiolabel, suggesting a fructose-1,6-bisphosphate induced dephosphorylation or selective degradation. The dimeric K isozyme is enzymatically active; inactive K-type monomers can be detected by immunoblot analysis in the absence of fructose-1,6-bisphosphate, but no phosphorylated pyruvate kinase is present in this fraction. The formation of K4 tetramers can not be accomplished by the substrate phosphoenolpyruvate. Fructose-1,6-bisphosphate is an allosteric activator of pyruvate kinase type K and induces hyperbolic saturation curves for phosphoenolpyruvate. In contrast, in the absence of effectors, pyruvate kinase type M exhibits Michaelis-Menten kinetics, but sigmoidal curves can be induced by the amino acid phenylalanine. However, even in the presence of phenylalanine, the M-type maintained its tetrameric configuration and did not serve as a substrate in the phosphorylation reaction. These findings argue for the importance of subunit interaction in the regulation of phosphorylation of pyruvate kinase.  相似文献   

13.
One dominating peptic phosphopeptide, Asx-Thr-Lys-Gly-Pro-Glx-Ile-Glx-Thr-Gly-Val-Leu-Arg-Arg-Ala-(32P)SerP-Val-Ala-Glx-Leu, was obtained from rat liver pyruvate kinase (type L) phosphorylated by cyclic 3′,5′-AMP-stimulated protein kinase from the same tissue. The sequence around the phosphorylated serine residue is similar to that of a corresponding but smaller peptic phosphopeptide previously isolated from pig liver (type L) pyruvate kinase, Leu-Arg-Arg-Ala-(32P)SerP-Leu.  相似文献   

14.
Anti human M2 type and anti human L type pyruvate kinase sera allowed us to distinguish two groups of pyruvate kinase in man. Erythrocyte and liver (L type) enzymes on the one hand were inhibited by anti L and not all by anti M2 serum; pyruvate kinase from all the other tissues on the other hand were inhibited by anti M2 and not at all by anti L serum. This latter group represent the M type pyruvate kinase isozymes. The M type isozymes have been studied by electrofocusing in thin layer acrylamide-ampholine gel. In adult tissues 4 types of isozymes were found, designated, from acid to alkaline pH, as M2 (predominant form in spleen, leukocytes, lung...), M3, M4 and M1 (predominant form in muscle and brain). In foetal tissues an extra band M2, called M2f, more anodic than M2, was added to the previously described isozymes. Except in brain (in which the isozymes M2, M3, M4 and M1 were found), the most anodic bands (M2f, M2 and M3) were predominant in all the foetal tissues. The isozymes M2f and M2 seem therefore to be the original M type pyruvate kinase forms from which the other isozymes issue. The rate of each isozyme seems to depend on tissue factors characterizing the state of differentiation of some tissues, as indicated by the ability of adult muscle extracts to change the isozymes M2 and M3 into more cathodic forms.  相似文献   

15.
IgE-mediated stimulation of rat basophilic leukemia (RBL-2H3) cells results in the secretion of histamine. Myosin immunoprecipitated from these cells shows an increase in the amount of radioactive phosphate incorporated into its heavy (200 kDa) and light (20 kDa) chains. In unstimulated cells two-dimensional mapping of tryptic peptides of the myosin light chain reveals one phosphopeptide containing the serine residue phosphorylated by myosin light chain kinase. Following stimulation a second phosphopeptide appears containing a serine residue phosphorylated by protein kinase C. Tryptic phosphopeptide maps derived from myosin heavy chains show that unstimulated cells contain three major phosphopeptides. Following stimulation a new tryptic phosphopeptide appears containing a serine site phosphorylated by protein kinase C. The stoichiometry of phosphorylation of the myosin light and heavy chains was determined before and after antigenic stimulation. Before stimulation, myosin light chains contained 0.4 mol of phosphate/mol of light chain all confined to a serine not phosphorylated by protein kinase C. Cells that secreted 44% of their total histamine in 10 min exhibited an increase in phosphate content at sites phosphorylated by protein kinase C from 0 mol of phosphate/mol of myosin subunit to 0.7 mol of phosphate/mol of light chain and to 1 mol of phosphate/mol of heavy chain. When RBL-2H3 cells were made permeable with streptolysin O they still showed a qualitatively similar pattern of secretion and phosphorylation. Our results show that the time course of histamine secretion from stimulated RBL-2H3 cells parallels that of myosin heavy and light chain phosphorylation by protein kinase C.  相似文献   

16.
Saccharomyces cerevisiae pyruvate kinase 1 (Pyk1) was demonstrated to be associated to an immunoprecipitate of yeast protein kinase A holoenzyme (HA-Tpk1.Bcy1) and to be phosphorylated in a cAMP-dependent process. Both glutathione S-transferase (GST)-Pyk1 and GST-Pyk2 were phosphorylated in vitro by the bovine heart protein kinase A (PKA) catalytic subunit and by immobilized yeast HA-Tpk1. The specificity constant for the phosphorylation of GST-Pyk1 and GST-Pyk2 by bovine catalytic subunit was in the range of the value for Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide). Both fusion proteins were phosphorylated in vivo, in intact cells overexpressing the protein, or in vitro using crude extracts, as source of protein kinase A, when a wild type strain was used but were not phosphorylated when using a strain with only one TPK gene with an attenuated mutation (tpk1(w1)). The effect of phosphorylation on Pyk activity was assayed in partially purified preparations from three strains, containing different endogenous protein kinase A activity levels. Pyk1 activity was measured at different phosphoenolpyruvate concentrations in the absence or in the presence of the activator fructose 1,6-bisphosphate at 1.5 mm. Preliminary kinetic results derived from the comparison of Pyk1 obtained from extracts with the highest versus those from the lowest protein kinase A activity indicate that the enzyme is more active upon phosphorylation conditions; in the absence of the activator it shows a shift in the titration curve for phosphoenolpyruvate to the left and an increase in the Hill coefficient, whereas in the presence of fructose 1,6-bisphosphate it shows an n(H) value of 1.4, as compared with an n(H) of 2 for the Pyk1 obtained from extracts with almost null protein kinase A activity.  相似文献   

