首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compressed seed cones and pollen cones of Sewardiodendron laxum are described from the Middle Jurassic of Yima, Henan, central China. They are either organically attached to or associated with leafy shoots. Seed cones are terminally borne. Each cone is ovate to elongated, up to 6.5 cm long and 3.5 cm wide, and consists of a stout axis and numerous helically arranged bract-scale complexes. The bract protrudes beyond and is partially fused with the reduced ovuliferous scale. The ovuliferous scale bears approximately six inverted, small, and flattened seeds. Pollen cones are borne in terminal clusters. Microsporophylls are helically arranged, each bearing three abaxial, basally fused pollen sacs. Pollen is assaccate, rounded, and with an inconspicuous pore. Morphological, structural, and cuticular features of seed cones, pollen cones, and leafy shoots of S. laxum are compared with those of fossil and extant conifers. S. laxum is included in Taxodiaceae and believed to have its closest affinities with a Mesozoic conifer Elatides and a group of Cunninghamia-like conifers. It is reconstructed as a half-evergreen tree that lived in a humid, warm-temperate climate.  相似文献   

2.
This paper reports the organic attachment of male and female cones to twigs previously described as Tomaxellia biforme Archangelsky. The male cones produce Classopollis pollen, while the scales of the female structures are comparable to the Rhaeto-Liassic northern genus Cheirolepidium. A new interpretation of the possible female cone of Cheirolepidium is presented, based on the new evidence now available with the knowledge of Tomaxellia cones. Other female cones found in Mesozoic formations may be comparable to some extent with Tomaxellia , such as Indostrobus (Cretaceous of India) or Pararaucaria (Jurassic of Argentina), and they may be grouped in the family Cheirolepidiaceae. Comparisons with older conifer genera with known female cones are also included (Voltziaceae). Some morphological changes of the female cones, which probably took place during the Mesozoic (in these particular groups) are also inferred.  相似文献   

3.
《Geobios》2014,47(5):315-324
A new genus and species of male cones of coniferophyte from the Lower Permian (Artinskian and Kungurian) deposits of the Urals, Russia is described: Uralostrobus voltzioides Naugolnykh nov. gen., nov. sp. The cone shows characters typical of some representatives of conifers belonging to the order Voltziales: more or less isometrical bracts of rhombic shape, prolonged sporangia with attenuate apices, and bisaccate pollen of Illinites-type. General information on the associated female seed scales and vegetative leafy shoots is given as well.  相似文献   

4.
AB Leslie 《Annals of botany》2012,110(4):915-921
Background and Aims Correlated relationships between branch thickness, branch density, and twig and leaf size have been used extensively to study the evolution of plant canopy architecture, but fewer studies have explored the impact of these relationships on the allocation of reproductive resources. This study quantifies pollen cone production in conifers, which have similar basic reproductive biology but vary dramatically in branching habit, in order to test how differences in branch diameter influence pollen cone size and the density with which they are deployed in the canopy. Methods Measurements of canopy branch density, the number of cones per branch and cone size were used to estimate the amount of pollen cone tissues produced by 16 species in three major conifer clades. The number of pollen grains produced was also estimated using direct counts from individual pollen cones. Key Results The total amount of pollen cone tissues in the conifer canopy varied little among species and clades, although vegetative traits such as branch thickness, branch density and pollen cone size varied over several orders of magnitude. However, branching habit controls the way these tissues are deployed: taxa with small branches produce small pollen cones at a high density, while taxa with large branches produce large cones relatively sparsely. Conclusions Conifers appear to invest similar amounts of energy in pollen production independent of branching habit. However, similar associations between branch thickness, branch density and pollen cone size are seen across conifers, including members of living and extinct groups not directly studied here. This suggests that reproductive features relating to pollen cone size are in large part a function of the evolution of vegetative morphology and branching habit.  相似文献   

