首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ketone-body metabolism in tumour-bearing rats.   总被引:3,自引:3,他引:0       下载免费PDF全文
During starvation for 72 h, tumour-bearing rats showed accelerated ketonaemia and marked ketonuria. Total blood [ketone bodies] were 8.53 mM and 3.34 mM in tumour-bearing and control (non-tumour-bearing) rats respectively (P less than 0.001). The [3-hydroxybutyrate]/[acetoacetate] ratio was 1.3 in the tumour-bearing rats, compared with 3.2 in the controls at 72 h (P less than 0.001). Blood [glucose] and hepatic [glycogen] were lower at the start of starvation in tumour-bearing rats, whereas plasma [non-esterified fatty acids] were not increased above those in the control rats during starvation. After functional hepatectomy, blood [acetoacetate], but not [3-hydroxybutyrate], decreased rapidly in tumour-bearing rats, whereas both ketone bodies decreased, and at a slower rate, in the control rats. Blood [glucose] decreased more rapidly in the hepatectomized control rats. Hepatocytes prepared from 72 h-starved tumour-bearing and control rats showed similar rates of ketogenesis from palmitate, and the distribution of [1-14C] palmitate between oxidation (ketone bodies and CO2) and esterification was also unaffected by tumour-bearing, as was the rate of gluconeogenesis from lactate. The carcinoma itself showed rapid rates of glycolysis and a poor ability to metabolize ketone bodies in vitro. The results are consistent with the peripheral, normal, tissues in tumour-bearing rats having increased ketone-body and decreased glucose metabolic turnover rates.  相似文献   

2.
Brain cortex slices from fed, 48 h and 120 h fasted rats were incubated and 14CO2 was measured from (a) [U-14C]glucose (5 mm ) either alone or in the presence of l -lcucine (0.1 or 1 mm ), and (b) [U-14C]leucine or [l-14C]leucine at 0.1 or 1 mm with or without glucose (5 mm ). In other experiments, sodium dl -3-hydroxybutyrate (3-OHB) or acetoacetate (AcAc) at 1 or 5 mm were added in the above incubation mixture. The rate of conversion of [U14C]glucose to CO2 was decreased 20% by leucine at 1 mm and 30–50% by 3-OHB at 1 or 5 mm but not by leucine at 0.1 mm . The effects of 3-OHB and of leucine (1 mm ) were not additive. The effects of leucine were similar in the fed and fasted rats. The rate of conversion of [U-14C]leucine or [l-,4C]leucine to 14CO2 at 0.1 mm and 1.0 mm was increased by glucose (35%) in the fed or fasted rats. Ketone bodies in the absence of glucose had no effect on leucine oxidation. However, the stimulatory effect of glucose on the rate of conversion of leucine to CO2 was inhibited by 3-OHB at 5 mm . These results suggest that (a) leucine in increased concentrations (1 mm ) may reduce glucose oxidation by brain cortex while itself becoming an oxidative fuel for brain, and (b) leucine oxidation by brain may be influenced by the prevailing glucose and ketone concentrations.  相似文献   

3.
In the absence of any other oxidizable substrate, the perfused rat heart oxidizes [1-14C]leucine to 14CO2 at a rapid rate and releases only small amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such perfused hearts, is very active. Under such perfusion conditions, dichloroacetate has almost no effect on [1-14C]leucine oxidation, α-[1-14C]ketoisocaproate release, or branched-chain α-keto acid dehydrogenase activity. Perfusion of the heart with some other oxidizable substrate, e.g., glucose, pyruvate, ketone bodies, or palmitate, results in an inhibition of [1-14C]leucine oxidation to 14CO2 and the release of large amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such hearts, is almost completely inactivated. The enzyme can be reactivated, however, by incubating the mitochondria at 30 °C without an oxidizable substrate. With hearts perfused with glucose or ketone bodies, dichloroacetate greatly increases [1-14C]leucine oxidation, decreases α-[1-14C]ketoisocaproate release into the perfusion medium, and activates the branched-chain α-keto acid dehydrogenase complex. Pyruvate may block dichloroacetate uptake because dichloroacetate neither stimulates [1-14C]leucine oxidation nor activates the branched-chain α-keto acid dehydrogenase complex of pyruvate-perfused hearts. It is suggested that leucine oxidation by heart is regulated by the activity of the branched-chain α-keto acid dehydrogenase complex which is subject to interconversion between active and inactive forms. Oxidizable substrates establish conditions which inactivate the enzyme. Dichloroacetate, known to activate the pyruvate dehydrogenase complex by inhibition of pyruvate dehydrogenase kinase, causes activation of the branched-chain α-keto acid dehydrogenase complex, suggesting the existence of a kinase for this complex.  相似文献   

