首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
A novel series of compounds derived from the previously reported N-type calcium channel blocker NP118809 (1-(4-benzhydrylpiperazin-1-yl)-3,3-diphenylpropan-1-one) is described. Extensive SAR studies resulted in compounds with IC50 values in the range of 10–150 nM and selectivity over the L-type channels up to nearly 1200-fold. Orally administered compounds 5 and 21 exhibited both anti-allodynic and anti-hyperalgesic activity in the spinal nerve ligation model of neuropathic pain.  相似文献   

2.
We have synthesized and biologically evaluated 1,4-diazepane derivatives as T-type calcium channel blockers. In this study, we discovered compound 4s, a potential T-type calcium channel blocker with good selectivity over hERG and N-type calcium channels. In addition, it exhibited favorable pharmacokinetic characteristics for further investigation of T-type calcium channel related diseases.  相似文献   

3.
In order to find an injectable and selective N-type calcium channel blocker, we have performed the structure–activity relationship (SAR) study on the 2-, 5-, and 6-position of 1,4-dihydropyridine-3-carboxylate derivative APJ2708 (2), which is a derivative of Cilnidipine and has L/N-type calcium channel dual inhibitory activities. As a consequence of the optimization, 6-dimethylacetal derivative 7 was found to have an effective inhibitory activity against N-type calcium channels with more than 170-fold lower activity for L-type channel compared to that of APJ2708.  相似文献   

4.
N-type calcium channels represent a promising target for the treatment of neuropathic pain. The selective N-type calcium channel blocker ziconotide ameliorates severe chronic pain but has a narrow therapeutic window and requires intrathecal administration. We identified tetrahydroisoquinoline derivative 1a as a novel potent N-type calcium channel blocker. However, this compound also exhibited potent inhibitory activity against hERG channels. Structural optimizations led to identification of (1S)-(1-cyclohexyl-3,4-dihydroisoquinolin-2(1H)-yl)-2-{[(1-hydroxycyclohexyl)methyl]amino}ethanone ((S)-1h), which exhibited high selectivity for hERG channels while retaining potency for N-type calcium channel inhibition. (S)-1h went on to demonstrate in vivo efficacy as an orally available N-type calcium channel blocker in a rat spinal nerve ligation model of neuropathic pain.  相似文献   

5.
We recently validated the N-type calcium channel as a target for the treatment of alcoholism and anxiety. N-type calcium channels are neuronal presynaptic ion channels that regulate neurotransmitter release at many sites in the brain. Mice lacking N-type calcium channels exhibit reduced ethanol consumption and show resistance to the acute intoxicating effects of ethanol. In wild type rodents, pretreatment with a novel N- and T-type calcium channel blocker, NP078585, reduces the intoxicating and reinforcing effects of ethanol and abolishes stress-induced reinstatement of alcohol seeking. Here we discuss these findings and expand upon their implications for the N-type calcium channel as a target for drug development. An important consideration in the development of drugs to treat any addiction is that the medication itself not be addictive. We attempted, and failed, to generate a conditioned place preference for NP078585, suggesting that NP078585 is not rewarding.  相似文献   

6.
Cilnidipine is a 1,4-dihydropyridine derived L/N-type calcium channel dual blocker possessing neuroprotective and analgesic effects which are related to its N-type calcium channel inhibitory activity. In order to find specific N-type calcium channel blockers with the least effects on cardiovascular system, we performed structure-activity relationship study on APJ2708, which is a derivative of cilnidipine, and found a promising N-type calcium channel blocker 21b possessing analgesic effect in vivo with a 1600-fold lower activity against L-type calcium channels than that of cilnidipine.  相似文献   

7.
Synthesis and structure-activity relationship (SAR) study of L-amino acid-based N-type calcium channel blockers are described. The compounds synthesized were evaluated for inhibitory activity against both N-type and L-type calcium channels focusing on selectivity to reduce cardiovascular side effects due to blocking of L-type calcium channels. In the course of screening of our compound library, N-(t-butoxycarbonyl)-L-aspartic acid derivative 1a was identified as an initial lead compound for a new series of N-type calcium channel blockers, which inhibited calcium influx into IMR-32 human neuroblastoma cells with an IC(50) of 3.4 microM. Compound 1a also exhibited blockade of N-type calcium channel current in electrophysiological experiment using IMR-32 cells (34% inhibition at 10 microM, n=3). As a consequence of conversion of amino acid residue of 1a, compound 12a, that include N-(t-butoxycarbonyl)-L-cysteine, was found to be a potent N-type calcium channel blocker with an IC(50) of 0.61 microM. Thus, L-cysteine was selected as a potential structural motif for further modification. Optimization of C- and N-terminals of L-cysteine using S-cyclohexylmethyl-L-cysteine as a central scaffold led to potent and selective N-type calcium channel blocker 21f, which showed improved inhibitory potency (IC(50) 0.12 microM) and 12-fold selectivity for N-type calcium channels over L-type channels.  相似文献   