17.
Complement factor C3, recently found to contain covalently bound phosphate, was phosphorylated in vitro by cyclic AMP-dependent protein kinase (protein kinase A) and Ca2(+)-activated, phospholipid-dependent protein kinase (protein kinase C). Both protein kinases phosphorylated the same serine residue(s) located in the C3a portion of the alpha-chain. In addition, protein kinase C phosphorylated the beta-chain to a lesser extent. Protein kinase A gave a maximal incorporation of 1 mol of phosphate/mol of C3 while that value with protein kinase C was 1.5 mol of phosphate/mol of C3. The velocity in pmol of [32P]phosphate/(min x unit kinase) was 20 times higher for protein kinase C than for protein kinase A although a 10 times lower ratio of protein kinase to C3 was used in the former case. The apparent Km for C3 was 2.6 microM when protein kinase C was used. The phosphorylated C3 was found to be more resistant to partial degradation by trypsin than unphosphorylated C3. It was also found that phosphorylation of C3 in the C3a portion of the alpha-chain inhibited both the classical and alternative complement activation pathways on an approximately stoichiometric basis.  相似文献   

18.
Conformational studies of myosin phosphorylated by protein kinase C   总被引:2,自引:0,他引:2  
Smooth muscle myosin from chicken gizzard is phosphorylated by Ca2+-activated phospholipid-dependent protein kinase, protein kinase C, as well as by Ca2+/calmodulin-dependent kinase, myosin light chain kinase (Endo, T., Naka, M., and Hidaka, H. (1982) Biochem. Biophys. Res. Commun. 105, 942-948). We have now demonstrated the effect of phosphorylation by protein kinase C on the smooth muscle myosin molecule. In glycerol/urea polyacrylamide gel electrophoresis the 20,000-dalton light chain phosphorylated by protein kinase C co-migrated with that phosphorylated by myosin light chain kinase. Moreover, the light chain phosphorylated by both kinases migrated more rapidly than did the light chain phosphorylated by either myosin light chain kinase or protein kinase C alone. Myosin phosphorylated by protein kinase C formed a bent 10 S monomer while that phosphorylated by myosin light chain kinase was an unfolded and extended 6 S monomer in the presence of 0.2 M KCl. In addition, myosin phosphorylated by kinases had a sedimentation velocity of 7.3 S, thereby suggesting that the myosin was partially unfolded. The unfolded myosin was visualized electron microscopically. The fraction in the looped form was higher when for myosin phosphorylated by both kinases higher than for that phosphorylated by light chain kinase alone. Therefore, phosphorylation by protein kinase C does not lead to the change in myosin conformation seen with myosin light chain kinase.  相似文献   

19.
Phosphorylation of maize RAB-17 protein by casein kinase 2   总被引:9,自引:0,他引:9  
The maize gene RAB-17, which is responsive to abscisic acid, encodes a basic glycine-rich protein containing, in the middle part of its sequence, a cluster of 8 serine residues followed by a putative casein kinase 2-type substrate consensus sequence. This protein was found to be highly phosphorylated in vivo. Here, we show that RAB-17 protein is a real substrate for casein kinase 2. RAB-17 protein is phosphorylated in vitro by casein kinase 2 isolated from rat liver cytosol and from maize embryos. A maximum of 4 mol of phosphate were incorporated per mol of RAB-17 protein following incubation with casein kinase 2. Phosphopeptide mapping experiments show that the peptide phosphorylated by casein kinase 2 in vitro is identical to that derived from the protein phosphorylated in vivo. Purification by high performance liquid chromatography and partial sequencing of the phosphopeptide indicate that it corresponds to the region of the protein (residues 56-89) containing the cluster of serine residues. Our results indicate that RAB-17 is phosphorylated by casein kinase 2 or a kinase with a similar specificity and that phosphorylation takes place in the serine cluster region of the protein both in vitro and in vivo.  相似文献   

20.
Fructose-1,6-bisphosphatase from rat liver was phosphorylated with cyclic AMP-dependent protein kinase and [gamma-32P]ATP. Brief exposure of the 32P-labeled enzyme to trypsin removed all radioactivity from the enzyme core and produced a single-labeled peptide. The partial sequence of the 17-amino acid peptide was found to be Ser-Arg-Pro-Ser(P)-Leu-Pro-Leu-Pro-(Ser2, Glx2, Pro2, Leu, Arg2). The kinetics of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of native fructose bisphosphatase were compared with those of rat liver type L pyruvate kinase where the sequence around the phosphoserine is known (Arg-Arg-Ala-Ser(P)-Val; Hjelmquist, G., Anderson, J., Edlund, B., and Engstrom, L. (1974) Biochem. Biophys. Res. Commun. 61, 559-563). The Km for pyruvate kinase (17 microM) was less than that for fructose bisphosphatase (58 microM); the Vmax was about 3-fold greater with pyruvate kinase as substrate. The relationship between the rates of phosphorylation of these native substrates and the amino acid sequences surrounding the phosphorylated sites is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号