首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K S Funatsu  K Inanaga 《Peptides》1987,8(2):319-325
Nanomolar concentration of thyrotropin-releasing hormone (TRH) in vitro caused a significant reduction of [3H]apomorphine binding sites (70% of the control) in the rat striatum and the limbic forebrain. [3H]Spiperone binding was not affected by TRH. On the other hand, dopamine and apomorphine displaced [3H]TRH binding partially, suggesting the presence of a TRH receptor subpopulation that has a high affinity for dopamine agonist. Most of the neuroleptics displaced [3H]TRH binding dose-dependently in the micromolar range. (-)-Sulpiride had no affinity to TRH receptors. These findings suggest that one of the important roles of TRH as a neuromodulator is to modulate receptors for classical neurotransmitters, and this receptor-receptor interaction may be of importance in explaining the well known stimulating effects of TRH on the dopaminergic system.  相似文献   

2.
The optical isomers of apomorphine (APO) and N-propylnorapomorphine (NPA) were interacted with three biochemical indices of dopamine (DA) receptors in extrapyramidal and limbic preparations of rat brain tissue. There were consistent isomeric preferences for the R(-) configuration of both DA analogs in stimulating adenylate cyclase (D-1 sites) and in competing for high affinity binding of 3H-spiroperidol (D-2 sites) and of 3H-ADTN (DA agonist binding sites) in striatal tissue, with lesser isomeric differences in the limbic tissue. The S(+) apomorphines did not inhibit stimulation of adenylate cyclase by DA. The tendency for greater activity or higher apparent affinity of R(-) apomorphines in striatum may reflect the evidently greater abundance of receptor sites in that region. There were only small regional differences in interactions of the apomorphine isomers with all three receptor sites, except for a strong preference of (-)NPA for striatal D-2 sites. These results do not parallel our recent observations indicating potent and selective antidopaminergic actions of S(+) apomorphines in the rat limbic system. They suggest caution in assuming close parallels between current biochemical and functional, especially behavioral, methods of evaluating dopamine receptors of mammalian brain.  相似文献   

3.
de la Mora  M. Pérez  Ferré  S.  Fuxe  K. 《Neurochemical research》1997,22(8):1051-1054
Recent evidence has shown in membrane preparations that the binding of one ligand to its receptor is able to modify the binding parameters of a second receptor (receptor-receptor interactions), allowing the modulation of incoming signals onto a neuron. To further understand the -amino-butyric acid (GABA)-dopamine (DA) interactions in the neostriatum we have carried out experiments to explore whether an activation of the GABAA receptor could affect the binding characteristics of the D2 DA receptor in membrane preparations of the rat neostriatum. The results show that GABA (30–100 nM) significantly increases the dissociation constant of the high affinity (KH) D2 DA binding site (labelled with the selective D2 DA receptor antagonist [3H]raclopride and that such an effect is fully counteracted by the GABAA receptor antagonist bicuculline (1 M). It is suggested that such putative GABAA/D2 receptor-receptor interactions may take place in the somato-dendritic membrane of the striato-pallidal GABA neurons and that it may modulate the inhibitory effects of DA on these neurons, mediated via D2 receptors.  相似文献   

4.
Separation of dopamine (DA) agonist and antagonist receptors was attempted by means of a covalently-bound fluphenazine-agarose (Flu-agarose). Incubation of striatal membranes with Flu-agarose resulted in loss of 3H-spiroperidol (3H-SPI) binding sites, while incubation with non-coupled agarose did not cause any change. The loss of 3H-SPI binding to the Flu-agarose treated membranes was not attributed to the release of fluphenazine from Flu-agarose as justified by several criteria. Flu-agarose adsorbed more effectively striatal membranes with 3H-SPI binding sites than those with 3H-DA binding sites. Following incubation of the membranes with Flu-agarose (2.5 ml beads/100 mg membrane protein), the density of 3H-SPI binding sites in the resulting membranes was reduced to 29%, whereas the density of 3H-DA binding sites to the same membranes was not changed. In addition, the potencies of DA antagonists to inhibit 3H-N-propylnorapomorphine binding to the membranes were decreased more than a hundred times, while the potencies of DA agonists were little affected. These results suggest that in the striatal membranes exist at least two populations of DA receptors.  相似文献   

