首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The yeast TTAGGG binding factor 1 (Tbf1) was identified and cloned through its ability to interact with vertebrate telomeric repeats in vitro. We show here that a sequence of 60 amino acids located in its C-terminus is critical for DNA binding. This sequence exhibits homologies with Myb repeats and is conserved among five proteins from plants, two of which are known to bind telomeric-related sequences, and two proteins from human, including the telomeric repeat binding factor (TRF) and the predicted C-terminal polypeptide, called orf2, from a yet unknown protein. We demonstrate that the 111 C-terminal residues of TRF and the 64 orf2 residues are able to bind the human telomeric repeats specifically. We propose to call the particular Myb-related motif found in these proteins the 'telobox'. Antibodies directed against the Tbf1 telobox detect two proteins in nuclear and mitotic chromosome extracts from human cell lines. Moreover, both proteins bind specifically to telomeric repeats in vitro. TRF is likely to correspond to one of them. Based on their high affinity for the telomeric repeat, we predict that TRF and orf2 play an important role at human telomeres.  相似文献   

4.
Inspection of the structure of the C-terminal domain of ribosomal protein L7/L12 (1) reveals a helix-turn-helix motif similar to the one found in many DNA-binding regulatory proteins (2-5). The 19 alpha-carbon atoms of the L7/L12 alpha-helices superimpose on the DNA binding helices of CAP and cro with root-mean-square distances between corresponding alpha carbons of 1.45 and 1.55 A, respectively. These helices in L7/L12 are within a patch of highly conserved residues on the surface of L7/L12 whose role is as yet uncertain. We raise the possibility that they may constitute a binding site for nucleic acids, most probably RNA. Consistent with this hypothesis are calculations of the electrostatic charge potential surrounding the protein, which show a region of positive potential centered on the first of these helices.  相似文献   

5.
Homeodomain proteins are central regulators of development in eukaryotes. In fungi, homeodomain proteins have been shown to control cell identity and sexual development. Cryptococcus neoformans is a human fungal pathogen with a defined sexual cycle that produces spores, the suspected infectious particles. Previously, only a single homeodomain regulatory protein involved in sexual development, Sxi1alpha, had been identified. Here we present the discovery of Sxi2a, a predicted but heretofore elusive cell-type-specific homeodomain protein essential for the regulation of sexual development. Our studies reveal that Sxi2a is necessary for proper sexual development and sufficient to drive this development in otherwise haploid alpha cells. We further show that Sxi1alpha and Sxi2a interact with one another and impart similar expression patterns for two key mating genes. The discovery of Sxi2a and its relationship with Sxi1alpha leads to a new model for how the sexual cycle is controlled in C. neoformans, with implications for virulence.  相似文献   

6.
7.
The HO gene in Saccharomyces cerevisiae is regulated by a large and complex promoter that is similar to promoters in higher order eukaryotes. Within this promoter are 10 potential binding sites for the a1-α2 heterodimer, which represses HO and other haploid-specific genes in diploid yeast cells. We have determined that a1-α2 binds to these sites with differing affinity, and that while certain strong-affinity sites are crucial for repression of HO, some of the weak-affinity sites are dispensable. However, these weak-affinity a1-α2-binding sites are strongly conserved in related yeast species and have a role in maintaining repression upon the loss of strong-affinity sites. We found that these weak sites are sufficient for a1-α2 to partially repress HO and recruit the Tup1-Cyc8 (Tup1-Ssn6) co-repressor complex to the HO promoter. We demonstrate that the Swi5 activator protein is not bound to URS1 in diploid cells, suggesting that recruitment of the Tup1-Cyc8 complex by a1-α2 prevents DNA binding by activator proteins resulting in repression of HO.  相似文献   

8.
Development of the vertebrate axial skeleton requires the concerted activity of several Hox genes. Among them, Hox genes belonging to the paralog group 10 are essential for the formation of the lumbar region of the vertebral column, owing to their capacity to block rib formation. In this work, we explored the basis for the rib-repressing activity of Hox10 proteins. Because genetic experiments in mice demonstrated that Hox10 proteins are strongly redundant in this function, we first searched for common motifs among the group members. We identified the presence of two small sequences flanking the homeodomain that are phylogenetically conserved among Hox10 proteins and that seem to be specific for this group. We show here that one of these motifs is required but not sufficient for the rib-repressing activity of Hox10 proteins. This motif includes two potential phosphorylation sites, which are essential for protein activity as their mutation to alanines resulted in a total loss of rib-repressing properties. Our data indicates that this motif has a significant regulatory function, modulating interactions with more N-terminal parts of the Hox protein, eventually triggering the rib-repressing program. In addition, this motif might also regulate protein activity by alteration of the protein's DNA-binding affinity through changes in the phosphorylation state of two conserved tyrosine residues within the homeodomain.  相似文献   

