首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p-Nitrophenoxycarbonyl methyl disulfide has been synthesized for use as a quantitating agent for methanethiolation of protein sulfhydryl groups. This reagent reacts specifically and quantitatively with cysteine residues of proteins to yield an unsymmetrical disulfide containing a CH3S group and concomitantly releases the chromophore, p-nitrophenol. Titration of the sulfhydryl groups of glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) with this reagent has been studied. Incorporation of CH3S as measured by the release of p-nitrophenol paralleled the loss of sulfhydryl group dependent activity of the enzyme. The enzyme was found inactive on modification of four of the eight sulfhydryl groups present in the enzyme. Stability of p-nitrophenoxycarbonyl methyl disulfide has also been studied in different buffer systems. The rate of decomposition of the p-nitrophenyl ester due to hydrolysis was found negligible below a pH of 8.0 compared to its rate of reaction with free sulfhydryl groups.  相似文献   

2.
Methoxycarbonyl-CoA disulfide has been used as an active-site-directed inhibitor of carnitine acetyltransferase. Stoichiometric addition of methoxycarbonyl-CoA disulfide to carnitine acetyltransferase showed the modification of one sulfhydryl group with concomitant loss of about 80% enzyme activity. The rate of modification of this sulfhydryl group is an order of magnitude faster than that of the remaining sulfhydryl groups in the enzyme. Methoxycarbonyl-CoA disulfide inactivation is biphasic: k1 = 1.09 × 102m?1s?1, k2 = 1.1 × 101m?1s?1. This modification, Enz-SS-CoA is covalent; it can be reversed with either dithioerythritol or thiocholine. Acetyl-carnitine and acetyl-CoA protected the enzyme against methoxycarbonyl-CoA disulfide inactivation; however, carnitine did not. These results indicate the presence of a sulfhydryl group in carnitine acetyltransferase at the site of acetyl group transfer. Titration of carnitine acetyltransferase with nonspecific sulfhydryl reagents, DTNB, and ?-nitrophenoxycarbonyl methyl disulfide, revealed that four sulfhydryl groups were preferentially modified by these reagents. The results also show that seven other sulfhydryl groups are available for modification.  相似文献   

3.
The apoenzyme of diol dehydrase was inactivated by four sulfhydryl-modifying reagents, p-chloromercuribenzoate, 5,5′-dithiobis(2-nitrobenzoate) (DTNB), iodoacetamide, and N-ethylmaleimide. In each case pseudo-first-order kinetics was observed. p-Chloromercuribenzoate modified two sulfhydryl groups per enzyme molecule and modification of the first one resulted in complete inactivation of the enzyme. DTNB also modified two sulfhydryl groups, but modification of the second one essentially corresponded to the inactivation. In both cases, the inactivation was reversed by incubation with dithiothreitol. Cyanocobalamin, a potent competitive inhibitor of adenosylcobalamin, protected the essential residue, but not the nonessential one, against the modification by these reagents. By resolving the sulfhydryl-modified cyanocobalamin-enzyme complex, the enzyme activity was recovered, irrespective of treatment with dithiothreitol. From these results, we can conclude that diol dehydrase has two reactive sulfhydryl groups, one of which is essential for catalytic activity and located at or in close proximity to the coenzyme binding site. The other is nonessential for activity. Neitherp-chloromercuribenzoate- nor DTNB-modified apoenzyme was able to bind cyanocobalamin, whereas the iodoacetamide- and N-ethylmaleimide-modified apoenzyme only partially lost the ability to bind cyanocobalamin. The inactivation of diol dehydrase by p-chloromercuribenzoate and DTNB did not bring about dissociation of the enzyme into subunits. Total number of the sulfhydryl groups of this enzyme was 14 when determined in the presence of 6 m guanidine hydrochloride. No disulfide bond was detected.  相似文献   