5.
By means of intracerebral microdialysis effects of cholecystokinin peptides and neurotensin administered via the microdialysis probe have been studied on dopamine release and metabolism in the nucleus accumbens and neostriatum of the halothane anaesthetized male rat. Levels of extra cellular dopamine (DA) and its metabolites 3,4 dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were assessed in nuc. accumbens (rostral and caudal part) using high performance liquid chromatography in combination with electrochemical detection.

(1) In the rostral part of the nuc. accumbens CCK-8 (10 and 100 μM), CCK-33 (100 μM) but not CCK-4 (10 and 100 μM) increased the levels of DA in the perfusate without increasing the extracellular levels of DOPAC and HVA. (2) In the caudal nuc. accumbens CCK-8 and CCK-4 in concentrations of 10 μM and 100 μ M of CCK-33 had no effect on DA release and metabolism, since the extracellular levels of DA, DOPAC and HVA were not changed. (3) In the rostral nuc. accumbens perfusion with 10 μM of neurotensin but not with any other concentration of neurotensin (0.01, 0.1, 1 and 100 μM) increased the levels of DA in the extracellular fluid. (4) In the caudal nuc. accumbens a 40 min perfusion with neutrotensin produced a concentration dependent increase of the levels of DA in the perfusate (peak action at 10 μ M) which in this case was associated with increases in the extracellular levels of DOPAC and HVA. (5) By means of receptor autoradiography using (3-[125I]iodotyrosyl3) neurotensin it was found that a 40 min perfusion with this radioligand in the rostral nuc. accumbens reached a total volume of 0.051 mm3. The diffusion of the radioligand was limited to the rostral or caudal part of the nuc. accumbens depending upon the site of placement of the dialysis probe.

The results indicate the existence of cholecystokinin (CCK) receptors in the rostral nuc. accumbens, which are sensitive to CCK-8 and CCK-33 but not to CCK-4, and which facilitate DA release without producing any detectable increase in DA metabolites. In contrast, such receptors do not appear to play a similar role in the regulation of DA release in the caudal nuc. accumbens, where DA terminals contain CCK-like immunoreactivity. Furthermore, the results indicate that neurotensin receptors exist both in the rostral and caudal nuc. accumbens, where they inter alia enhance the release of DA. In the caudal nuc. accumbens these effects of neurotensin are also associated with an increase of DA metabolites, possibly suggesting that in this region neurotensin receptors may also control DA synthesis.  相似文献   


6.
Striatal D-2 dopamine (DA) antagonist and agonist binding sites were measured during the rat estrous cycle and compared to ovariectomized (OVX) rats. Dopaminergic D-2 antagonist binding sites were constant during the estrous cycle while agonist binding sites show a rapid and significant decrease of the ratio of high to low D-2 agonist binding sites from proestrus AM (PAM) to diestrus 1 (D1) and return to OVX value in diestrus 2 (DII). Thus, physiological fluctuations of hormones as occur during the estrous cycle can modulate extrahypothalamic biogenic amine activity, namely striatal DA systems which are not involved in the control of hormone secretion.  相似文献   

7.
Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson''s disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K+ channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca2+ dependence of release and the potential role of exocytotic proteins.  相似文献   

8.
Rabbit neostriatal slices were prelabeled with [3H]dopamine (DA) and [14C]choline and then superfused. The electrical stimulation-evoked release of DA and of acetylcholine (ACh) was abolished by 0.33 microM tetrodotoxin and by low calcium concentrations (0.13 mM). Bromocriptine, a selective D2-DA receptor agonist, inhibited in a concentration-dependent manner the evoked overflow of DA and ACh, without affecting the basal efflux of both transmitters. The effects of bromocriptine were antagonized by sulpiride, a specific antagonist of D2-DA receptors. With stimulation at 0.3 Hz and 120 pulses, bromocriptine was eight times more potent in inhibiting the evoked overflow of DA (IC50: 11 nM) than that of ACh (IC50: 83 nM). Stimulations at 3 Hz and 360 pulses markedly reduced the potency of bromocriptine in inhibiting DA and ACh release, and diminished its selectivity for presynaptic receptors. These results indicate that DA receptors that modulate the release of DA and ACh are of the D2 subtype. The greater potency of bromocriptine at pre- than at postsynaptic sites suggests that these receptors may be different in quantity and/or quality [D2-alpha (presynaptic) versus D2-beta (postsynaptic)]. Finally, marked differences in the potency and efficacy of DA agonist actions on DA and ACh release modulatory receptors are obtained, depending on the parameters of stimulation used.  相似文献   