5.
? Premise of the study: Seed cone morphology and anatomy reflect some of the most important changes in the phylogeny and evolutionary biology of conifers. Reexamination of the enigmatic Jurassic seed cone Pararaucaria patagonica reveals previously unknown systematically informative characters that demonstrate affinities with the Cheirolepidiaceae. This paper documents, for the first time, internal anatomy for seed cones of this important extinct Mesozoic conifer family, which may represent the ghost lineage leading to modern Pinaceae. ? Methods: Morphology and anatomy of cones from the Jurassic La Matilde Formation in Patagonia are described from a combination of polished wafers and thin section preparations. New photographic techniques are employed to reveal histological details of thin sections in which organic cell wall remains are not preserved. Specific terminology for conifer seed cones is proposed to help clarify hypotheses of homology for the various structures of the cones. ? Key results: Specimens are demonstrated to have trilobed ovuliferous scale tips along with a seed enclosing pocket of ovuliferous scale tissue. Originally thought to represent a seed wing in P. patagonica, this pocket-forming tissue is comparable to the flap of tissue covering seeds of compressed cheirolepidiaceous cones and is probably the most diagnostic character for seed cones of the family. ? Conclusions: Pararaucaria patagonica is assigned to Cheirolepidiaceae, documenting anatomical features for seed cones of the family and providing evidence for the antiquity of pinoid conifers leading to the origin of Pinaceae. A list of key morphological and anatomical characters for seed cones of Cheirolepidiaceae is developed to facilitate assignment of a much broader range of fossil remains to the family. This confirms the presence of Cheirolepidiaceae in the Jurassic of the Southern Hemisphere, which was previously suspected from palynological records.  相似文献   

6.
Comparisons are presented between the three-dimensional airflow patterns created around and by a scale model of a conifer ovulate cone and the trajectories of windborne pollen grains around Picea, Larix, and Pinus ovulate cones. Three general components of the airflow pattern around an ovulate cone model are 1) doldrum-like eddies, rotating over the adaxial surfaces of cone scales and directed toward attached ovules, 2) airflow spiralling around the cone axis along cone scale orthostichies and parastichies, and 3) a complex pattern of vortices (“umbilicus”) directed toward the leeward surface of the ovulate cone. The observed trajectories of pollen grains around cones of Picea, Larix, and Pinus conform to two of these three airflow components: 1) pollen grains are seen to roll along cone scales toward the distal scale margin and to become reentrained in airflow directed backward toward attached ovules, and 2) pollen grains passing around the cone are deflected into the “umbilicus” airflow pattern, where they either settle on or impact with cone scales (approach trajectories), or where they approach the leeward cone surface but are deflected away by airflow passing under the cone (Z-shaped trajectories). Vectoral analyses of pollen grain motion reveal a complex pattern of trajectories influenced by boundary layer conditions defined by ovulate cone geometry and ambient airflow speed. Wind tunnel studies of ovulate cones subtended by leaves and stem indicate that leaves circumscribing the cone act as a snowfence, deflecting windborne pollen toward the cone. Vectoral analyses of airflow patterns and pollen grain trajectories close to ovulate cones indicate that wind pollination in conifers is a non-stochastic aerodynamic process influenced by cone-leaf morphology and the behavior of pollen grains as windborne particles.  相似文献   

7.
Conifers are an excellent group in which to explore how changing ecological interactions may have influenced the allocation of reproductive tissues in seed plants over long time scales, because of their extensive fossil record and their important role in terrestrial ecosystems since the Palaeozoic. Measurements of individual conifer pollen-producing and seed-producing cones from the Pennsylvanian to the Recent show that the relative amount of tissue invested in pollen cones has remained constant through time, while seed cones show a sharp increase in proportional tissue investment in the Jurassic that has continued to intensify to the present day. Since seed size in conifers has remained similar through time, this increase reflects greater investment in protective cone tissues such as robust, tightly packed scales. This shift in morphology and tissue allocation is broadly concurrent with the appearance of new vertebrate groups capable of browsing in tree canopies, as well as a diversification of insect-feeding strategies, suggesting that an important change in plant-animal interactions occurred over the Mesozoic that favoured an increase in seed cone protective tissues.  相似文献   

