首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Human erythrocytes are shown to contain soluble proteinase(s) that convert excess β-hemoglobin introduced by in vitro entrapment to modified forms that are bound to the erythrocyte membrane. The bound modified hemoglobin chains are degraded in the membrane to yield acid soluble products. Native hemoglobin chains are not bound to the membrane and are not degraded. The cooperative degradation of excess β-hemoglobin chains by soluble and membrane-bound enzymes occurs at neutral pH and does not require energy. The results provide a role for the membrane-bound acid proteinases.  相似文献   

2.
From the homogenate of rat submaxillary gland, two kinds of serine proteinases, named tentatively proteinases A and B, were isolated and their chemical properties and activities toward rat kininogens were examined, in comparison with those of submaxillary kallikrein. Proteinase A with Mr of 28,200 rapidly cleaved high-molecular-weight (HMW) kininogen into a protein of 67 kDa, which retained thiol-proteinase inhibitory activity, but had lost the correcting activity of HMW kininogen on the prolonged clotting time of Fitzgerald trait plasma. It liberated bradykinin from HMW kininogen but did not liberate kinin from T-kininogen and did not degrade T-kininogen. On the other hand, proteinase B with Mr of 30,400 showed a very weak activity for the liberation of kinin from T-kininogen and the cleavage of T-kininogen at pH 8.0. However, the enzyme extensively degraded T-kininogen at pH 4.5. Proteinase B also degraded HMW kininogen at pH 4.5 and pH 8.0, but liberated bradykinin only at pH 8.0. Thiol-proteinase inhibitory activities of HMW kininogen and T-kininogen were inactivated after the incubation with proteinase B at pH 4.5 but not at pH 8.0, while the correcting activity of HMW kininogen on the Fitzgerald trait plasma was inactivated at pH 4.5 and 8.0. The NH2-terminal amino acid sequences of proteinases A and B were different from each other, and distinguishable with those of serine proteinases in rat submaxillary gland so far reported. These results provide evidence that in addition to the known kallikrein, there exist at least two kinds of serine proteinases in rat submaxillary gland, both of which liberate bradykinin from rat HMW kininogen at pH 8.0 and modulate the functional activities of HMW kininogen and T-kininogen, degrading these proteins at pH 8.0 or 4.5.  相似文献   

3.
张群  陈鹏程  郑璞 《微生物学报》2018,58(7):1255-1265
【目的】通过琥珀酸放线杆菌Actinobacillus succinogenes CGMCC1593对酸胁迫的生理应答和转录组学分析,探究琥珀酸放线杆菌酸胁迫的机制。【方法】测定不同pH对细胞生长、H+-ATPase、细胞内pH的影响;测定酸胁迫前后细胞膜和谷氨酸脱氢酶的变化、谷氨酸对琥珀酸放线杆菌生长的影响;通过RNA-seq测序分析酸胁迫条件下的差异表达基因。【结果】随pH值的降低,细胞生长受抑制,H+-ATPase的活性下降。pH 4.7酸胁迫后,细胞膜受到严重损伤,谷氨酸对酸胁迫后的细胞有保护作用,GDH酶活响应酸胁迫后略有增加。酸胁迫后,39个基因差异表达较为显著,其中49%基因属于应激蛋白、转运蛋白,小部分基因与代谢相关。【结论】本文探究了琥珀酸放线杆菌酸胁迫下的生理及转录应答,研究结果可为寻找增强琥珀酸放线杆菌耐酸性策略提供参考。  相似文献   

4.
(1) The degradation of glomerular basement membrane and some of its constituent macromolecules by human kidney lysosomal cysteine proteinases has been investigated. Three cysteine proteinases were extracted from human renal cortex and purified to apparent homogeneity. These proteinases were identified as cathepsins B, H and L principally by their specific activities towards Z-Arg-Arg-NHMec, Leu-NNap and Z-Phe-Arg-NHMec, respectively, and their Mr on SDS-polyacrylamide gel electrophoresis under reducing conditions. (2) Cathepsins B and L, at acid pH, readily hydrolysed azocasein and degraded both soluble and basement membrane type IV and V collagen, laminin and proteoglycans. Their action on the collagens was temperature-dependent, suggesting that they are only active towards denatured collagen. Cathepsin L was more active in degrading basement membrane collagens than was cathepsin B but qualitatively the action of both proteinases were similar, i.e., at below 32 degrees C the release of an Mr 400,000 hydroxyproline product which at 37 degrees C was readily hydrolysed to small peptides. (3) In contrast, cathepsin H had no action on soluble or insoluble collagens or laminin but did, however, hydrolyse the protein core of 35S-labelled glomerular heparan sulphate-rich proteoglycan. (4) Thus renal cysteine proteinases form a family of enzymes which together are capable of degrading the major macromolecules of the glomerular extracellular matrix.  相似文献   