9.
Abstract: This study examined the hypotheses that low-level lead (Pb) exposure would increase dopamine (DA) binding sites, would do so preferentially in nucleus accumbens, and that such effects would be modified by concurrent DA agonist treatment. D1-like and D2-like binding sites and the dopamine transporter (DT) were measured autoradiographically in caudate-putamen and nucleus accumbens of rats exposed from weaning to 0, 50, or 150 ppm Pb acetate drinking solutions with or without concurrent chronic intermittent intraperitoneal injections of the D1-like agonist SKF 82958 or the DA agonist apomorphine after 2 weeks (no injections), 8 months, or 12 months of Pb exposure. Pb selectively decreased DA binding in nucleus accumbens. Decreases in D2-like and DT sites were sustained across the 12-month exposure, whereas D1-like sites evidenced recovery at 12 months. Chronic intermittent DA agonist treatments reversed these effects of Pb in nucleus accumbens, restoring receptor and DT binding levels to normal, despite decreasing binding sites of non-Pb-treated rats. These studies implicate increased DA availability as a mechanism of Pb-induced DA system changes. They also raise the possibility that Pb exposure could serve as a predisposing factor in neurodegenerative diseases associated with DA system dysfunction or could alter the course of DA-based therapeutic treatments.  相似文献   

10.
Abstract: Nitric oxide release is reported to be involved in physiological processes associated with altered sensitivity of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) class of glutamate receptor. A series of compounds liberating nitric oxide were therefore tested for their ability to modulate in vitro the characteristics of [3H]AMPA binding to sections of rat brain. Pretreatment of forebrain or cerebellar sections with sodium nitroprusside (1 m M ), S -nitroso- N -acetylpenicillamine (SNAP, 200 µ M ), glyceryl trinitrate (1 µ M ), or isosorbide dinitrate (0.5 m M ) all increased the binding of 3 n M [3H]AMPA by 15–30%. These actions were reproduced by 8-bromo-cyclic GMP (200 µ M ) in the cerebellum but not in the forebrain. In a similar manner, the effect of SNAP was attenuated by an inhibitor of cyclic GMP-dependent protein kinase in the cerebellum but not in the forebrain. The elevated [3H]AMPA binding observed after pretreatment with SNAP was caused by an increase in binding affinity, but the capacity of the sites was unchanged. Autoradiographic analysis showed that forebrain binding was enhanced in the cerebral cortex and hippocampus but not in the striatum. Nitric oxide therefore appears to be able to increase the affinity of AMPA binding sites via two distinct mechanisms in different brain areas. This action may contribute to synaptic plasticity associated with nitric oxide release.  相似文献   

11.
Cholecystokinin octapeptide (CCK-8) (5 ug iv over 10 minutes) administered to normal men had no effect on basal growth hormone (GH) or prolactin secretion but significantly antagonized the GH response to the dopamine (DA) receptor agonist, apomorphine HCI (Apo) (0.5 mg sc), 30 (P less than 0.05) and 45 minutes (P less than 0.01) after Apo injection (n = 8). These results are compatible with an inhibitory effect of CCK-8 on certain DA mechanisms in the hypothalamic-pituitary axis. Whether CCK-8 affects DA function in other brain regions in man is unknown.  相似文献   