8.
Piperidines are a relatively novel class of calcium channel blockers which act at a unique receptor site associated with the calcium channel α1 subunit. Calcium channel blocking affinities ranging from subnanomolar to several hundred micromolar have been reported in the literature, suggesting that piperidine block is highly sensitive to the cellular environment experienced by the channel. Here, I have investigated some of the cytoplasmic determinants of haloperidol block of N-type calcium channels expressed in human embryonic kidney cells. In perforated patch clamp recordings, haloperidol blocks N-type calcium channels with an inhibition constant of 120 μM. Upon internal dialysis with chloride containing pipette solution, the blocking affinity increases by 40-fold. This effect could be attributed in part to the presence of internal chloride ions, as replacement of intracellular chloride with methanesulfonate reduced haloperidol blocking affinity by almost one order of magnitude. Tonic inhibition of N-type channels by Gβγ subunits further enhanced the blocking effects of haloperidol, suggesting the possibility of direct effects of Gβγ binding on the local environment of the piperidine receptor site. Overall, depending on the cytoplasmic environment experienced by the channel, the blocking affinity of N-type calcium channels for haloperidol may vary by more than two orders of magnitude. Thus, absolute blocking affinities at the piperidine receptor site must be interpreted cautiously and in the context of the particular experimental setting. Received: 23 July 1998/Revised: 19 October 1998  相似文献   

9.
N-type calcium channels located on presynaptic nerve terminals regulate neurotransmitter release, including that from the spinal terminations of primary afferent nociceptors. Accordingly, N-type calcium channel blockers may have clinical utility as analgesic drugs. A selective N-type calcium channel inhibitor, ziconotide (Prialt), is a neuroactive peptide recently marketed as a novel nonopioid treatment for severe chronic pain. To develop a small-molecule N-type calcium channel blocker, the authors developed a 96-well plate high-throughput screening scintillation proximity assay (SPA) for N-type calcium channel blockers using [125I]-labeled omega-conotoxin GVIA as a channel-specific ligand. Assay reagents were handled using Caliper's Allegro automation system, and bound ligands were detected using a PerkinElmer TopCount. Using this assay, more than 150,000 compounds were screened at 10 microM and approximately 340 compounds were identified as hits, exhibiting at least 40% inhibition of [125I]GVIA binding. This is the 1st demonstration of the use of [125I]-labeled peptides with SPA beads to provide a binding assay for the evaluation of ligand binding to calcium channels. This assay could be a useful tool for drug discovery.  相似文献   

10.
Selective blockers of the N-type calcium channel have proven to be effective in animal models of chronic pain. However, even though intrathecally delivered synthetic ω-conotoxin MVIIA from Conus magnus (ziconotide [Prialt®]) has been approved for the treatment of chronic pain in humans, its mode of delivery and narrow therapeutic window have limited its usefulness. Therefore, the identification of orally active, small-molecule N-type calcium channel blockers would represent a significant advancement in the treatment of chronic pain. A novel series of pyrazole-based N-type calcium channel blockers was identified by structural modification of a high-throughput screening hit and further optimized to improve potency and metabolic stability. In vivo efficacy in rat models of inflammatory and neuropathic pain was demonstrated by a representative compound from this series.  相似文献   

11.
A novel series of substituted 2,4,5,6-tetrahydrocyclopenta[c]pyrazoles were investigated as N-type calcium channel blockers (Cav2.2 channels), a chronic pain target. One compound was active in vivo in the rat CFA pain model.  相似文献   

12.
The presence of high voltage-activated calcium channels in the rat pineal gland is well known. However, their role in pineal metabolism is not completely understood and is even controversial. Better to understand this matter, we investigated the effects of L-, N- or P/Q-type calcium channel blockers (nifedipine, omega-conotoxin GVIA, omega-agatoxin IVA, respectively) on melatonin content and arylalkylamine-N-acetyltransferase activity of denervated rat pineal glands kept for 48 h in culture and stimulated with norepinephrine. Melatonin was measured by high performance liquid chromatography with electrochemical detection and arylalkylamine-N-acetyltransferase activity was quantified by radiometric assay. Pre-incubation with any of these high voltage-activated calcium channel blockers reduced the melatonin production induced by norepinephrine although arylalkylamine-N-acetyltransferase activity was reduced only by the N-type calcium channel antagonist, omega-conotoxin GVIA. The results indicate that calcium influx through L-, N- or P/Q-type of high voltage-activated calcium channels is necessary for the full expression of the metabolic process leading to melatonin synthesis in the rat pineal glands. However, the mechanisms involved in this process are different for the L- or P/Q- and N-type calcium channels.  相似文献   

