首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The linewidths of the 13C NMR signals of CO2 and HCO3?, in equilibrium aqueous solutions containing small amounts of carbonic anhydrase, are determined mainly by the rate of enzyme-induced interconversion of CO2 and HCO3?. We have measured these linewidths in unbuffered solutions of human carbonic anhydrase B for several values of [CO2], at 25°C as a function of pH. From a least-squares analysis of the data, using the equations relating the linewidths to the enzyme kinetics, we have obtained values for the kinetic (Michaelis-Menten) parameters that characterize this interconversion. These preliminary results are in approximate agreement with published values for highly buffered solutions. Additionally, the results confirm that the product of the hydration reaction, and the substrate for the dehydration, is the neutral molecule H2CO3.  相似文献   

3.
The rates of electron exchange between ferricytochrome c (CIII)3 and ferrocytochrome c (CII) were observed as a function of the concentrations of ferrihexacyanide (FeIII) and ferrohexacyanide (FeII) by monitoring the line widths of several proton resonances of the protein. Addition of FeII to CIII homogeneously increased the line widths of the two downfield paramagnetically shifted heme methyl proton resonances to a maximal value. This was interpreted as indicating the formation of a stoichiometric complex, CIII·FeII, in the over-all reaction:
CIII+FeII?k?1k1CIII·FeII?k?2k2CII·FeIII?k?3k3CIII+FeII
Values for k1k?1 = 0.4 × 103m?1and k2 = 208 s?1, respectively, were calculated from the maximal change in line width observed at pH 7.0 and 25 °C. Changes in the line width of CIII in the presence of FeII and either KCl or FeIII suggest that complexation is principally ionic, that FeIII and FeII compete for a common site. Addition of saturating concentrations of FeIII to CIII produced only minor changes in the nuclear magnetic resonance spectrum of CIII suggesting that complexation occurs on the protein surface.Addition of FeIII to CII in the presence of excess FeII (to retain most of the protein as CII) increased the line width of the methyl protons of ligated methionine 80. A value for k?2 ≈ 2.08 × 104 s?1 was calculated from the dependence of linewidth on the concentration of FeII at 24 °C. These rates are shown to be consistent with the over-all rates of reduction and oxidation previously determined by stopped flow measurements, indicating that k2 and k?2 were rate limiting. From the temperature dependence the enthalpies of activation are 7.9 and 15.2 kcal/mol for k2 and k?2, respectively.  相似文献   

4.
N-Phenylhydroxylamine is oxidized in aqueous phosphate buffer to nitrosobenzene, nitrobenzene, and azoxybenzene. Degradation is O2 dependent and shows general catalysis by H2PO4? (k1 = 2.3 M?2 sec?1) and PO4?3 (k2 = 2.3 × 105M?2 sec?1) or kinetically equivalent terms. Evidence is presented suggesting the intermediacy of a highly reactive species leading to these products.  相似文献   

5.
Binding of the chromogenic ligand p-nitrophenyl α-d-mannopyranoside to concanavalin A was studied in a stopped-flow spectrometer. Formation of the protein-ligand complex could be represented as a simple one-step process. No kinetic evidence could be obtained for a ligand-induced change in the conformation of concanavalin A, although the existence of such a conformational change was not excluded. The entire change in absorbance produced on ligand binding occurred in the monophasic process monitored in the stopped-flow spectrometer. The value of the apparent second-order rate constant (ka) for complex formation (ka = 54,000 s?1m? at 25 °C, pH 5.0, Γ/2 0.5) was independent of the protein concentration when the protein was in the range of 233–831 μm in combining sites and in excess of the ligand. The apparent first-order rate constant (k?a) for dissociation of the complex was obtained from the rate constant for the decomposition of the complex upon the addition of excess methyl α-d-mannopyranoside (k?a = 6.2 s?1 at 25 °C, pH 5.0, Γ/2 0.5). The ratio ka?a (0.9 × 104m?1) was in reasonable agreement with value of 1.1 ± 0.1 × 104m?1 determined for the equilibrium constant for complex formation by ultraviolet difference spectrometry. Plots of ln(kaT) and ln(kaT) vs 1T were linear (T is temperature) and were used to evaluate activation parameters. The enthalpies of activation for formation and dissociation of the complex are 9.5 ± 0.3 and 16.8 ± 0.2 kcal/mol, respectively. The unitary entropies of activation for formation and dissociation of the complex are 2.8 ± 1.1 and 1.3 ± 0.7 entropy units, respectively. These entropy changes are much less than those usually associated with substantial changes in the conformation of proteins.  相似文献   