5.
Relative Stability of Membrane Proteins in Escherichia coli   总被引:2,自引:2,他引:0       下载免费PDF全文
The relative stability of membrane proteins in Escherichia coli was investigated to determine whether these proteins are degraded at heterogeneous rates and, if so, whether the degradative rates are correlated with the sizes or charges of the proteins. Cells growing in a glucose-limited chemostat with a generation time of 15 h were labeled with [14C]leucine. After allowing 24 h for turnover of 14C-labeled proteins, the cells were labeled for 15 min with [3H]leucine. By this protocol, the rapidly degraded proteins have a high ratio of 3H to 14C, whereas the stable proteins have a lower ratio. The total cell envelope fraction was collected by differential centrifugation, and the proteins were separated by two-dimensional polyacrylamide gel electrophoresis. The relative ratio for each protein was determined by dividing its 3H/14C ratio by the 3H/14C ratio of the total membrane fraction. Although most of the 125 membrane proteins had relative ratios close to the average for the total membrane fraction, 19 varied significantly from this value. These differences were also observed when the order of addition of [14C]leucine and [3H]leucine was reversed. In control cultures labeled simultaneously with both isotopes, the relative ratios of these 19 proteins were similar to that of the total membrane fraction. Thirteen of these proteins had low relative ratios, which suggested that they were more stable than the average protein. An experiment in which the normal labeling procedure was followed by a 60-min chase period in the presence of excess unlabeled leucine suggested that the low relative ratios of 3 of these 13 proteins may be due to a slow post-translational modification step. Six membrane proteins had high relative ratios, which indicated that they were degraded rapidly. In contrast to the relationships found for soluble proteins in mammalian cells, there were no strong correlations between the degradative rates and either the isoelectric points or the molecular weights of membrane proteins in E. coli.  相似文献   

6.
Carbamoyl phosphate synthetase (CPS) from rat liver is proteolitically inactivated at acid pH by broken lysosomes. Inactivation increases when lysosomes are previously incubated with inner mitochondrial membrane, although this mitochondrial fraction does not inactivate CPS 'per se'. The increased degradation is due to membrane factor(s), most probably mitochondrial proteinase(s), solubilized by lysosomal matrix proteinases, after incubation of the inner mitochondrial membrane fraction with broken lysosomes. This (these ) factor(s) degrade(s) CPS and other proteins in the absence of lysosomal proteinases or when these are inhibited by leupeptin, chymostatin and pepstatin. We have also tested the possible regulation of this degradation and found that ATP and, particularly, acetyl glutamate accelerate the degradation of CPS by the factor(s) liberated from the inner mitochondrial membrane.  相似文献   

7.
The nature of the proteinases which are secreted by barley aleurone layers in response to gibberellic acid was studied by constructing pH vs. activity curves for the hydrolysis of gelatin by incubation media and aleurone layer extracts. The results indicate that the aleurone layers release several different proteinases. The main component is a labile sulphydryl enzyme with an optimum pH of 3.9. The other enzymes include two sulphydryl proteinases with pH optima between pH 5 and 6.5 and a metal-activated enzyme active at pH 7.0. No differences could be demonstrated between the proteinases released by and retained in the aleurone layers.  相似文献   

8.
Current control of gastrointestinal nematodes relies primarily on the use of synthetic drugs and encounters serious problems of resistance. Oral administration of plant cysteine proteinases, known to be capable of damaging nematode cuticles, has recently been recommended to overcome these problems. This prompted us to examine if plant cysteine proteinases like the four papaya proteinases papain, caricain, chymopapain, and glycine endopeptidase that have been investigated here can survive acidic pH conditions and pepsin degradation. The four papaya proteinases have been found to undergo, at low pH, a conformational transition that instantaneously converts their native forms into molten globules that are quite unstable and rapidly degraded by pepsin. As shown by activity measurements, the denatured state of these proteinases which finally results from acid treatment is completely irreversible. It is concluded that cysteine proteinases from plant origin may require to be protected against both acid denaturation and proteolysis to be effective in the gut after oral administration.  相似文献   