13.
Selective N-type voltage sensitive calcium channel (VSCC) blockers have shown utility in several models of stroke and pain. We are especially interested in small molecule N-type calcium channel blockers for therapeutic use. Herein, we report a series of N,N-dialkyl-dipeptidylamines with potent functional activity at N-type VSCCs and in vivo efficacy. The synthesis, SAR, and pharmacological evaluation of this series are discussed.  相似文献   

14.
A novel series of substituted tetrahydropyrrolo[3,4-c]pyrazoles were investigated as blockers of the N-type calcium channel (Cav2.2 channels), a chronic pain target.  相似文献   

15.
Activation of opioid or opioid-receptor-like (ORL1 a.k.a. NOP or orphanin FQ) receptors mediates analgesia through inhibition of N-type calcium channels in dorsal root ganglion (DRG) neurons (). Unlike the three types of classical μ, δ, and κ opioid receptors, ORL1 mediates an agonist-independent inhibition of N-type calcium channels. This is mediated via the formation of a physical protein complex between the receptor and the channel, which in turn allows the channel to effectively sense a low level of constitutive receptor activity (). Further inhibition of N-type channel activity by activation of other G protein-coupled receptors is thus precluded. ORL1 receptors, however, also undergo agonist-induced internalization into lysosomes, and channels thereby become cointernalized in a complex with ORL1. This then results in removal of N-type channels from the plasma membrane and reduced calcium entry (). Similar signaling complexes between N-type channels and GABAB receptors have been reported (). Moreover, both L-type and P/Q-type channels appear to be able to associate with certain types of G protein-coupled receptors (). Hence, interactions between receptors and voltage-gated calcium channels may be a widely applicable means to optimize receptor channel coupling.  相似文献   

16.
Voltage activated calcium channel (VACC) blockers have been demonstrated to have utility in the treatment of stroke and pain. A series of aminomethyl substituted phenol derivatives has been identified with good functional activity and selectivity for N-type VACC's over sodium and potassium channels. The methods of synthesis and preliminary pharmacology are discussed herein.  相似文献   

17.
N型钙通道与疼痛   总被引:1,自引:0,他引:1  
N型电压依赖性钙通道(VDCCs)在疼痛的传递与调控中具有重要作用。它们密集分布于脊髓背角伤害感受性神经元突触前末梢,参与主要疼痛介质如谷氨酸和P物质等释放的调节。通过阻断上述通道,选择性N型VDCCs阻断剂表现出强效镇痛作用,N型VDCCs Cav2.2亚基基因敲除小鼠也表现为痛阈提高。N型VDCCs还分布于自主神经系统和中枢神经系统突触部位,现有的N型VDCCs阻断剂用于疼痛治疗时出现的各种副作用与这些部位的突触抑制有关。最近发现,背根节伤害感受性神经元上存在一种特异的N型VDCCs亚型,这为疼痛治疗提供了一个非常有意义的新靶标。  相似文献   

18.
Synthesis and structure-activity relationship (SAR) studies of L-cysteine-based N-type calcium channel blockers are described. In the course of exploring SAR of the N- and C-terminal substituents, the L-cysteine derivative was found to be a potent N-type calcium channel blocker with an IC(50) value of 0.14 microM on IMR-32 assay. Compound showed 12-fold selectivity for N-type over L-type calcium channels on AtT-20 assay.  相似文献   

19.
Selective N-type voltage sensitive calcium channel (VSCC) blockers have shown efficacy in several animal models of stroke and pain. In the process of searching for small molecule N-type calcium channel blockers, we have identified a series of N-methyl-N-aralkyl-peptidylamines with potent functional activity at N-type VSCCs. The most active compound discovered in this series is PD 173212 (11, IC50 = 36 nM in the IMR-32 assays). SAR and pharmacological evaluation of this series are described.  相似文献   

20.
Mouse striatum was incubated with [3H]dopamine ([3H]DA) and superfused with and the tritium efflux induced by nicotine, electrical stimulation, or simultaneous nicotine and electrical stimulation was measured, to characterize the role of different Ca2+ channels in the transmitter release. Nicotine stimulation and electrical stimulation exerted additive effects on tritium efflux. Separation of the released radioactivity on alumina columns indicated that nicotine or electrical stimulation increases the release of [3H]DA and that the outflow of3H-labeled metabolites was similar with the two different stimulation procedures. Removal of Ca2+ from the superfusate resulted in a marked reduction in the tritium release evoked by nicotine, whereas the electrical stimulation-evoked tritium release was completely dependent on external Ca2+. The L-and N-type calcium channel blockers omega-conotoxin GVIA and Cd2+ inhibited the tritium release from the striatum evoked by either nicotine or electrical stimulation, whereas the L-type and T-type channel blockers diltiazem and Ni2+ did not alter release of [3H]DA. We conclude that N-type voltage-sensitive Ca2+ channels participate in striatal dopamine release, and we speculate that nicotinic receptor-operated ion channels permeable to cations such as Ca2+ and N-type voltage-sensitive calcium channels may simultaneously open up, and they additively increase free intracellular Ca2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号