6.
A thermodynamic characterization of the Na+-H+ exchange system in Halobacterium halobium was carried out by evaluating the relevant phenomenological parameters derived from potential-jump measurements. The experiments were performed with sub-bacterial particles devoid of the purple membrane, in 1 M NaCl, 2 M KCl, and at pH 6.5–7.0. Jumps in either pH or pNa were brought about in the external medium, at zero electric potential difference across the membrane, and the resulting relaxation kinetics of protons and sodium flows were measured. It was found that the relaxation kinetics of the proton flow caused by a pH-jump follow a single exponential decay, and that the relaxation kinetics of both the proton and the sodium flows caused by a pNa-jump also follow single exponential decay patterns. In addition, it was found that the decay constants for the proton flow caused by a pH-jump and a pNa-jump have the same numerical value. The physical meaning of the decay constants has been elucidated in terms of the phenomenological coefficients (mobilities) and the buffering capacities of the system. The phenomenological coefficients for the Na+-H+ flows were determined as differential quantities. The value obtained for the total proton permeability through the particle membrane via all available channels, LH = (?JH +pH)Δψ,ΔpNa, was in the range of 850–1150 nmol H+·(mg protein)?1·h?1·(pH unit)?1 for four different preparations; for the total Na+ permeability, LNa = (?JNa+pNa)Δψ,ΔpH, it was 1620–2500 nmol Na+·(mg protein)?1·h?1·(pNa unit)?1; and for the proton ‘cross-permeability’, LHNa = (?JH+pNa)Δψ,ΔpH, it was 220–580 nmol H+·(mg protein)?1·h?1·(pNa unit)?1, for different preparations. From the above phenomenological parameters, the following quantities have been calculated: the degree of coupling (q), the maximal efficiency of Na+-H+ exchange (ηmax), the flow and force efficacies (?) of the above exchange, and the admissible range for the values of the molecular stoichiometry parameter (r). We found q ? 0.4; ηmax ? 5%; 0.36 ? r ? 2; ?JNa+ ? 1.3 · 105μmol · (RT unit)?1 at JNa = 1 μmolNa+ · (mgprotein)?1 · h?1; and ?ΔpNa ? 5 · 104 ΔpNa · (mg protein) · h · (RT unit)?1 at ΔpNa = 1 unit, for different preparations.  相似文献   

7.
The magnesium ion-dependent equilibrium of vacant ribosome couples with their subunits
70 S?k?1k150 S+30S
has been studied quantitatively with a novel equilibrium displacement labeling method which is more sensitive and precise than light-scattering. At a concentration of 10?7m, tight couples (ribosomes most active in protein synthesis) dissociate between 1 and 3 mm-Mg2+ at 37 °C with a 50% point at 1.9 mm. The corresponding association constants Ka′ are 5.1 × 105m?1 (1 mm-Mg2+), 3.5 × 107m?1 (2 mm), and 1.2 × 109m?1 (3 mm), about five orders of magnitude higher than the Ka′ value of loose couples studied by Spirin et al. (1971) and Zitomer & Flaks (1972).In this range of Mg2+ concentrations (37 °C, 50 mm-NH4+) the rate constants depend exponentially and in opposite ways on the Mg2+ concentration: k1 = 2.2 × 10?3s?1, k?1 = 7.7 × 104m?1s?1 (2mm-Mg2+); k1 = 1.5 × 10?4s?1, k?1 = 1.7 × 107m?1s?1 (5 mm-Mg2+). Under physiological conditions (Mg2+ ~- 4 mm, ribosome concn ~- 10?7m), the equilibrium strongly favors association and the rate of exchange is slow (t12 ~- 10 min). In the range of dissociation (2 mm-Mg2+), association of subunits proceeds without measurable entropy change and hence ΔGO = ΔHO. The negative enthalpy change of ΔHO = ? 10 kcal suggests that association of subunits involves a shape change.Below a critical Mg2+ concentration (~- 2 mm), the 50 S subunits are converted irreversibly into the b-form responsible for the transition to loose couples. The results are compatible with two classes of binding sites, one class binding Mg2+ non-co-operatively and contributing to the free energy of association by reduction of electrostatic repulsion, and another class probably consisting of hydrogen bonds between components at opposite interfaces whose critical spatial alignment rapidly denatures in the absence of stabilizing magnesium ions.  相似文献   