12.
The recombinant Pm2 muscarinic receptor expressed in Chinese hamster ovary (CHO) cells was used as a model system to examine receptor-effector coupling and ligand binding. In CHO cells, equilibrium binding studies and the dependence on receptor number per cell of the maximum response and EC50 values for agonist stimulation of phosphatidylinositol metabolism and inhibition of cAMP formation were consistent with a modified ternary complex model of signal transduction that included a physiologically noncompetent receptor state. Detailed kinetic studies of oxotremorine M (Oxo-M) binding to CHO cell membranes suggested that agonist interactions at the high affinity class of binding sites are complicated and depend on receptor expression levels. At low levels of expression, kinetic data were consistent with a special case of a mechanism in which Oxo-M shifts the equilibrium between two receptor conformations while at high levels of expression, it was necessary to evoke receptor-receptor interactions to explain the kinetic data. Far ultraviolet circular dichroism studies of the purified recombinant receptor showed a high content of alpha-helical secondary structure and small changes in secondary structure upon antagonist, but not agonist, binding.  相似文献   

13.
The aim of this study was to investigate the effects of the cannabinoid receptor agonist, WIN55212-2, and the cannabinoid receptor antagonist, SR141716A, on dopamine (DA) release evoked by KC1 (120 mM) microinjected into the striatum. The cannabinoid agonist WIN55212-2 (1 and 5 mg/kg, i.p.) dose-dependently attenuated DA release in the striatum, whereas the cannabinoid receptor antagonist SR141716A (3 mg/kg, i.p.) produced the opposite effect. SR141716A (3 mg/kg, i.p.) blocked the effects on DA release by WIN55212-2 (5 mg/kg, i.p.). Vehicle alone did not change DA release. These results suggest that cannabinoids modulate DA release in the striatum.  相似文献   

14.
Recent studies suggest that l-3,4 dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID), a severe complication of conventional L-DOPA therapy of Parkinson's disease, may be caused by dopamine (DA) release originating in serotonergic neurons. To evaluate the in vivo effect of a 5-HT(1A) agonist [(±)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide, 8-OHDPAT] on the L-DOPA-induced increase in extracellular DA and decrease in [(11) C]raclopride binding in an animal model of advanced Parkinson's disease and LID, we measured extracellular DA in response to L-DOPA or a combination of L-DOPA and the 5-HT(1A) agonist, 8-OHDPAT, with microdialysis, and determined [(11) C]raclopride binding to DA receptors, with micro-positron emission tomography, as the surrogate marker of DA release. Rats with unilateral 6-hydroxydopamine lesions had micro-positron emission tomography scans with [(11) C]raclopride at baseline and after two pharmacological challenges with L-DOPA?+?benserazide with or without 8-OHDPAT co-treatment. Identical challenge regimens were used with the subsequent microdialysis concomitant with ratings of LID severity. The baseline increase of [(11) C]raclopride-binding potential (BP(ND) ) in lesioned striatum was eliminated by the L-DOPA challenge, while the concurrent administration of 8-OHDPAT prevented this L-DOPA-induced displacement of [(11) C]raclopride significantly in lesioned ventral striatum and near significantly in the dorsal striatum. With microdialysis, the L-DOPA challenge raised the extracellular DA in parallel with the emergence of strong LID. Co-treatment with 8-OHDPAT significantly attenuated the release of extracellular DA and LID. The 8-OHDPAT co-treatment reversed the L-DOPA-induced decrease of [(11) C]raclopride binding and increase of extracellular DA and reduced the severity of LID. The reversal of the effect of L-DOPA on [(11) C]raclopride binding, extracellular DA and LID by 5-HT agonist administration is consistent with the notion that part of the DA increase associated with LID originates in serotonergic neurons.  相似文献   