4.
N6′, O2′-dibutyryl adenosine 3′, 5′-cyclic monophosphoric acid, but not other cyclic nucleotides stimulates [14C]ketone body production from [14C]palmitate in isolated rat liver mitochondria. Butyrate alone, as well as unlabeled acetate, octanoate and palmitate had similar effects. This redistribution of the oxidative products of [14C]palmitate can best be explained by exceeding the capacity of the Krebs cycle and/or changes in the acetyl coenzyme A/coenzyme A ratio. In contrast to [14C]palmitate, [14C]octanoate oxidation to [14C]O2 and [14C]ketone bodies was inhibited by the addition of unlabeled fatty acids. This suggests that an additional mechanism by which unlabeled fatty acids may stimulate [14C]ketone body production is by enhancing the carnitine-dependent transport of [14C]palmitate into mitochondria.  相似文献   

5.
Chick embryo heart cells in tissue culture actively oxidize [1-14C]palmitate to 14CO2. Fatty acid oxidation by cell monolayers was linear with time and increasing protein concentration. The addition of carnitine to the assay medium resulted in a 30–70% increase in the rate of fatty acid oxidation. The specific activity of palmitic acid oxidation did not change significantly with time in culture and was also the same in rapidly proliferating and density-inhibited cell cultures. Addition of unlabeled glucose to the assay medium resulted in a 50% decrease in 14CO2 production from [1-14C]palmitate. Conversely, palmitate had a similar sparing effect on [14C]glucose oxidation to 14CO2. Lactate production accounted for most of the glucose depleted from the medium and was not inhibited by the presence of palmitate in the assay. Thus, the sparing action of the fatty acids on glucose oxidation appears to be at the mitochondrial level. The results indicate that although chick heart cells in culture are primarily anaerobic, they can oxidize fatty acid actively.  相似文献   

6.
The effects of fructose on the oxidation of [1-(14)C]palmitate in a rat liver mitochondria-high speed supernatant system have been investigated. This model system permitted study of the direct effects of fructose and the metabolism of fructose on fatty acid oxidation in the near absence of fatty acid esterification. Fructose inhibited the utilization of albumin-bound [1-(14)C] palmitate in the mitochondria-supernatant system, but did not affect fatty acid utilization by isolated liver mitochondria. Although fructose decreased the ATP content in the mitochondrial-supernatant system, the level of ATP throughout the incubation period was sufficient for maximal fatty acid activation. Fructose decreased the conversion of [1-(14)C]palmitate to 14CO2 and depressed the formation of total labeled oxidation products (14CO2 + 14C-labeled ketone bodies) in this system. The results suggest that fructose metabolism inhibited fatty acid oxidation in the mitochondria-supernatant system by competitive substrate oxidation and thereby decreased utilization of the added [1-(14)C]palmitate. The ihibition of L-[L-(14)C]palmitoylcarnitine oxidation, fructose was in all respects similar to its inhibition of palmitate oxidation, indicating that the site of fructose interaction was within the beta-oxidation sequence. These observations support the concept (Ontko, J.A. [1972] J. Biol. Chem. 247, 1788-1800) that the reciprocal changes in esterification and oxidation of palmitate caused by fructose in liver cells are primarily mediated via inhibitory effects on long-chain fatty acid oxidation.  相似文献   

