共查询到6条相似文献,搜索用时 4 毫秒
1.
2.
利用聚合酶链反应(PCR)技术从小偃6号中获得400bp左右的扩增产物,将其与pGEM-T Easy载体连接后转入大肠杆菌,经过筛选获得HMW-8-P和HMW-38-P两种类型克隆。序列分析表明:HMW-38-P包括了HMW-GS14基因上游启动子及信号肽对应编码区,而另一段(HMW-8-P)为一未知HMW-GS基因启动子区及信号肽对应的编码区。将两序列和GenBank中已知的35种HWM-GS基因启动子区序列进行多序列比对,最后获得HMW-GS启动子的系统发生树。通过系统发生树可以清晰地看出位于不同染色体上的不同亚基类型的HMW-GS基因的进化关系,并可确定HMW-8-P为Glu-D-1类型HMW-GS的启动子区,小偃6号中Glu-D-1类型的亚基为2亚基,所以HMW-6-P为2亚基启动子区序列。 相似文献
3.
Insights into function and regulation of small heat shock protein 25 (HSPB1) in a mouse model with targeted gene disruption 总被引:2,自引:0,他引:2
Huang L Min JN Masters S Mivechi NF Moskophidis D 《Genesis (New York, N.Y. : 2000)》2007,45(8):487-501
The mammalian small heat shock protein (sHSPs) family is comprised of 10 members and includes HSPB1, which is proposed to play an essential role in cellular physiology, acting as a molecular chaperone to regulate diverse cellular processes. Whilst differential roles for sHSPs are suggested for specific tissues, the relative contribution of individual sHSP family members in cellular and organ physiology remains unclear. To address the function of HSPB1 in vivo and determine its tissue-specific expression during development and in the adult, we generated knock-in mice where the coding sequence of hspb1 is replaced by a lacZ reporter gene. Hspb1 expression marks myogenic differentiation with specific expression first confined to developing cardiac muscles and the vascular system, and later in skeletal muscles with specific expression at advanced stages of myoblast differentiation. In the adult, hspb1 expression was observed in other tissues, such as stratified squamous epithelium of skin, oronasal cavity, tongue, esophagus, and uterine cervix but its expression was most prominent in the musculature. Interestingly, in cardiac muscle hsbp1 expression was down-regulated during the neonatal period and maintained to a relatively low steady-level throughout adulthood. Despite this widespread expression, hspb1-/- mice were viable and fertile with no apparent morphological abnormalities in tissues under physiological conditions. However, at the cellular level and under stress conditions (heat challenge), HSPB1 act synergistically with the stress-induced HSPA1 (HSP70) in thermotolerance development, protecting cells from apoptosis. Our data thus indicate a nonessential role for HSPB1 in embryonic development and for maintenance of tissues under physiological conditions, but also shows that it plays an important role by acting synergistically with other HSPs during stress conditions to exert cytoprotection and anti-apoptotic effects. 相似文献
4.
5.