9.
10.
11.
12.
13.
Single copies of an approximately 65-70 residue domain are shown to be present in the sequences of 14 eukaryotic proteins, including yeast byr2, STE11, ste4, and STE50, which are essential participants in sexual differentiation. This domain, named SAM (sterile alpha motif), appears to participate in other developmental processes because it is also present in Drosophila polyhomeotic gene product and related homologues, which are thought to regulate determination of segmental specification in early embryogenesis. Its appearance in byr2 and STE11, which are MEK kinases, and in proteins containing pleckstrain homology, src homology 3, and discs-large homologous region domains, suggests possible participation in signal transduction pathways.  相似文献   

14.
The yeast Saccharomyces cerevisiae has three cell types distinguished by the proteins encoded in their mating-type (MAT) loci: the a and alpha haploids, which express the DNA-binding proteins a1, and alpha1 and alpha2, respectively, and the a/alpha diploid which expresses both a1 and alpha2 proteins. In a/alpha cells, a1-alpha2 heterodimers repress haploid-specific genes and MATalpha1, whereas alpha2 homodimers repress a-specific genes, indicating dual regulatory functions for alpha2 in mating-type control. We previously demonstrated that the two leucine zipper-like coiled-coil motifs, called alpha2A and alpha2B, in the alpha2 N-terminal domain are important to a1-alpha2 heterodimerization. A unique feature of alpha2B is the occurrence of three atypical amino acid residues at a positions within the hydrophobic core. We have conducted mutational analyses of alpha2B peptides and the full-length protein. Our data suggest that these residues may play a critical role in partitioning of the alpha2 protein between heterodimerization with a1 and homodimerization with itself.  相似文献   

15.
Banerjee-Basu S  Baxevanis AD 《Genome biology》2002,3(8):interactions1004.1-interactions10044
Functional annotation is used to catalog information that would be of value in experimental design and analysis but annotations in public databases are often incorrect. Here, one such case is discussed.  相似文献   

16.
F Fang  J W Newport 《Cell》1991,66(4):731-742
Xenopus eggs contain two distinct cdc2 homologs of 34 and 32 kd. We show that the 32 kd cdc2 protein, like the 34 kd protein, is a kinase. However, unlike the 34 kd homolog, the 32 kd cdc2 kinase activity does not decrease dramatically at the end of mitosis. The 32 kd protein does not associate with mitotic cyclins B1 and B2 but does associate with cyclin A and a novel doublet of proteins of 54 kd that may regulate its activity. We also show that depletion of the 32 kd cdc2 homolog from a Xenopus extract blocks DNA replication, but does not inhibit entry into mitosis. By contrast, depletion of the 34 kd cdc2 homolog or absence of mitotic cyclins from an extract does not inhibit replication, but does block entry into mitosis. Our results indicate that in higher eukaryotes, DNA replication (G1-S) and mitosis (G2-M) may be controlled by distinctly different cdc2 proteins.  相似文献   

17.
The homeobox, a 183 bp DNA sequence element, was originally identified as a region of sequence similarity between many Drosophila homeotic genes. The homeobox codes for a DNA-binding motif known as the homeodomain. Homeobox genes have been found in many animal species, including sea urchins, nematodes, frogs, mice and humans. To isolate homeobox-containing sequences from the plant Arabidopsis thaliana, a cDNA library was screened with a highly degenerate oligonucleotide corresponding to a conserved eight amino acid sequence from the helix-3 region of the homeodomain. Using this strategy two cDNA clones sharing homeobox-related sequences were identified. Interestingly, both of the cDNAs also contain a second element that potentially codes for a leucine zipper motif which is located immediately 3'' to the homeobox. The close proximity of these two domains suggests that the homeodomain-leucine zipper motif could, via dimerization of the leucine zippers, recognize dyad-symmetrical DNA sequences.  相似文献   

18.
19.
The budding yeast Saccharomyces cerevisiae is a well studied unicellular eukaryotic organism the genome of which has been sequenced. The use of yeast in many commercial systems makes its investigation important not only from basic, but also from practical point of view. Yeast may be grown under both aerobic and anaerobic conditions. The investigation of the response of eukaryotes to different kinds of stresses was pioneered owing to yeast and here we focus mainly on the so-called oxidative stress. It is a result of an imbalance between the formation and decomposition of reactive oxygen species increasing their steady-state concentration. Reactive oxygen species may attack any cellular component. In the present review oxidation of proteins in S. cerevisiae is analyzed. There are two connected approaches to study oxidative protein modification - characterization of the overall process and identification of individual oxidized proteins. Because all aerobic organisms possess special systems which defend them against reactive oxygen species, the involvement of so-called antioxidant enzymes, particularly superoxide dismutase and catalase, in the protection of proteins is also analyzed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号