9.
The crystal structure of Escherichia coli NhaA determined at pH 4 has provided insights into the mechanism of activity of a pH-regulated Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 5.5–8.5), many questions related to the active state of NhaA have remained elusive. Our experimental results at physiological pH and computational analyses reveal that amino acid residues in transmembrane segment II contribute to the cation pathway of NhaA and its pH regulation: 1) transmembrane segment II is a highly conserved helix and the conserved amino acid residues are located on one side of the helix facing either the cytoplasmic or periplasmic funnels of NhaA structure. 2) Cys replacements of the conserved residues and measuring their antiporter activity in everted membrane vesicles showed that D65C, L67C, E78C, and E82C increased the apparent Km to Na+ and Li+ and changed the pH response of the antiporter. 3) Introduced Cys replacements, L60C, N64C, F71C, F72C, and E78C, were significantly alkylated by [14C]N-ethylmaleimide implying the presence of water-filled cavities in NhaA. 4) Several Cys replacements were modified by MTSES and/or MTSET, membrane impermeant, negatively and positively charged reagents, respectively, that could reach Cys replacements from the periplasm only via water-filled funnel(s). Remarkably, the reactivity of D65C to MTSES increased with increasing pH and chemical modification by MTSES but not by MTSET, decreased the apparent Km of the antiporter at pH 7.5 (10-fold) but not at pH 8.5, implying the importance of Asp65 negative charge for pH activation of the antiporter.  相似文献   

10.
Candida albicans infections in severely immunocompromized patients are not confined to mucosal surfaces; instead the fungus can invade through epithelial and endothelial layers into the bloodstream and spread to other organs, causing disseminated infections with often fatal outcome. We investigated whether secretion of the C. albicans acid proteinase facilitates invasion into deeper tissues by degrading the subendothelial basement membrane. After cultivation under conditions that induce the secretion of the acid proteinase, C. albicans degraded radioactively metabolically labeled extracellular matrix proteins from a human endothelial cell line. The degradation was inhibited in the presence of pepstatin A, an inhibitor of acid proteinases. Pepstatin A-sensitive degradation of the soluble and immobilized extracellular matrix proteins fibronectin and laminin by proteinase-producing C. albicans was also detected, whereas no degradation was observed when the expression of the acid proteinase was repressed. Our results demonstrate that the C. albicans acid proteinase degrades human subendothelial extracellular matrix; this may be of importance in the penetration of C. albicans into circulation and deep organs.  相似文献   

11.
Rat liver mitochondrial fractions corresponding to four morphological structures (matrix, inner membrane, intermembrane space and outer membrane) contain proteinases that cleave casein components at different rates. Proteinases of the intermembrane space preferentially cleave kappa-casein, whereas the proteinases of the outer membrane, inner membrane and matrix fractions degrade alpha S1-casein more rapidly. Electrophoretic separation of the degradation products of alpha S1-casein and kappa-casein in polyacrylamide gels shows that different polypeptides are produced when the substrate is degraded by the matrix, by both membranes and by the intermembrane-space fraction. Some of the degradation products resulting from incubation of the caseins with the mitochondrial fractions are probably the result of digestion by contaminating lysosomal proteinase(s). The matrix has a high peptidase activity, since glucagon, a small peptide, is very rapidly degraded by this fraction. These observations strongly suggest that distinct proteinases, with different specificities, are associated respectively with the intermembrane space and with both membrane fractions.  相似文献   

12.
Protease activities and its relation to the contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase were investigated in detached leaves of rice (Oryza sativa L.) floated on the solutions containing abscisic acid (ABA) or benzyladenine (BA). Rubisco and Rubisco activase contents were decreased during the time course and the decreases were enhanced by ABA and suppressed by BA. The decrease in Rubisco activase was faster than that in Rubisco. SDS-dependent protease activities at 50–70 kDa (rice SDS-dependent protease: RSP) analyzed by the gelatin containing PAGE were significantly enhanced by ABA. RSPs were also increased in attached leaves during senescence. RSPs had the pH optimum of 5.5, suggesting that RSPs are vacuolar protease. Both decrease in Rubisco and Rubisco activase contents and increase in RSPs activities were suppressed by cycloheximide. These findings indicate that the activities of RSPs are well correlated with the decrease in these protein contents. Immunoblotting analysis showed that Rubisco in the leaf extracts was completely degraded by 5 h at pH 5.5 with SDS where it was optimal condition for RSPs. However, the degradation of Rubisco did not proceed at pH 7.5 without SDS where it is near physiological condition for stromal proteins. Rubisco activase was degraded at similar rate under both conditions. These results suggest that RSPs can functions in a senescence related degradation system of chloroplast protein in rice leaves. Rubisco activase would be more susceptible to proteolysis than Rubisco under physiological condition and this could affect the contents of these proteins in leaves.  相似文献   