4.
A series of N-alkylmaleimides, varying in chain length from N-ethylmaleimide and N-butyl to N-octyl, inclusive, was shown to effectively inactivate rat ovarian 20α-hydroxysteroid dehydrogenase at pH 7.7, 25 °C. The apparent second-order rate constants for inactivation were observed to increase with increasing chain length of the N-alkylmaleimide used. Positive chain length effects were also indicated by the Kd values for N-alkylmaleimides calculated from double-reciprocal plots resulting from the saturation kinetics observed in the inactivation reactions. The maximum rate constant for inactivation at enzyme saturation was 0.3 min?1 for each maleimide studied. NADP-and coenzyme-competitive inhibitors such as 3-aminopyridine adenine dinucleotide phosphate and various adenosine derivatives protected the enzyme against maleimide inactivation, whereas no protection was observed with the steroid substrate, 20α-hydroxypregn-4-en-3-one. The pH profile for maleimide inactivation indicated the involvement of an enzyme functional group with a pKa near 8.0. Sulfhydryl modification was also indicated by fluorescein mercuric acetate inactivation and titration experiments. Inactivation of the enzyme by a lysine-modifying reagent exhibited a pH profile differing from that observed in the maleimide inactivation process. It is proposed that N-alkylmaleimides inactivate the enzyme through covalent modification of sulfhydryl groups located in a nonpolar region of the enzyme.  相似文献   

5.
Incubation of Novikoff rat hepatoma cells; mouse L929, P388 and L1210 cells; and Chinese hamster ovary cells with sulfhydryl reagents, such as p-hydroxymercuribenzoate or p-hydroxymercuribenzenesulfonate, reduced the zero-trans influx of uridine in a concentration-dependent manner. The sensitivity of uridine transport to inhibition varied somewhat for the cell lines, Chinese hamster ovary cells being the most sensitive. Maximum inhibition by p-hydroxymercuribenzoate occurred in 10–20 min of incubation at 37 °C, and was associated with a decrease in maximum transport velocity without significant change in substrate affinity of the carrier. The development of inhibition of uridine influx correlated with binding of [14C]p-hydroxymercuribenzoate to the cells. Inhibition of transport also roughly correlated with a decreased binding of 6-nitrobenzylthioinosine to high-affinity binding sites on the cells (presumably representing the nucleoside transporter) without affecting binding affinity. Treatment of cells with p-hydroxymercuribenzenesulfonate reduced uridine influx and efflux to a similar extent. Inhibition of uridine transport and binding of [14C]p-hydroxymercuribenzoate were readily reversed by incubation of the cells with dithiothreitol. The results indicate that sulfhydryl groups are essential for the functioning of the nucleoside transporter, perhaps for the binding of substrate. Blockage of the sulfhydryl groups results in a reversible inactivation of the carrier. Treatment of the cells with the sulfhydryl reagents also caused a concentration-dependent increase in cell volume, which was readily reversed by incubation of the cells with dithiothreitol but seemed unrelated to the inhibition of nucleoside transport.  相似文献   

6.
A series of N-alkylmaleimides varying in chainlength from N-methyl- to N-octylmaleimide inclusive was shown to effectively inactivate sheep liver sorbitol dehydrogenase at pH 7.5 and 25 degrees C. The apparent second-order rate constants for inactivation increased with increasing chainlength of the N-alkylmaleimide used. Positive chainlength effects were also indicated by the Kd values for the N-ethyl and N-heptyl derivatives obtained from studies of the saturation kinetics observed for inactivation of the enzyme at high concentrations of these maleimides. The complete inactivation of sorbitol dehydrogenase was demonstrated to occur through the selective covalent modification of one cysteine residue per subunit of enzyme. The stoichiometry of enzyme inactivation was supported on the one hand by fluorescence titration with fluorescein mercuric acetate of the native and the inactivated enzyme, and, on the other hand, by the simultaneous inactivation of the enzyme with selective modification of one sulfhydryl per subunit by N-[p-(2-benzoxazolyl)phenyl]maleimide. Protection of the enzyme from N-alkylmaleimide inactivation was observed with the binding of NADH, whereas both NAD and sorbitol were ineffective as protecting ligands. Diazotized 3-aminopyridine adenine dinucleotide, in contrast to previous studies of this reagent with yeast alcohol dehydrogenase and rabbit muscle glycerophosphate dehydrogenase, did not function as a site-labeling reagent for sorbitol dehydrogenase.  相似文献   