8.
Presteady-state kinetic studies of α-chymotrypsin-catalyzed hydrolysis of a specific chromophoric substrate, N-(2-furyl)acryloyl-l-tryptophan methyl ester, were performed by using a stopped-flow apparatus both under [E]0 ? [S]0 and [S]0 ? [E]0 conditions in the pH range of 5–9, at 25 °C. The results were accounted for in terms of the three-step mechanism involving enzyme-substrate complex (E · S) and acylated enzyme (ES′); no other intermediate was observed. This substrate was shown to react very efficiently, i.e., the maximum of the second-order acylation rate constant (k2Ks)max = 4.2 × 107 M?1 s?1. The limiting values of Ks′ (dissociation constant of E · S), K2 (acylation rate) and k3 (deacylation rate) were obtained from the pH profiles of these parameters to be 0.6 ± 0.2 × 10?5 m, 360 ± 15 s?1 and 29.3 ± 0.8 s?1, respectively. Likewise small values were observed for Ki of N-(2-furyl)-acryloyl-l-tryptophan and N-(2-furyl)acryloyl-d-tryptophan methyl ester and Km of N-(2-furyl)acryloyl-l-tryptophan amide. The strong affinities observed may be due to intense interaction of β-(2-furyl)acryloyl group with a secondary binding site of the enzyme. This interaction led to a k?1k2 value lower than unity, i.e., the rate-limiting process of the acylation was the association, even with the relatively low k2 value of this methyl ester substrate, compared to those proposed for labile p-nitrophenyl esters.  相似文献   

9.
The rate of reaction of [Cr(III)Y]aq (Y is EDTA anion) with hydrogen peroxide was studied in aqueous nitrate media [μ = 0.10 M (KNO3)] at various temperatures. The general rate equation, Rate = k1 + k2K1[H+]?11 + K1[H+]?1 [Cr(III)Y]aq[H2O2] holds over the pH range 5–9. The decomposition reaction of H2O2 is believed to proceed via two pathways where both the aquo and hydroxo-quinquedentate EDTA complexes are acting as the catalyst centres. Substitution-controlled mechanisms are suggested and the values of the second-order rate constants k1 and k2 were found to be 1.75 × 10?2 M?1 s?1 and 0.174 M?1 s?1 at 303 K respectively, where k2 is the rate constant for the aquo species and k2 is that for the hydroxo complex. The respective activation enthalpies (ΔH*1 = 58.9 and ΔH*2 = 66.5 KJ mol?1) and activation entropies (ΔS*1 = ?85 and ΔS*2 = ?40 J mol?1 deg?1) were calculated from a least-squares fit to the Eyring plot. The ionisation constant pK1, was inferred from the kinetic data at 303 K to be 7.22. Beyond pH 9, the reaction is markedly retarded and ceases completely at pH ? 11. This inhibition was attributed in part to the continuous loss of the catalyst as a result of the simultaneous oxidation of Cr(III) to Cr(VI).  相似文献   

10.
The following peptides were synthesized by classical methods in solution: Ac-Gly-Gly- Val-Arg-Gly-Pro-Arg-Val-Val-Glu-Arg-NHCH3 (A), Ac-Ala-Glu-Gly-Gly-Gly-Val- Arg-Gly-Pro-Arg-Val-Val-Glu-Arg-NHCH3 (B), and Ac-Phe-Leu-Ala-Glu-Gly-Gly- Gly-Val-Arg-Gly-Pro-Arg-Val-Val-Glu-Arg-NHCH3 (C). The rates of hydrolysis of the Arg-Gly bond of these three peptides by thrombin were measured, and the values of kcatKm were found to be 0.05 × 10?7 (A), 0.02 × 10?7 (B), and 1.6 × 10?7 (C) [(NIH units/ liter)s]?1. The value ofkcatKm for peptide C is less than 1% of that for fibrinogen [although the value of kcat itself, for peptide C (but not for A or B), is comparable to that for fibrinogen]. These results indicate that phenylanine and leucine at positions P9 and P8, respectively, play a key role in the reaction of thrombin with fibrinogen. The data also show that factors outside of the 16 residues of peptide C are important in determining the rate of hydrolysis of fibrogen by thrombin.  相似文献   