7.
Abstract— The oxidation of l -[U-14C]leucine and l -[l-14C]leucine at varying concentrations from 0.1 to 5mM to CO2 and the incorporation into cerebral lipids and proteins by brain slices from 1-week old rats were markedly stimulated by glucose. Although the addition of S mM-dl -3-hydroxybutyrate had no effect on the metabolism of [U-14C]leucine by brain slices from suckling rats, the stimulatory effects of glucose on the metabolism of l -[U-14C]leucine were markedly reduced in the presence of dl -3-hydroxybutyrate. The stimulatory effect of glucose on leucine oxidation was, however, not observed in adult rat brain. Furthermore, the incorporation of leucine-carbon into cerebral lipids and proteins was also very low in the adult brain. The incorporation of l -[U-14C]leucine into cerebral lipids by cortex slices was higher during the first 2 postnatal weeks, which then declined to the adult level. During this time span, the oxidation of l -[U-14C]leucine to CO2 remained relatively unchanged. The incorporation in vivo of D-3-hydroxy[3-14C]butyrate into cerebral lipids was markedly decreased by acute hyperleucinemia induced by injecting leucine into 9-day old rats. In in vitro experiments, 5 mM-leucine had no effect on the oxidation of [U-14C]glucose to CO2 or its incorporation into lipids by brain slices from 1-week old rats. However, 5 mM-leucine inhibited the oxidation of d -3-hydroxy-[3-14C]butyrate, [3-14C]acetoacetate and [1-14C]acetate to CO2 by brain slices, but their incorporation into cerebral lipids was not affected by leucine. In contrast 2-oxo-4-methylvalerate, a deaminated metabolite of leucine, markedly inhibited both the oxidation to CO2 and the incorporation into lipids of labelled glucose, ketone bodies and acetate by cortex slices from 1-week old rats. These findings suggest that the reduction in the incorporation in vivo of d -3-hydroxy[3-14C]butyrate into cerebral lipids in rats injected with leucine is most likely caused by 2-oxo-4-methylvalerate formed from leucine. Since the concentrations of leucine and 2-oxo-4-methylvalerate in plasma of untreated patients with maple-syrup urine disease are markedly elevated, our findings are compatible with the possibility that an alteration in the metabolism of glucose and ketone bodies in the brain may contribute to the pathophysiology of this disease.  相似文献   

8.
Glucagon induced a rapid (within 3 min) increase in glucose radioactivity and a decrease in the labeling of ketone bodies when isolated hepatocytes were incubated in the presence of [1-14C]palmitate. Simultaneously, the hormone induced a decrease in the levels of pyruvate and Krebs cycle intermediates and an increase in the level of phosphoenolpyruvate (PEP). The glucagon-induced increase in glucose radioactivity was much larger than the simultaneous decrease in lactate labeling. A comparison of the incorporation of labeled carbon from [1-14C]palmitate and [U-14C]palmitate into glucose and CO2 indicates a selective stimulatory action of glucagon on the flux through the phosphoenolpyruvate carboxykinase (PEPCK) reaction.  相似文献   

9.
Isolated cerebral capillaries from developing rats utilize glucose as well as ketone bodies essentially for oxidative metabolism. However, CO2 production from [U-14C]glucose was significantly greater than from ketone bodies (except at 5 mM). Ketone body utilization (in the presence of 5 mM glucose in the incubation medium) was concentration-dependent (up to 5 mM). Lipid synthesis from ketone bodies was comparable to that from glucose up to 1 mM. At concentrations ⩾ 1 mM, acetoacetate incorporation into total lipids and fatty acids was higher than other substrates, however, this difference was statistically significant only at 5 mM. Incorporation of substrates into sterols was very low (> 1 pmol/h/mg protein).  相似文献   

10.
1. Rats were starved for 48hr. or fed for 1 week on a high-fat or a high-carbohydrate diet. The effects of these dietary alterations on the rate of production of 14CO2 from trace amounts of [U-14C]glucose, [1-14C]palmitate or [1-14C]acetate administered intravenously were studied. 2. The oxidation of [14C]glucose was most rapid in the carbohydrate-fed condition and was decreased significantly and to the same extent after starvation and after feeding with fat. 3. Under all dietary regimes studied the maximum rate of elimination of 14CO2 from [14C]palmitate occurred within a few minutes after injection, but considerably more was oxidized after starvation and feeding with fat than after feeding with carbohydrate. 4. Alterations in diet had no effect on the oxidation and high recovery of administered [14C]acetate as 14CO2. 5. Graphical analysis showed the presence of several exponential components in the 14CO2-elimination curves. 6. In all studies a marked similarity in oxidative pattern was noted between the starved and the fat-fed rat.  相似文献   

11.
Isolated cerebral capillaries from developing rats utilize glucose as well as ketone bodies essentially for oxidative metabolism. However, CO2 production from [U-14C]glucose was significantly greater than from ketone bodies (except at 5 mM). Ketone body utilization (in the presence of 5 mM glucose in the incubation medium) was concentration-dependent (up to 5 mM). Lipid synthesis from ketone bodies was comparable to that from glucose up to 1 mM. At concentrations 1 mM, acetoacetate incorporation into total lipids and fatty acids was higher than other substrates, however, this difference was statistically significant only at 5 mM. Incorporation of substrates into sterols was very low (> 1 pmol/h/mg protein).  相似文献   