8.
Two years of histological samples were collected from a Pinus monticola Dougl. (western white pine) tree identified as not producing mature pollen or seed cones. Anatomical information was collected to the ultrastructural level, to assess possible mechanisms for pollen and cone abortion resulting in sterility. Development of male and female gametophytes in the sterile western white pine tree was arrested after meiosis and before further cell divisions could take place. Sterile male gametophytes (pollen grains) had poorly developed pollen walls and sacci, reduced and degenerative cytoplasm, and no evidence of stored starch grains. The pollen cone aborted prior to pollen dehiscence. Meiosis of the megaspore mother cell in the ovule produced four megaspores, but development was stopped at the functional megaspore stage. The seed cone aborted in the first year of growth before winter dormancy. Tapetal tissue in sterile microsporangia appeared similar to that of fertile microsporangia, until the vacuolate, uninucleate microspore stage. Tapetal cells and thecal fluid surrounding the sterile microspores persisted well past the time when microsporangia on fertile trees started the process of maturation and desiccation. At pollen dehiscence, sterile pollen cones did not release any pollen and the microsporangia were filled with a sticky fluid. The behaviour of the tapetum in P. monticola sterile cones is compared with reports of tapetal function and malfunction reported in studies of angiosperm and other gymnosperm species. The occurrence and timing of gametophyte abortion in both cone sexes suggests a genetic rather than environmental basis for the sterility mechanism.  相似文献   

9.
The reproductive organs of conifers, the pollen cones and seed cones, differ in morphology from the angiosperm flower in several fundamental respects. In this report we present evidence to suggest that the two plant groups, in spite of these morphological differences and the long evolutionary distance between them, share important features in regulating the development of the reproductive organs. We present the cloning of three genes, DAL11, DAL12, and DAL13, from Norway spruce, all of which are related to the angiosperm B-class of homeotic genes. The B-class genes determine the identities of petals and stamens. They are members of a family of MADS-box genes, which also includes C-class genes that act to determine the identity of carpels and, in concert with B genes specify stamens in the angiosperm flower. Phylogenetic analyses and the presence of B-class specific C-terminal motifs in the DAL protein sequences imply homology to the B-class genes. Specific expression of all three genes in developing pollen cones suggests that the genes are involved in one aspect of B function, the regulation of development of the pollen-bearing organs. The different temporal and spatial expression patterns of the three DAL genes in the developing pollen cones indicate that the genes have attained at least in part distinct functions. The DAL11, DAL12, and 13 expression patterns in the pollen cone partly overlap with that of the previously identified DAL2 gene, which is structurally and functionally related to the angiosperm C-class genes. This result supports the hypothesis that an interaction between B- and C-type genes is required for male organ development in conifers like in the angiosperms. Taken together, our data suggests that central components in the regulatory mechanisms for reproductive organ development are conserved between conifers and angiosperms and, thus, among all seed plants.  相似文献   

10.
The specification of floral organ identity during development depends on the function of a limited number of homeotic genes grouped into three classes: A, B, and C. Pairs of paralogous B class genes, such as DEF and GLO in Antirrhinum, and AP3 and PI in Arabidopsis, are required for establishing petal and stamen identity. To gain a better understanding of the evolutionary origin of petals and stamens, we have looked for orthologs of B class genes in conifers. Here we report cDNA cloning of PrDGL (Pinus radiata DEF/GLO-like gene) from radiata pine. We provide phylogenetic evidence that PrDGL is closely related to both DEF- and GLO-like genes of angiosperms, and is thus among the first putative orthologs of floral homeotic B function genes ever reported from a gymnosperm. Expression of PrDGL is restricted to the pollen strobili (male cones) and was not detected in female cones. PrDGL expression was first detected in emergent male cone primordia and persisted through the early stages of pollen cone bud differentiation. Based on the results of our phylogeny reconstructions and expression studies, we suggest that PrDGL could play a role in distinguishing between male (where expression is on) and female reproductive structures (where expression is off) in radiata pine. We speculate that this could be the general function of DEF/GLO-like genes in gymnosperms that may have been recruited for the distinction between stamens and carpels, the male and female reproductive organs of flowering plants, during the evolution of angiosperms out of gymnosperm-like ancestors.  相似文献   

11.
Metasequoia glyptostroboides, a famous relic species of conifer that survived in China, has been successfully planted in large numbers across the world. However, limited information on male cone development in the species is available. In this study, we observed the morphological and anatomical changes that occur during male cone development in M. glyptostroboides using semi-thin sections and scanning electron microscopy. The male cones were borne oppositely on one-year-old twigs that were mainly located around the outer and sunlit parts of crown. Male cones were initiated from early September and shed pollen in the following February. Each cone consisted of spirally arranged microsporophylls subtended by decussate sterile scales, and each microsporophyll commonly consisted of three microsporangia and a phylloclade. The microsporangial wall was composed of an epidermis, endothecium, and tapetum. In mid-February, the endothecium and tapetum layers disintegrated, and in the epidermal layer the cell walls were thickened with inner protrusions. Subsequently, dehiscence of the microsporangia occurred through rupturing of the microsporangial wall along the dehiscence line. These results suggest that the structure, morphology, architecture and arrangement of male cones of M. glyptostroboides are mainly associated with the production, protection and dispersal of pollen for optimization of wind pollination.  相似文献   