11.
The binding of the crustacean selective protein neurotoxin, toxin B-IV, from the nemertine Cerebratulus lacteus to lobster axonal vesicles has been studied. A highly radioactive, pharmacologically active derivative of toxin B-IV has been prepared by reaction with Bolton-Hunter reagent. Saturation binding and competition of 125I-labeled toxin B-IV by native toxin B-IV have shown specific binding of 125I-labeled toxin B-IV to a single class of binding sites with a dissociation constant of 5–20 nM and a binding site capacity, corrected for vesicle sidedness, of 6–9 pmol per mg membrane protein. This compares to a value of 3.8 pmol [3H]saxitoxin bound per mg in the same tissue. Analysis of the kinetics of toxin B-IV association (k+1=7.3·105M?1·s?1) and dissociation (k? 1=2·10?3s?1) shows a nearly identical Kd of about 3 nM. There is no competition of toxin B-IV binding by purified toxin from Leiurus quinquestriatus venom while Centruroides sculpturatus Ewing toxin I appears to cause a small enhancement of toxin B-IV binding.  相似文献   

12.
In an accompanying publication by Duckwitz-Peterlein, Eilenberger and Overath ((1977) Biochim. Biophys. Acta 469, 311–325) it is shown that the exchange of lipid molecules between negatively charged vesicles consisting of total phospholipid extracts from Escherichia coli occurs by the transfer of single lipid monomers or small micelles through the water. Here a kinetic interpretation is presented in terms of a rate constant, k?, for the escape of lipid molecules from the vesicle bilayer into the water. The evaluated rate constants are k?P = (0.86 ± 0.05) · 10?5s?1 and k?E = (1.09 ± 0.13) · 10?6s?1 for phospholipid molecules with trans-Δ9-hexadecenoate and trans-Δ9-octadecenoate, respectively, as the predominant acyl chain component. The rate constants are discussed in terms of the acyl chain and polar head group composition of the lipids.  相似文献   

13.
The kinetic α-secondary deuterium isotope effect, kHkD, for the pH-independent hydrolysis of nicotinamide riboside, yielding nicotinamide and ribose, in water at 25 ° is 1.14, establishing that this reaction proceeds with unimolecular substrate decomposition to yield a carboxonium ion, or related species, in the rate-determining step. Surprisingly, the corresponding isotope effect for the base-catalyzed decomposition of the same substrate is 1.12, a value indicating considerable sp2 character at the Cl′ position in the transition state for this reaction. A similar result, kHkD = 1.15, was obtained for base-catalyzed hydrolysis of NAD+. The kinetic alpha deuterium isotope effect for the pig brain NAD glycohydrolasecatalyzed hydrolysis of nicotinamide riboside is 1.08. This value suggests that CN bond cleavage to form an intermediate carboxonium ion, or structurally related species, is at least partially rate-determining. In contrast, the corresponding value for the hydrolysis of this substrate catalyzed by Escherichia coli nicotinamide ribonucleotide glycohydrolase is very near unity, a result consistent with several interpretations including a rate-determining enzyme isomerization reaction.  相似文献   