7.
CuCl2 non-comepetitively inhibited the hydrolysis of cyclic GMP and cyclic AMP by the activator-dependent phosphodiesterase from bovine heart in the presence of 5 mM Mg2+, 10 μM Ca2+ and phosphodiesterase activator with Ki values of approximately 2 μM for both substrates. CuCl2 inhibition was also non-competitive with Mg2+, Ca2+ and phosphodiesterase activator. Dialysis demonstrated that CuCl2 inhibition in reversible. Treatment of the enzyme with p-hydroxymercuribenzoate resulted in the loss of enzyme activity, suggesting the presence of sulfhydryl groups essential for enzyme activity. The inhibitory activity of CuCl2 was not additive with that p-hydroxymercuribenzoate, therefore CuCl2 may inhibit enzyme activity by binding to one or more essential sulfhydryl groups. CuCl2 also inhibited the hydrolysis of cyclic AMP by the cyclic AMP-specific phosphodiesterase from bovine heart with an I50 value of 18 μM. Several effects of Cu2+ are discussed which have been noted in other studies and might be due, in part, to changes in cyclic nucleotide levels following alterations in phosphodiesterase activity.  相似文献   

8.
Nitrite reductase (NiR; EC 1.7.7.1) from the eukaryotic microalga Monoraphidium braunii has been purified to electrophoretic homogeneity, resulting in a preparation with a specific activity of 3574 nkat mg–1 and a purification factor of 2553-fold. The enzyme is a single polypeptide chain with a molecular mass of 63 kDa, and absorption maxima at 690, 573, 385 and 280 nm. Kinetic data indicate Km values of 0.7 mM for nitrite, 10 μM for M. braunii ferredoxin (Fd) and 0.26 mM for methyl viologen. The enzyme showed an optimum pH of 7.5 in 100 mM Tris–HCl buffer and an optimum temperature of 40 °C. NiR activity was inhibited by the sulfhydryl reagent p-hydroxymercuribenzoate and the chelating reagent KCN. Immunological studies revealed the presence of common antigenic determinants, at the Fd-binding domain, in NiR and glutamate synthase (EC 1.4.7.1) from M. braunii.  相似文献   

9.
Succinic thiokinase from Escherichia coli was rapidly inactivated by permanganate ion at 25° and 0°. On the basis of the cysteic acid content of hydrolysates of treated protein, oxidation of 3 sulfhydryl groups appeared to effect total loss of thiokinase activity. However, titration of the same protein samples revealed that 4 important sulfhydryl groups (a fraction of which was possibly in disulfide form) were more likely oxidized during the inactivation process. Significant protection of the enzyme against permanganate inactivation was obtained by the following additions: ATP-Mg2+ and succinate (51%); desulfo-CoA alone (53%); and ATP-Mg2+, succinate, and desulfo-CoA (93%). No protection was observed when either inorganic phosphate or arsenate was added.  相似文献   

10.
The reaction of choline acetyltransferase with methoxycarbonyl alkyl disulfides leads to a progressive loss in enzyme activity as the size of the alkyl group increases from methyl to n-butyl. Reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) or methoxycarbonyl coenzyme A (CoA) disulfide, leads to a total loss of enzyme activity. DTNB inactivation is biphasic (k1 = approximately 9 x 10(2) M-1 s-1, k2 = approximately 6 x 10(1) M-1 s-1) with the slow phase being diminished by acetyl-CoA. Methoxycarbonyl-CoA disulfide inactivation is also biphasic (k1 = approximately 2.1 x 10(3) M-1 s-1, k2 = approximately 6 x 10(1) M-1 s-1), with the rapid phase being diminished in the presence of acetyl-CoA. Inactivation by methoxycarbonyl methyl disulfide, ethyl disulfide, or hydroxyethyl disulfide, or by methyl methanethiosulfonate is not biphasic. Pretreatment of the enzyme with methyl methanethiosulfonate, which leads to a 25% loss in enzyme activity, abolishes the fast phase of DTNB inactivation, the slow phase of methoxycarbonyl-CoA disulfide inactivation, and any further inactivation by methoxycarbonyl ethyl disulfide. These results are interpreted to suggest that choline acetyltransferase contains two classes of reactive sulfhydryl groups, neither of which are required for enzyme activity.  相似文献   