15.
Previous study has shown that cholecystokinin (CCK) octapeptide (CCK-8) suppressed the binding of opioid receptors to the universal opioid agonist [3H]etorphine. In the present study, highly selective tritium-labeled agonists for the mu-[(tryrosyl-3,5-3H][D-Ala2,MePhe4,Gly-ol5]enkephalin ([3H]DAGO], delta- ([tyrosyl-3,5-3H][D-Pen2,5]enkephalin ([3H]DPDPE], and kappa- ([3H]U69,593) opioid receptors were used to clarify which type(s) of opioid receptor in rat brain homogenates is suppressed by CCK-8. In the competition experiments, CCK-8 suppressed the binding of [3H]DAGO and [3H]U69,593 but not that of [3H]DPDPE to the respective opioid receptor. This effect was blocked by the CCK antagonist proglumide at 1 mumol/L. In the saturation experiments, CCK-8 at concentrations of 0.1 nmol/L to 1 mumol/L decreased the Bmax of [3H]DAGO binding sites without affecting the KD; on the other hand, CCK-8 increased the KD of [3H]U69,593 binding without changing the Bmax. The results suggest that CCK-8 inhibits the binding of mu- and kappa-opioid receptors via the activation of CCK receptors.  相似文献   

16.
Serotonin (5-HT)1A receptors modulate in vivo release of brain monoaminergic neurotransmitters which may be involved in isolation-induced aggressive behavior. The present study examined the effect of isolation rearing on the 5-HT1A receptor-mediated modulation of dopamine (DA), 5-HT and noradrenaline (NA) release in the frontal cortex of mice. The selective 5-HT1A receptor agonist (S)-5-[-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HCl (MKC-242) increased the release of DA and NA and decreased the release of 5-HT in the frontal cortex of mice. The effect of MKC-242 on DA release was significantly less in isolation-reared mice than in group-reared mice, while effects of the drug on NA and 5-HT release did not differ between both groups. The effect of the other 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin on cortical DA release was also less in isolation-reared mice than in group-reared mice, and that of the drug on cortical 5-HT release did not differ between both groups. In contrast to MKC-242-induced DA release, amphetamine-induced increase in cortical DA release in vivo was greater in isolation-reared mice. The present findings suggest that isolation rearing enhances the activity of cortical dopaminergic neurons and reduces selectively the 5-HT1A receptor-mediated release of DA in the cortex.  相似文献   

17.
J Zhang  L A Chiodo  A S Freeman 《Peptides》1991,12(2):339-343
Previous studies have shown that acute intravenous treatment with sulfated cholecystokinin octapeptide (CCK-8S) but not unsulfated CCK-8 increases the number of spontaneously active midbrain dopamine (DA) neurons. This suggested that a peripheral-type (CCK-A) CCK receptor mediates this effect. Proglumide does not discriminate between CCK-A and CCK-B (central-type) receptors. In the present study, rats were treated acutely or repeatedly (14 days) with the selective CCK-A antagonist CR 1409. Repeated treatment with 5 mg/kg (IP) increased the number of spontaneously active DA cells in the A10 (ventral tegmental area) but not the A9 (substantia nigra zona compacta) region, which suggests that these DA populations are differentially affected by prolonged CCK-A receptor blockade. The sensitivity of impulse-regulating DA autoreceptors to the DA agonist quinpirole was not altered by CR 1409.  相似文献   

18.
Neurochemical interactions of tiletamine, a potent phencyclidine (PCP) receptor ligand, with the N-methyl-D-aspartate (NMDA)-coupled and -uncoupled PCP recognition sites were examined. Tiletamine potently displaced the binding of [3H]1-(2-thienyl)cyclohexylpiperidine with an IC50 of 79 nM without affecting sigma-, glycine, glutamate, kainate, quisqualate, or dopamine (DA) receptors. Like other PCP ligands acting via the NMDA-coupled PCP recognition sites, tiletamine decreased basal, harmaline-, and D-serine-mediated increases in cyclic cGMP levels and induced stereotypy and ataxia. Tiletamine was nearly five times more potent than PCP at inhibiting the binding of 3-hydroxy[3H]PCP to its high-affinity NMDA-uncoupled PCP recognition sites. However, following parenteral administration, dizocilpine maleate (MK-801), ketamine, PCP, dexoxadrol, and 1-(2-thienyl)cyclohexylpiperidine HCl, but not tiletamine, increased rat pyriform cortical DA metabolism and/or release, a response modulated by the NMDA-uncoupled PCP recognition sites. Pretreatment with tiletamine did not attenuate the MK-801-induced increases in rat pyriform cortical DA metabolism, a result suggesting that tiletamine is not a partial agonist of the NMDA-uncoupled PCP recognition sites in this region. However, following intracerebroventricular administration (100-500 micrograms/rat), tiletamine increased pyriform cortical DA metabolism with a bell-shaped dose-response curve. These data indicate a differential interaction of tiletamine with the NMDA-coupled and -uncoupled PCP recognition sites. The paradoxical effects of tiletamine suggest that tiletamine might activate receptor(s) or neuronal pathways of unknown pharmacology.  相似文献   