14.
The kinetics of bisulfite addition to 5-fluorouracil were studied as a function of increasing concentrations of potential general acids. Values of kobsd[SO3=] measured at 25°C and ionic strength 1.0 M increased linearly and then became invariant with increasing concentrations of either HSO3? or (OHCH2CH2)2N+C(CH2OH)3 HCl (BisTris+HCl). A small kinetic hydrogen-deuterium isotope effect (kHSkDS = 1.10) was observed for the general acid catalysed portion of the addition reaction. The kinetics of bisulfite elimination from 5-fluoro-5,6-dihydrouracil-6-sulfonate were studied in ethanolamine buffers. As previously observed with 1,3-dimethyl-5,6-dihydrouracil-6-sulfonate, this reaction is subject to general base catalysis and exhibits a large kinetic hydrogen-deuterium isotope effect (k2H2Ok2D2O = 3.8). The kinetic results for the addition reaction are consistent with a multistep reaction pathway involving the initial formation of an oxyanion sulfite addition intermediate (II) which subsequently adds a proton and undergoes tautomerization to yield the final 5-fluoro-5,6-dihydrouracil-6-sulfonate product. Thus the elimination of bisulfite from 5-fluoro-5,6-dihydrouracil-6-sulfonate probably proceeds by an ElcB mechanism which involves, at relatively low concentrations of general base, rate determining general base catalyzed proton abstraction from carbon 5 to yield intermediate II followed by the rapid elimination of sulfite to yield 5-fluorouracil. These results may be related to both the enzymatically catalyzed dehalogenation of bromoand iodouracil and the methylation of deoxyuridylate by thymidylate synthetase.  相似文献   

15.
Isolation and characterization of isocitrate lyase of castor endosperm   总被引:1,自引:0,他引:1  
Isocitrate lyase (threo-DS-isocitrate glyoxylate-lyase, EC 4.1.3.1) has been purified to homogeneity from castor endosperm. The enzyme is a tetrameric protein (molecular weight about 140,000; gel filtration) made up of apparently identical monomers (subunit molecular weight about 35,000; gel electrophoresis in the presence of sodium dodecyl sulfate). Thermal inactivation of purified enzyme at 40 and 45 °C shows a fast and a slow phase, each accounting for half of the intitial activity, consistent with the equation: At = A02 · e?k1t + A02 · e?k2t, where A0 and At are activities at time zero at t, and k1 and k2 are first-order rate constants for the fast and slow phases, respectively. The enzyme shows optimum activity at pH 7.2–7.3. Effect of [S]on enzyme activity at different pH values (6.0–7.5) suggests that the proton behaves formally as an “uncompetitive inhibitor.” A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.9. Successive dialysis against EDTA and phosphate buffer, pH 7.0, at 0 °C gives an enzymatically inactive protein. This protein shows kinetics of thermal inactivation identical to the untreated (native) enzyme. Full activity is restored on adding Mg2+ (5.0 mm) to a solution of this protein. Addition of Ba2+ or Mn2+ brings about partial recovery. Other metal ions are not effective.  相似文献   

16.
Corneas were mounted in flux chambers and endothelial bicarbonate fluxes were determined following sensitization of endothelial cells with 5 · 10?6 M rose bengal and exposure to light. Corneas exposed to light demonstrated an increased passive bicarbonate flux compared to corneas not photosensitized. Active bicarbonate flux was reduced after 5 min of light exposure, but not after 1 min of light exposure. The increase in passive bicarbonate flux was prevented by the addition of 200 μg/ml catalase to the bathing solution; however, catalase had no effect on the photodynamic alteration of active flux. Neither 10 mM ascorbic acid nor 1.012 g/l glutathione prevented the photodynamically induced increase in passive flux. Perfusion of corneas with 5 · 10?6 M rose bengal dissolved in a sucrose-substituted Krebs-Ringer bicarbonate solution with a po2 of 124 ± 4.0 mmHg and exposed to light swelled at rates more rapid than corneas treated in a similar fashion but perfused with a solution with a Po2 of 20 ± 4.6 mmHg. This study demonstrates that photodynamically induced corneal endothelial cell alteration results in increased passive bicarbonate flux, a time-dependent decrease in active bicarbonate flux, is oxygen dependent, and is at least in part secondary to H2O2 produced by the dismutation reaction of the superoxide free radical.  相似文献   