11.
S-adenosylmethionine decarboxylase of corn seedlings   总被引:2,自引:2,他引:0       下载免费PDF全文
Suzuki Y  Hirasawa E 《Plant physiology》1980,66(6):1091-1094
S-Adenosylmethionine decarboxylase (EC 4.1.1.50) has been purified 500-fold in 30% yield from the extract of etiolated corn seedlings (cv. Golden Crossbantam Bell). This preparation had a molecular weight of approximately 25,000. The Km value was 5 micromolar for S-adenosylmethionine. Methylglyoxal bis(guanylhydrazone), hydroxylamine, and sulfhydryl reagents (such as p-hydroxymercuriphenylsulfonate and N-ethylmaleimide) were effective inhibitors of this enzyme. Germination of corn seed was accompanied by a rapid increase in enzyme activity and maximum activity occurred in 5-day-old seedlings.  相似文献   

12.
The chemical modification of cysteine and tyrosine residues in formyltetrahydrofolate synthetase from Clostridium thermoaceticum has been examined relative to enzymatic activity and reactivity of these groups in the native protein. 4,4′-Dipyridyl disulfide, dansylaziridine, and fluorescein mercuric acetate all reacted with just one of six sulfhydryls per enzyme subunit, resulting in activities of 100, 95 and 70%, respectively. The Km values for MgATP, formate, and tetrahydrofolate were unaltered in the modified enzymes. ATP did produce a 2.5-fold reduction in the rate of reaction between the enzyme and 4,4′-dipyridyl disulfide. Tetranitromethane reacted most rapidly with a single sulfhydryl group per subunit to produce a 20–30% loss in activity. Subsequent additions of tetranitromethane modified 2.2 tyrosines per subunit which was proportional to the loss of the remaining enzymatic activity. Folic acid, a competitive inhibitor, protected against modification of the tyrosines and the associated activity losses; however, the oxidation of the single sulfhydryl group and the initial 20–30% activity loss were unaffected. In the presence of folic acid, higher concentrations of tetranitromethane produced a loss of the remaining activity proportional to the modification of 1.2 tyrosines per subunit. It is proposed that at least 1 tyrosine critical for enzymatic activity is located at or near the folic acid/tetrahydrofolate binding site.  相似文献   

13.
Hypocotyls of 5-d-old etiolated soybean seedlings (Glycine max (L.) Merr. cv. Altona) were treated with (a) dithiothreitol (DTT) or one of the sulfhydryl-binding reagents N-ethylmaleimide (NEM), p-hydroxymercuribenzoate (PMB) und p-chloromercuribenzene sulfonic acid (PMBS), (b) one of the sulfhydryl reagents in combination with DTT, (c) sulfhydryl reagent subsequent to treatment with DTT, and (d) PMBS followed by DTT. Glyceollin was extracted 24 and 48 h after initiation of treatment. The order of decreasing glyceollin-eliciting activity was PMBSDTT>PMBNEM. Elicitor effectiveness of sulfhydryl reagents and their reactivity with either L-cysteine or sulfhydryl groups in soybean hypocotyls were not strictly correlated. Mixtures of sulfhydryl reagent and DTT, pretreatment of hypocotyls with DTT and subsequent application of either PMB or PMBS, as well as application of PMBS prior to DTT induced less glyceollin than sulfhydryl reagents alone. In contrast, such pretreatment did not appreciably alter glyceollin accumulation elicited by NEM. The results indicate that glyceollin synthesis can be regulated by interaction with sulfhydryl groups located mainly at the outer surface of the plasmalemma.Abbreviations DTT DL-dithiothreitol - NEM N-ethylmaleimide - PMB p-hydroxymercuribenzoate (sodium salt) - PMBS p-chloromercuribenzene sulfonic acid  相似文献   