12.
For decades, Gnetales appeared to be closely related to angiosperms, the two groups together forming the anthophyte clade. At present, molecular studies negate such a relationship and give strong support for a systematic position of Gnetales within or near conifers. However, previous interpretations of the male sporangiophores of Gnetales as pinnate with terminal synangia conflict with a close relationship between Gnetales and conifers. Therefore, we investigated the morphogenesis of the male reproductive structures of Welwitschia mirabilis and Ephedra distachya by SEM and light microscopy. The occurrence of reduced apices to both halves of the antherophores of W. mirabilis gives strong support for the assumption that the male ‘flowers’ of W. mirabilis represent reduced compound cones. We assume that each half of the antherophore represents a lateral male cone that has lost its subtending bract. Although both halves of the antherophores of Ephedra distachya lack apical meristems, the histological pattern of the developing antherophores supports interpreting them as reduced lateral male cones as well. Therefore, the male sporangiophores of Gnetales represent simple organs with terminal synangia. Although extant conifers do not exhibit terminal synangia, similar sporangiophores are reported for some Cordaitales, the hypothetical sister group of conifers. Moreover, several Paleozoic conifers exhibit male cones with terminal sporangia or synangia. Therefore, we propose that conifers, Cordaitales and Gnetales originated from a common ancestor that displayed simple sporangiophores with a terminal cluster of sporangia.  相似文献   

13.
14.
The composition and impact of the entomofauna exploiting seed cones of Swiss stone pine ( Pinus cembra L.) was surveyed in native stands and plantations of France, Italy, Switzerland and Austria during 1992–1996. A total of 2785 cones were collected from 25 sites. The cone entomofauna consisted of five species, of which three ( Dioryctria abietella , Eupithecia abietaria , Cecidomyia pini ) were regularly observed. The two other insects, Polydrusus atomarius and Zeiraphera diniana were observed on first-year cones, and only in two stands. No spermatophagous insect was detected. None of these insect species could be considered specific to cones of P. cembra. The overall damage never exceeded 40% of the cone crop. The importance of cone damage varied with year, cone abundance, and the position of the tree in the stand. The cone entomofauna of Swiss stone pine largely deviated from that recorded in cones of other high altitude conifers but resembled that of other stone pines growing in Eurasia. The question: why cones of P. cembra were less damaged by insects than those of other alpine conifers is discussed.  相似文献   

15.
16.
《Palaeoworld》2016,25(2):239-250
Here we describe a new conifer fossil, Elatides sandaolingensis Z.X. Wang and B.N. Sun n. sp., from the Middle Jurassic Xishanyao Formation in the Turpan-Hami Basin, Xinjiang Uygur Autonomous Region, northwestern China. The materials consist of compressions represented by well-preserved leafy shoots, pollen cones, and seed cone. Leaves are characterized by long triangular shapes, with straight apex and entire margins, and two stomatal bands on the abaxial surface. Pollen cones are terminally disposed on the ultimate leafy shoots, borne singly or in clusters. Pollen sacs are long-oval shaped, with three pollen sacs fused together. Pollen grains are spherical and have small germinal papilla and few wrinkles. The seed cone is oblong, with more than 35 helically arranged bract-scale complexes, which are characterized by long-oval shape and triangular apex. Compared with the extant nine genera of Taxodiaceous Cupressaceae in the morphology of seed cone and pollen cones, the present fossil consistently shares many characteristics with the extant genus Cunninghamia, but differs in other aspects. After being compared with the reported fossil records of the fossil plants, the current species is found to be different from any known species; thus, the present fossil is referred to as a new species of Elatides. From the similarity between the present fossil and Cunninghamia, it can be inferred that there may be a genetic relationship between these two genera. Additionally, the new species has thin cuticles and slightly sunken stomata, which can provide evidence indicating that the climate of the Turpan-Hami Basin in Middle Jurassic might have been warm and humid. By studying the geological history and geographical distribution of Elatides, it can be inferred that this genus may have originated in Switzerland, and it was migrated from Xinjiang to North and South China through the Ural Mountains.  相似文献   