13.
14.
A. W. Segal 《Protoplasma》1995,184(1-4):86-103
Summary Phagocytic cells of the immune system contain an oxidase that is important for the killing and digestion of engulfed microbes. This is an electron transport chain that transfers electrons from NADPH in the cytosol to oxygen to form superoxide and hydrogen peroxide in the phagocytic vacuole. Absence or abnormality of this oxidase results in the syndrome of CGD, characterised by a profound predisposition to infection. The electron transport chain consists of a flavocytochrome b located in the plasma membrane and membrane of the specific granules. It is composed of a and b-subunits, with apparent molecular masses of 23 kDa and 76–92 kDa, respectively. The b-subunit is a member of the FNR family of reductases with FAD and NADPH binding sites. Based upon the crystal structure of FNR we have constructed a model of the more hydrophilic C terminal half of this b-subunit, which acts as a guide to the organisation of the molecule, and provides a template on which to map mutations in CGD. The location of the heme is uncertain. Electron transport is dependent upon an activation complex of cytosolic proteins including p40 phox , p47 phox , and p67 phox , and the small GTP binding protein, p21 rac . This oxidase system is important for the killing and digestion of bacteria and fungi. This might be accomplished in a number of ways. The oxidase produces superoxide and hydrogen which might be toxic themselves. The hydrogen peroxide can act as substrate for myeloperoxidase which can oxidise chloride and iodide to chlorine and iodine and their hypohalous acids. The proteins contained within the cytoplasmic granules are also very important in the killing process. These are neutral proteinases that require a neutral or slightly alkaline pH for optimal activity. The oxidase transports electrons, unaccompanied by protons, across the wall of the phagocytic vacuole, resulting in an elevation of the vacuolar pH, thereby optimising conditions for killing and digestion of engulfed organisms by these neutral proteinases.  相似文献   

15.
Extracts of highly purified lysosomes from rat liver were examined for their ability to degrade native collagen and thermally denatured collagen at pH values between 3.5 and 7.0. After a 24-h digestion at 36 degrees with the lysosomal extract at a pH of 5.5 or lower (collagen/lysosomal protein; 2/1 or 8/1), both native and denatured collagen were degraded to an extent equivalent to 60 to 70% of that observed upon total acid hydrolysis in 6 N HCl as measured by the ninhydrin reaction (570 nm). At a pH of 6.0, native collagen and denatured collagen were degraded by the mixture of lysosomal proteinases to 11% and 40% of total acid hydrolysis, respectively. At pH 6.5 AND 7.0, the corresponding values were 3% versus 33% and 0.3% versus 11%, respectively. Fragments of collagen (TCA and TCB) are produced when mammalian collagenase degrades native collagen at 25 degrees. These fragments were degraded by the lysosomal extract at 36 degrees to an extent equivalent to 28% and 8% of total acid hydrolysis at pH 6.5 and 7.0, respectively. The experiments at pH 6.5 and 7.0 were done using a collagen/lysosomal protein ratio of 2/1. At pH 5.0 (a pH which is found within secondary lysosomes), the lysosomal extracts degraded collagen to a mixture of free amino acids and small peptides. Amino acid analysis established that approximately 30% of the amino acid residues of the collagen appeared in the lysosomal hydrolysate as free amino acids. Hydroxyproline and perhaps hydroxylysine were the only amino acids found in collagen which did not appear at least to some extent as the free amino acid in this hydrolysate.  相似文献   

16.
To elucidate the mechanism of hydrolysis of fish muscle proteins by fish proteinases in fish sauce production, each pure preparation of three alkaline proteinases and two acid proteinases from sardine was tested for its ability to hydrolyze various proteins and its stability in the presence of 0 to 25% of NaCl. Each of the alkaline proteinases hydrolyzed casein more rapidly than other proteins. A major alkaline proteinase (III) hydrolyzed sarcoplasmic protein from sardine 5-times faster than other alkaline proteinases. Each of two acid proteinases hydrolyzed hemoglobin and myoglobin more rapidly than the other proteins. After preincubation with 25% NaCl, an alkaline proteinase (III) and an acid proteinase (II) were stable although the other proteinases became unstable. The two proteinases, alkaline proteinase III and acid proteinase II, were also stable for three months after the beginning of fish sauce production. The proteolytic activity of each of alkaline and the acid proteinases was strongly inhibited by more than 15% NaCl; however, minimum inhibition was observed when sardine muscle proteins were used as the substrate.  相似文献   