17.
《BBA》1986,849(3):355-365
Rapid CO2 gas exchange by Helianthus leaves was analysed kinetically using a computer model which distinguished different components of the gas exchange by different time constants. A rapid phase of CO2 uptake was ascribed to the solubilization of CO2 in all leaf compartments and to the conversion of the dissolved CO2 to HCO3 in the chloroplast stroma which contains carbonic anhydrase. From stromal HCO3CO2 ratios the stroma pH of darkened leaves was estimated to be close to 7.5. Occasionally, values as high as 8 or as low as 7 were also obtained. If fast HCO3 formation also occurs in the cytosol, pH values may be lower by about 0.3 pH units than those calculated under the assumption that carbonic anhydrase is localized in chloroplasts only. Illumination with a light intensity close to saturation of photosynthesis caused an increase in CO2 solubilization which indicated the alkalization of the chloroplast stroma by about 0.6 pH units. This is an underestimation, if the pH of cytosol decreases in the light liberating CO2 by the action of carbon anhydrase. An alkalization of the stroma by 0.6 pH units indicates the export of about 450 nmol H+/mg chlorophyll from the stroma. This forms the basis of a large transthylakoid pH gradient which drives light-dependent ATP synthesis. A pH gradient between stroma and cytosol is capable of supporting secondary gradients between these compartments in the light, such as a gradient in the ATPADP ratio. On darkening, the stroma alkalization was reversed. The rate of stroma acidification was much higher in the presence of CO2 than in its absence.  相似文献   

18.
The rate of reaction of ferro- and ferricytochrome c (C(II) and C(III)) with ferri- and ferrocyanide and of C(III) with O2? and CO2? was determined in H2O and in 2H2O in the temperature range 5–35 °C. No isotope effect was evident in any of the reductions of C(III); the apparent energy of activation was identical in H2O and 2H2O. An isotope effect with kH2Ok2H2O = 1.25 to 1.85, depending on pH for instance was observed in the oxidation of C(II), in the slow phase of oxidation which involves conformational changes. An interpretation (supported by evidence from previous work) involving water molecules in the close vicinity of the reaction site on the protein is discussed.  相似文献   

19.
The pH dependence of the reaction of tris(hydroxymethyl)aminomethane (Tris) with the activated carbonyl compound 4-trans-benzylidene-2-phenyloxazolin-5-one (I) is given by the equation k′2 = kbKa(Ka + [H+]) + ka[OH?]Ka(Ka + [H+]), where Ka is the dissociation constant of TrisH+. Spectrophotometric experiments show that the Tris ester of α-benzamido-trans-cinnamic acid is formed quantitatively over a range of pH values, regardless of the relative contribution of kb and ka terms to k2. Hence, both terms refer to alcoholysis. While the mechanism of the reaction is not determined unequivocally in the present work, the magnitude of the kb term, together with its dependence on the basic form of Tris, suggests that ester formation is occurring by nucleophilic attack of a Tris hydroxyl group on the carbonyl carbon of the oxazolinone, with intramolecular catalysis by the Tris amino group. The rate enhancement due to this group is at least 102 and possibly of the order 106. This system is compared with other model systems for the acylation step of catalysis by serine esterases and proteinases.  相似文献   

20.
A theoretical model which can account for both the dynamic and steady responses is proposed based on the occupation theory. The reaction scheme used is;
Here, S and A are stimulus chemicals and receptor sites unbound, respectively. The binding of S to A leads to an active complex (SA)active, which is successively transformed into an inactive complex (SA)active. The response is assumed to be proportional to number of (SA)active. When a stimulating solution is applied instantaneously at t = 0, the solution to the set of differential equations based on the above scheme is obtained as follows;
p=α1e1t22t+ Ck?1k1+(1+k2k?2)C
where p and C stand for the fraction of (SA)active to the total number of receptor sites and stimulus concentration, respectively, and αi, and ωi (i = 1, 2) are numerical parameters depending on the rate constants and on C. The steady response is expressed as the third term in the above equation, which indicates that the response accords with the Beidler taste equation. Mathematical analysis of the above scheme shows that the dynamic response appears when k1C > k?2, and the calculated results for the dynamic response agree approximately with the Hill equation. The Hill coefficient lays within 1·00 and 0·79 and reaches unity with increasing k?1k2, which implies that the dynamic response under this condition satisfies the Beidler taste equation. For the case of gradual application of stimuli, i.e. the experimental condition, the time course of p is simulated with use of an analogue computer rather than with a numerical solution to the above equation. The results indicate that the dynamic response diminishes with decreasing the application speed of stimulus solution. The present theory accounts consistently for various experimental data observed in the chemoreceptor systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号