14.
Tyrosine aminotransferase from guinea pig liver is strongly inactivated by a variety of natural thiols and disulfides. L-cysteine was used as a model compound in the study of inactivation. Inactivation is due to the disulfide produced by spontaneous oxidation of thiol during incubation. Binding studies with [35S]-cysteine revealed simultaneous incorporation of [35S] into tyrosine aminotransferase and loss of enzyme activity. The reversibility demonstrates that the inactivation is the result of the formation of mixed disulfide between the disulfide and the sulfhydryl group of tyrosine aminotransferase. Some features of the enzyme active site are showed by the inactivation reaction.  相似文献   

15.
Dihydrofolate reductase from soybean seedlings has been purified by agarose-formylaminopterin affinity chromatography. The enzyme is homogeneous as judged by disc gel electrophoresis and immunodiffusion. Analysis by both Sephadex G-200 column chromatography and Sephadex (superfine) G-200 thin-layer gel filtration gives a molecular weight of about 140,000 for the enzyme. Sodium dodecyl sulfate-gel electrophoresis reveals the presence of nonidentical subunits. The enzyme contains nine sulfhydryl groups and is inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and 5,5-dithiobis(2-nitrobenzoic acid). Folate analogs methotrexate, aminopterin, and formylaminopterin cause potent inhibition of the enzyme, with I50 values (concentration required for 50% inhibition) of 0.25, 0.63, and 1.78 μm respectively. The turnover number of the enzyme is 57. Km values for dihydrofolate and NADPH are 35 and 415 μm, respectively. Dihydrofolate, but not NADPH, affords protection against heat inactivation and the protection constant, Kp (concentration of dihydrofolate at which half the original activity is retained), is 81 μm.  相似文献   

16.
Liver microsomal cytochrome P-448 purified from 3-methylcholanthrene-treated rats or rabbits contained seven free sulfhydryl groups per mole of enzyme as determined by amino acid analysis or by spectrophotometric titrations with 5,5′-dithiobis(2-nitroben-zoic acid), 4,4′-dipyridinedisulfide, 2-nitro-5-thiocyanobenzoic acid, and p-mercuribenzoate. The rat cytochrome P-448-catalyzed hydroxylation of benzo[a]pyrene was inhibited 70% after modification of the enzyme with 5,5′-dithiobis(2-nitrobenzoic acid) but was unaffected after titration of the enzyme with other sulfhydryl reagents, suggesting that the sulfhydryl groups may not be essential for catalysis. On the other hand, the rabbit cytochrome P-448-catalyzed hydroxylation of benzo[a]pyrene was inhibited following the modification of this enzyme with all of the sulfhydryl reagents listed above. Whether the loss in catalytic activity in this case is due to the essential role of the sulfhydryl groups in catalysis or to the steric hindrance or conformational change due to the substituent is uncertain.  相似文献   

17.
The sensitivities of three enzymes of the β-ketoadipate pathway to inactivation by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) were determined in vivo and in vitro under conditions compatible with mutagenesis.One enzyme, β-ketoadipate enol-lactone hydrolase, is very sensitive to inactivation by low concentrations of MNNG. This enzyme is also sensitive to inactivation by N-ethylmaleimide and mercurial reagents. The free sulfhydryl content of native enol-lactone hydrolase was determined to be two moles free sulfhydryl per mole of enzyme. A 95% inactivation of enol-lactone hydrolase by MNNG results in a masking of slightly more than one mole sulfhydryl per mole enzyme.Muconate lactonizing enzyme is moderately sensitive to inactivation by low concentrations of MNNG, but is not inactivated by sulfhydryl reagents. Muconolactone isomerase is resistant to inactivation by low concentrations of MNNG and is not inactivated by sulfhydryl reagents. Upon exposure to high concentrations of MNNG, muconolactone isomerase is rapidly inactivated. Spectrophotometric evidence indicates the lysine residues are nitroguanidinated proportionally with a loss in the enzymatic activity.These data indicate that the exposure of cells to low concentrations of MNNG should affect the activity of enzymes with essential sulfhydryl groups.  相似文献   