17.
Phenology and anatomy of the reproductive phase of Abies pinsapo were studied. Male cones and female cones were differentiated in the autumn, and the dormant microsporangia contained pollen mother cells (PMCs) in the premeiotic stage. The male cones broke dormancy at the end of February when the pollen mother cells began meiosis. Pollen grains were shed at the five-celled stage at the end of April-early May. The female cones broke dormancy in mid-April. Anthesis took place at the end of April. No micropylar-pollination droplet was observed. After pollination the female cones developed quickly. The most important loss of cones occurred during the pollination period. The number of archegonia varied from one to three but two was most common. Fertilization took place at the end of June. The embryos developed during the summer, and seeds were dispersed in autumn. The results are discussed in relation to other conifers.  相似文献   

18.
Effect of defoliation on grass growth. A quantitative review   总被引:13,自引:0,他引:13  
This study describes the seasonal patterns of seed and cone abortion in natural Pinus halepensis trees and assesses the effects of pollen quantity, tree size and cone location on seed and cone abortion. The cone-set ratio was similar to the expected value, based on literature on woody perennials. The seed-ovule ratio, however, was almost twice as high as its expected value. The investment in protective cone elements was high and did not vary with the seed-ovule ratio of a cone. Pollination factors influenced cone abortion, as indicated by the high abortion rate at the end of the pollination period. Furthermore, abortive cones had lower pollination rates and lower pollen loads than well developed cones. Effects of resource availability were assessed as effects of tree size and cone position on twigs. Small trees aborted more cones than big trees and cone abortion was higher in apical cones than in basal cones. Abortion in P. halepensis is selective, mediated by both pollen quantity and resource availability. The relative importance of pollen and resources is suggested to be flexible, probably varying between trees and years. The high seed-ovule ratio of P. halepensis is the result of high pollination rate and selective abortion. The selective abortion might be due to the high allocation to protective cone elements relative to the allocation to seeds.  相似文献   

19.
A well-preserved pollen cone of the genus Ginkgo was found in the Yixian Formation (Early Cretaceous) of Liaoning Province, China, and is described as the new species Ginkgo liaoningensis . The pollen cone, catkin-like, consists of a main axis bearing scales at its base and spirally arranged sporophylls bearing 3–4 (−2) oval or elliptical sporangia. The sporangia are pendulous and dehiscent by a longitudinal slit. The mature pollen grains are monocolpate and elongate-elliptical, and the juvenile pollen grains are found in the tetrad stage. The characteristics of G. liaoningensis are very similar to those of the living Ginkgo biloba , but the sporophylls of G. liaoningensis bear 3–4 (−2) sporangia, whereas those of G. biloba bear mostly two sporangia. G. liaoningensis differs from fossil cones of Ginkgo huttoni from the Jurassic of Yorkshire, UK, and an unnamed specimen of Ginkgo from the Upper Cretaceous of Alberta, Canada, in the size and number of sporangia. The comparison between G. liaoningensis (fossil) and G. biloba (living) supports the reduction hypothesis of ovule organs in Ginkgo , with the number of sporangia having experienced the process of reduction from three or four to two since the Early Cretaceous.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 152 , 133–144.  相似文献   

20.
Empirically determined patterns of pollen impaction on the surfaces of pine ovulate cones are correlated with regions of nonlaminar flow created by the spatial arrangement and morphology (aspect ratios) of scale-bract complexes. Results from the serial discharge of pollen, upwind of ovulate cones, indicate that ovules on ovulate cones are preferentially impacted by pollen from their own species. Analyses indicate that while aerodynamic factors dominate the entrapment of pollen by ovulate cones, other factors such as pollen impaction-rebound and rebound-reentrainment are significant. Surface characteristics in addition to the settling velocities of pollen may play important roles in determining pollination efficiency. Wind tunnel analyses of the aerodynamic effects of scale-bract arrangement and aspect ratios indicate that each complex behaves as an aerofoil, deflecting air eddies toward the micropylar ends of ovules. The ovulate cone geometry, as a whole, deflects unidirectional wind into cyclonic vortices around the cone axis, each scale-bract deflecting nonimpacted pollen along orthostichies and parastichies. The morphology of the typical conifer ovulate cone is interpreted as a structure that optimizes anemophilous reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号