17.
The effects of the Ca2+-activated cysteine proteinase, the rat trypsin-like serine proteinase and bovine trypsin on myofibrillar proteins from rabbit skeletal muscle are compared. 2. Myofibrils that had been treated at neutral pH with the Ca2+-dependent proteinase and with the rat enzyme were (a) analyzed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and (b) examined in the electron microscope. Treatment with each proteinase resulted in the loss of the Z-discs, but the rat enzyme caused much more extensive disruption of the ultrastructure and degraded more of the myofibrillar proteins. 3. Purified F-actin was almost totally resistant to the proteinases, whereas G-actin was degraded by the rat trypsin-like proteinase at a rate approx. 15 times faster than was obtained with bovine trypsin. 4. Similar results were obtained with alpha-actinin, whereas tropomyosin was degraded more readily by bovine trypsin than by the rat trypsin-like proteinase. 5. The implications of these findings for the non-lysosomal breakdown of myofibrillar proteins in vivo are considered.  相似文献   

18.
Summary We have identified cytoplasmic and membrane-associated proteinases from Micrococcus lysodeikticus (M. luteus) by the use of 125I-labeled casein and insulin as substrates. The membrane-associated activities were released by shock washing. Proteolytic activities showed pH optima at slightly alkaline values and we have concentrated on the activities at pH 8.0. The total units of both proteolytic activities were higher in the cytoplasmic than in any other fractions but the situation was different when the results were expressed in terms of specific activity. The activities against casein and insulin were differentiated by the action of inhibitors, divalent metal ions, Arrhenius plots and dependence on ionic strength. On these grounds, it is proposed that the membrane-associated enzyme acting on insulin is a single thiol proteinase while the proteolysis of casein reflects the action of, at least, two enzymes (thiol proteinase and serine proteinase). The distinction between the casein and insulin degrading activities was confirmed by crossed-inhibition experiments and by their behaviour on gel chromatography and concentration-dependent experiments.The aggregating properties have hampered the purification of the enzymes. The present results raise doubts about the significance of preventing membrane damage and degradation of membrane proteins by the addition of indiscriminated proteinase inhibitors during membrane isolation and manipulation.  相似文献   

19.
Two proteinases (I and II) from a marine luminous bacterium, FLN-108, were purified to homogeneity. The molecular weights of proteinases I and II were estimated to be 49,000 and 46,000, comprising a dimer of 23,000 molecular weight subunits, respectively. These enzymes were most active at from pH 8.0 to pH 9.0 and 50°C, and stable below 45°C. These enzyme activities were inhibited by EDTA and orthophenanthrolin. Phosphoramidon inhibited the activity of proteinase II, but not that of proteinase I. Metal ions such as Cu2+ , Hg2+ , and Ni2+ strongly inhibited these activities. These results indicate that the proteinases I and II are metal-chelater-sensitive, alkaline proteinases.  相似文献   

20.
At least two kinds of enzymes are active in the proteolytic self-digestion of erythrocyte membranes. The specific activities of these enzymes do not decrease with repeated washings of purified stroma. The effects of a variety of inhibitors on the membrane preparation's capacity to digest 125I-labelled casein, covalently linked to latex beads, have been examined.Pepstatin-inhibitable enzyme, active at low pH, digests the membrane extensively to small polypeptide fragments. Spectrin, located at the internal part of the membrane, is readily degraded. Diisopropylfluorophosphate-inhibitable enzyme, active at pH 8–9, has only limited digestive capacity. Some of the membrane components, such as the small molecular weight glycoproteins, are resistant to digestion. The restricted capacity of digestion is due to the membrane molecular arrangement; increased disaggregation removes the restriction and increases the activity. Spectrin is not digested unless the membrane topography is disrupted by NP-40 neutral detergent. These observations suggest that the enzymes active at basic pH are located external to the cell. Intact cells do possess a limited capacity to degrade 125I-labelled casein when their surfaces are brought into contact with substrate-coated beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号