18.
Sulfhydryl groups of bovine liver rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) were modified by treatment with tetrathionate. There was a linear relationship between loss of enzyme activity and the amount of tetrathionate used. At a ratio of one tetrathionate per mole of rhodanese, 100% of enzyme activity was lost in the sulfur-free E-form as compared with a 70% loss for the sulfur-containing ES-form of the enzyme. Addition of up to a 100-fold molar excess of tetrathionate to ES gave no further inactivation. Addition of cyanide to the maximally inactivated ES-tetrathionate complex gave complete loss of activity. Kinetic studies of maximally inactivated ES and partially inactivated E gave Km (K5) values that were essentially the same as native enzyme, indicating that the active enzyme, in all cases, bound thiosulfate-similarly. Reactivation was faster with the ES-form than with the E-form. The substrate, thiosulfate, could reactivate the enzyme up to 70% in 1 h with ES as compared to 24 h with E. Tetrathionate modification of rhodanese could be correlated with the changes in intrinsic fluorescence and with the binding of the active site reporter 2-anilinonaphthalene-8-sulfonic acid (2,8-ANS). Circular dichroism spectra of the protein suggested increased ordered secondary structure in the protein after reaction with tetrathionate. Cadmium chloride and phenylarsine oxide totally inactivated the enzyme at levels usually associated with their effect on enzymes containing vicinal sulfhydryl groups. Further, cadmium inhibition could be reserved by EDTA. Tetrathionate modification of rhodanese may proceed through the formation of sulfenylthiosulfate intermediates at sulfhydryl groups, close to but not identical with the active-site sulfhydryl group, which then can react further with the active-site sulfhydryl group to form disulfide bridges.  相似文献   

19.
Rita Barr  Frederick L. Crane 《BBA》1982,681(1):139-142
A 120 min incubation period with sulfhydryl reagents, such as p-chloromercuribenzoic acid, shows greater than 50% loss of electron-transport activity in Photosystem (PS) II of spinach chloroplasts. Since p-chloromercuriphenylsulfonic acid, a nonpenetrating sulfhydryl reagent, and 4,4′-dithiopyridine, a bifunctional sulfhydryl reagent, show greater inhibition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive silicomolybdate reduction than of dibromothymoquinone-insensitive indophenol reduction, it is postulated that two different sulfhydryl reagent-sensitive sites are involved in the PS II electron-transport chain of spinach chloroplasts.  相似文献   

20.
Comparison of pig heart aconitase (Kennedy et al., 1972) with yeast (Candida lipolytica) aconitase (Suzuki et al., 1973) reveals similarities in molecular weight and iron content but not in sulphide content. Comparison with the Mildvan & Villafranca (1971) pig heart aconitase preparation reveals differences in iron ligands, specific activity and other properties; these differences possibly arise from protein association as pig heart protein associates under a variety of conditions. The electron spin resonance spectrum, g 4.25, and the low molar relaxivity, 473m−1·s−1, of water H+ suggest the presence of high-spin Fe(III) unco-ordinated to water in the enzyme. The iron chromophore on acid titration at 320nm gives a curve with an inflexion at pH4.2. Ten of 16 expected thiol equivalents are titrated with p-hydroxymercuribenzoate suggesting the presence of cystine as well as cysteine residues. Inhibition of the activation of inactive (activatable) enzyme is sigmoidally related to the molar ratio, p-hydroxymercuribenzoate/enzyme with 10–11mol of mercurial compound causing complete inhibition. Active enzyme, free from activating reagents, requires high molar ratios of mercurial compound for rapid inhibition. In terms of p-hydroxymercuribenzoate the enzyme then lacks an essential thiol group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号