12.
The hypoglycemic agent, 2-tetradecylglycidic acid (TDGA), administered in vivo lowered the concentration of plasma glucose and ketone bodies but raised the concentration of liver and plasma triglycerides in 10-day-old suckling rats. Phospholipid and cholesterol content of the plasma and liver were unaffected by drug treatment. TDGA inhibited the in vivo oxidation of [1-14C]palmitate but not that of [1-14C]decanoate. In suckling rat liver perfusion, TDGA totally inhibited ketone body formation from palmitate and depressed ketone body production from decanoate by 20%. Liver ATP and ADP content in the presence of TDGA decreased although this was probably a reflection of the increased triglyceride content of the liver since the ATPADP was the same as control livers. The results are discussed in relation to the diet and to the inhibition of carnitine acyl transferase in suckling rats.  相似文献   

13.
Oxidation of palmitate by rat skeletal muscle mitochondria was determined polarographically and radiochemically under state 3 conditions. Maximal oxidation rate is reached at 4 μm palmitate, palmitoyl-CoA, or palmitoyl-l-carnitine. At palmitoyl-CoA concentrations higher than 30 μm oxidation is inhibited. At limiting substrate concentrations as used in polarographic experiments palmitate is totally degraded to CO2. At higher concentrations the palmitate molecule is only partially degraded, due to the accumulation of intermediates. Citric acid cycle intermediates, especially 2-oxoglutarate, accumulate during oxidation of palmitate in the presence of malate. It is suggested that this accumulation is stimulated by dicarboxylate exchange. The rate of formation of 14CO2 and 14C-labeled perchloric acid-soluble products is higher from [1-14C]palmitate than that from [U-14C]palmitate. This difference, which is enhanced by higher carnitine concentrations indicates incomplete oxidation during the β-oxidation in state 3. The simultaneous determination of 14CO2 production and 14C-labeled perchloric acid-soluble products appears to be a more accurate and sensitive method for measuring 14C-fatty acid oxidation than that of 14CO2 production alone.  相似文献   

14.
Dichloroacetate has effects upon hepatic metabolism which are profoundly different from its effects on heart, skeletal muscle, and adipose tissue metabolism. With hepatocytes prepared from meal-fed rats, dichloroacetate was found to activate pyruvate dehydrogenase, to increase the utilization of lactate and pyruvate without effecting an increase in the net utilization of glucose, to increase the rate of fatty acid synthesis, and to decrease slightly [1-14C]oleate oxidation to 14CO2 without decreasing ketone body formation. With hepatocytes isolated from 48-h-starved rats, dichloroacetate was found to activate pyruvate dehydrogenase, to have no influence on net glucose utilization, to inhibit gluconeogenesis slightly with lactate as substrate, and to stimulate gluconeogenesis significantly with alanine as substrate. The stimulation of fatty acid synthesis by dichloroacetate suggests that the activity of pyruvate dehydrogenase can be rate determining for fatty acid synthesis in isolated liver cells. The minor effects of dichloroacetate on gluconeogenesis suggest that the regulation of pyruvate dehydrogenase is only of marginal importance in the control of gluconeogenesis.  相似文献   

15.
Isolated rat hepatocytes rapidly utilized [(14)C]palmitate and, in particular, synthesized large amounts of neutral lipids from palmitate. Incorporation into cellular lipids occurred at a linear rate proportional to the medium concentration of fatty acids. Oxidation of [(14)C]palmitate to CO(2) increased with time and was much slower than palmitate esterification. Since [(14)C]acetate and [(14)C]glucose were oxidized to CO(2) at a linear rate, the lag in fatty acid oxidation to CO(2) did not involve enzymatic steps subsequent to acetate formation. The relative contribution of palmitate to esterification and to CO(2) formation depended upon the molar ratio of palmitate to albumin (v) and the length of incubation. Dibutyryl cyclic AMP (1 mM) reduced the oxidation of palmitate and acetate to CO(2) by about 50 and 90%, respectively, but did not alter palmitate esterification. However, equivalent concentrations of sodium butyrate produced similar decreases in CO(2) formation. Dibutyryl cyclic AMP (1 mM) also stimulated palmitate oxidation to water-soluble products, principally ketone bodies, by 50-100%. Sodium butyrate exerted no effect, while monobutyryl cyclic AMP and cyclic AMP both stimulated this pathway significantly. These results indicate that both v and dibutyryl cyclic AMP regulate the metabolism of fatty acids by isolated hepatocytes and suggest that hormonal stimulation of adenyl cyclase controls hepatic lipid metabolism.  相似文献   