19.
7-[3-(4-[2,3-dimethylphenyl]piperazinyl)propoxy]-2(1H)-quinolinone (OPC-4392), was synthesized in our laboratories and compared with apomorphine, 3-(3-hydroxyphenyl)-N-n-propylpiperidine (3-PPP) and dopamine antagonists in a series of tests designed to characterize dopamine receptor activation and inhibition. The assertion that OPC-4392 acts as an agonist at presynaptic dopamine autoreceptors is supported by the following behavioral and biochemical observations: OPC-4392, 3-PPP and apomorphine inhibited the reserpine-induced increase in DOPA accumulation in the forebrain of mice and in the frontal cortex, limbic forebrain and striatum of rats. In addition, the gamma-butyrolactone (GBL)-induced increase in DOPA accumulation in the mouse forebrain was also inhibited by OPC-4392, 3-PPP and apomorphine. Haloperidol antagonized the inhibitory effect of OPC-4392 in both instances. The inhibitory effect of OPC-4392 on GBL-induced DOPA accumulation lasted for at least 8 hours after oral administration to mice, while that of 3-PPP and apomorphine disappeared in 4 hours after subcutaneous injection. OPC-4392 failed to increase spontaneous motor activity in reserpinized mice, enhance spontaneous ipsilateral rotation in rats with unilateral striatal kainic acid (KA) lesions, induce contralateral rotation in rats with unilateral striatal 6-hydroxydopamine (6-OHDA) lesions and inhibit 14C-acetylcholine (Ach) release stimulated by 20 mM KCl in rat striatal slices. In addition, OPC-4392 appears to block postsynaptic D2 receptors since OPC-4392, as well as dopamine antagonists, was able to inhibit stereotyped behavior and climbing behavior induced by apomorphine in mice, displace the 3H-spiroperidol binding to rat synaptosomal membranes in vitro and reverse the inhibitory effect of apomorphine on Ach release in rat striatal slices. These results suggest that OPC-4392 acts as a dopamine agonist at presynaptic autoreceptors related to dopamine synthesis and acts as dopamine antagonist at postsynaptic D2 receptors.  相似文献   

20.
Abstract: This study evaluated the hypotheses that in vivo lead (Pb) exposure would alter α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor binding and, based on known glutamate-dopamine interactions and Pb-induced changes in dopamine (DA) systems, that AMPA binding might be differentially influenced by DA agonist treatment under conditions of Pb exposure. Alterations in high-affinity ([3H]AMPA) versus total AMPA [6-[3H]cyano-7-nitroquinoxaline-2,3-dione ([3H]CNQX)] receptor binding were determined in medial frontal cortex, dorsal striatum, and nucleus accumbens of rats exposed to 0, 50, or 150 ppm of Pb acetate for 2 weeks or 8 months. Additional 8-month groups received chronic intermittent treatment with saline, the D1 agonist SKF82958, or the general DA agonist apomorphine. Two-week exposures increased AMPA receptor densities, whereas robust decreases occurred after 8 months of Pb; at the latter time point changes were more pronounced for high-affinity than total AMPA receptor binding, with high-affinity effects expressed preferentially in dorsal striatum and nucleus accumbens. DA agonist treatments almost fully reversed Pb-related declines in [3H]AMPA binding but either had no effect (apomorphine) or even further potentiated (SKF82958) the decreases in [3H]CNQX binding. One possible basis for the long-term (8-month) decrease in AMPA binding is a postsynaptic glutamatergic stimulation of non-NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号