16.
To estimate the degree of recycling of pyruvate during gluconeogenesis, an isotope tracer procedure was employed. Using the isolated, perfused rat liver with pyruvate-2-14C in the perfusion fluid, the 3-carbon acids lactate and pyruvate were isolated and the distribution of 14C in each carbon was assayed. It can be shown that the degree of recycling can be approximated as twice the sum of 14C in carbons 1 and 3. Glucose, acetoacetate, and β-hydroxybutyrate were also determined, and their 14C distribution estimated by appropriate degradation procedures. In livers from fasted rats, recycling of pyruvate during 1 hr incubation occurred at a rate of 0.21 μmoles ± 0.02 (SE)/min/g while gluconeogenesis occurred at a rate of 0.49 ± 0.11 μmoles pyruvate-2-14C/min/g. In livers from carbohydrate-fed rats, the ratio was reversed, with 0.35 ± 0.06 μmoles pyruvate-2-14C recycled and only 0.09 ± 0.03 μmoles converted to glucose. These patterns were not affected by the simultaneous presence of octanoate in the perfusion, during which ketone body production was greatly increased. Only about 20% of the ketone bodies formed were derived from pyruvate, much less with octanoate present, and over 95% of the total radioactivity was in carbons 1 and 3 of acetoacetate as anticipated from the degree of pyruvate recycling. The glucose invariably had 3–4% of its total activity in carbons 3 and 4 and the remainder distributed approximately equally in carbons 1, 2, 5, and 6. The radioactivity in respired CO2 indicated that about 13–25% of the total O2 uptake was due to pyruvate oxidation to CO2.  相似文献   

17.
Using isolated rat hepatocytes, we studied the effect of epidermal growth factor (urogastrone) (EGF-URO) on the incorporation of [3-14C]pyruvate into glucose and glycogen, on the incorporation of [U-14C]glucose into glycogen, and on the oxidation of [U-14C]glucose to 14CO2. The effects of EGF-URO were compared with those of glucagon and insulin. EGF-URO, with an EC50 of 0.2 nM, enhanced by 34% (maximal stimulation) the conversion of [3-14C]pyruvate into glucose; no effect was observed on the oxidation of glucose to CO2 and on the incorporation of either pyruvate or glucose into glycogen. The effect of EGF-URO on pyruvate conversion to glucose was observed only when hepatocytes were preincubated with EGF-URO for 40 min prior to the addition of substrate. Glucagon (10 nM) increased the incorporation of [3-14C]pyruvate into glucose (44% above control); however, unlike EGF-URO, glucagon stimulated gluconeogenesis better without than with a preincubation period. Neither insulin nor EGF-URO (both 10 nM) affected the incorporation of [U-14C]glucose into glycogen during a 20-min incubation period. However, at longer time periods of incubation with the substrate (60 instead 20 min), insulin (but not EGF-URO) increased the incorporation of [14C]glucose into glycogen; EGF-URO counteracted this stimulatory effect of insulin. In contrast with previous data, our work indicates that EGF-URO can, under certain conditions, counteract the effects of insulin and, like glucagon, promote gluconeogenesis in isolated rat hepatocytes.  相似文献   

18.
Dichloroacetate (2 mm) stimulated the conversion of [1-14C]lactate to glucose in hepatocytes from fed rats. In hepatocytes from rats starved for 24 h, where the mitochondrial NADHNAD+ ratio is elevated, dichloroacetate inhibited the conversion of [1-14C]lactate to glucose. Dichloroacetate stimulated 14CO2 production from [1-14C]lactate in both cases. It also completely activated pyruvate dehydrogenase and increased flux through the enzyme. The addition of β-hydroxybutyrate, which elevates the intramitochondrial NADHNAD+ ratio, changed the metabolism of [1-14C]lactate in hepatocytes from fed rats to a pattern similar to that seen in hepatocytes from starved rats. Thus, the effect of dichloroacetate on labeled glucose synthesis from lactate appears to depend on the mitochondrial oxidation-reduction state of the hepatocytes. Glucagon (10 nm) stimulated labeled glucose synthesis from lactate or alanine in hepatocytes from both fed and starved rats and in the absence or presence of dichloroacetate. The hormone had no effect on pyruvate dehydrogenase activity whether or not the enzyme had been activated by dichloroacetate. Thus, it appears that pyruvate dehydrogenase is not involved in the hormonal regulation of gluconeogenesis. Glucagon inhibited the incorporation of 10 mm [1-14C]pyruvate into glucose in hepatocytes from starved rats. This inhibition has been attributed to an inhibition of pyruvate dehydrogenase by the hormone (Zahlten et al., 1973, Proc. Nat. Acad. Sci. USA70, 3213–3218). However, dichloroacetate did not prevent the inhibition of glucose synthesis. Nor did glucagon alter the activity of pyruvate dehydrogenase in homogenates of cells that had been incubated with 10 mm pyruvate in the absence or presence of dichloroacetate. Thus, the inhibition by glucagon of pyruvate gluconeogenesis does not appear to be due to an inhibition of pyruvate dehydrogenase.  相似文献   

19.
The metabolism of [1-14C]- and [6-14C]glucose, [1-14]ribose, [1-14C]- and [U-14C]alanine, and [1-14C]- and [5-14C]glutamate by the promastigotes of Leishmania braziliensis panamensis was investigated in cells resuspended in Hanks' balanced salt solution supplemented with ribose, alanine, or glutamate. The ratio of 14CO2 produced from [1-14C]glucose to that from [6-14C]glucose ranged from about two to six, indicating appreciable carbon flow through the pentose phosphate pathway. A functional pentose phosphate pathway was further demonstrated by the production of 14CO2 from [1-14C]ribose although the rate of ribose oxidation was much lower than the rate of glucose oxidation. The rate of 14CO2 production from [1-14C]glucose was almost linear with time of incubation, whereas that of [6-14C]glucose accelerated, consistent with an increasing rate of flux through the Embden-Meyerhof pathway during incubation. Increasing the assay temperature from 26°C to 34°C had no appreciable effect on the rates or time courses of oxidation of either [1-14C]- or [6-14C]glucose or of [1-14C]ribose. Both alanine and glutamate were oxidized by L. b. panamensis, and at rates comparable to or appreciably greater than the rate of oxidation of glucose. The ratios of 14CO2 produced from [1-14C]- to [U-14C]alanine and from [1-14C]- to [5-14C]glutamate indicated that these compounds were metabolized via a functioning tricarboxylic acid cycle and that most of the label that entered the tricarboxylic acid cycle was oxidized to carbon dioxide. Heating the cultures for 6 or 12 h at 34°C, which converts the promastigotes into an ellipsoidally shaped intermediate form, decreased the rates of oxidation of glucose, alanine, and glutamate. The oxidation of glutamate decreased by about 50% and 70% after a 6-h or 12-h heat treatment, respectively. Returning the heated cultures to 26°C initiated a reversion to the promastigote form and recovery of the rate of glucose oxidation, but glutamate oxidation did not return to control levels by 19 h at 26°C.  相似文献   

20.
Tolbutamide partially inhibited the growth but increased the glycogen content of Tetrahymena pyriformis in logarithmically growing cultures. Tolbutamide slightly increased 14CO2 production from [1-14C] and [6-14HC] glucose and [2-14C] pyruvate, but had little effect on the oxidation of [1-14C] acetate when any of these substrates were added to the proteose-peptone medium in which the cells had been grown. Measurement of 14CO2 production from [1-14C] and [2-I4C]-glyoxylate showed that this substrate was primarily oxidized via the glyoxylate cycle, with little if any oxidation occurring via the peroxisomal glyoxylate oxidase. Addition of tolbutamide inhibited the glyoxylate cycle as indicated by a marked reduction in label appearing in CO2 and in glycogen from labeled acetate. In control cells, addition of acetate strongly inhibited the oxidation of [2-14C]-pyruvate whereas addition of pyruvate had little effect on the oxidation of [1-14C]-acetate. Acetate was more effective than pyruvate in preventing the growth inhibitory and glycogen-increasing effects of tolbutamide. The data suggest that one effect of tolbutamide may be to interfere with the transfer of isocitrate and acetyl CoA across mitochondrial membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号