首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proton nuclear magnetic resonance spectroscopy has been reevaluated concerning the assignment of anomeric structure of glycosphingolipids. Solubility problems due to a varying number of sugars are avoided by permethylation, allowing a wide range of glycolipids to be compared. High resolution spectra were recorded in chloroform solution for the following substances with known structure, most of them representing a successive building up of members of the globo-series: ceramide, Galβ1 → 1Cer, a mixture of Glcα1 → 1Cer and Glcβ1 → 1Cer, lactosylceramide, globotriaosylceramide, globotetraosylceramide (globoside), and GalNAcα1 → 3globotetraosylceramide (Forssman hapten). Resonances originating in anomeric protons were identified and possible interference from other signals was defined. A complex set of resonances from H-1 of hexosamines was probably due to two separate conformers of the acetamido group caused by N-methylation. The complexity disappeared upon reduction with LiAlH4. The chemical shifts and coupling constants were characteristic for the configuration of the glycosidic bond, the type of monomer, and in part for its location in the chain. At present, spectra may be recorded from 200-μg samples. It is concluded that the good quality and resolution obtained make this technique an alternative method to the presently used enzymatic degradation for establishing anomeric structure of glycosphingolipids.  相似文献   

2.
Four different H-type 1 (LedH) blood-group-active glycosphingolipids (LedH-I–IV) have been isolated from the plasma of blood-group O Le(a?b?) secretors. The agglutination of O Le(a?b?) erythrocytes from secretors by 50 μl of 4 hemagglutinating units of caprine anti-LedH (anti-H-type 1) serum was inhibited by 0.02 μg of each of all four glycolipids. No Lea or Leb activities or reaction against Ulex europaeus lectin could be found. LedH-I, -II, -III, and -IV at 0.05, 0.01, 0.01, and 0.02 μg each are sufficient for incubation in order to convert 9 × 107 O Le(a?b?) erythrocytes from nonsecretors into H-type 1 (LedH)-positive cells. Structural analysis of the H-type 1 glycolipids was performed in comparison to that of Lea- and Leb-blood-group-active glycolipids from human plasma isolated previously: Gas chromatography of peracetylated alditols revealed sugar composition. Combined gas chromatography-mass spectrometry established the glycosidic linkages. Together with the results obtained by direct inlet mass spectrometry of permethylated glycosphingolipids and by 360-MHz 1H nuclear magnetic resonance spectroscopy (Egge, H., and Hanfland, P., 1981, Arch. Biochem. Biophys., 210, 396–404; Dabrowski, J., Hanfland, P., Egge, H., and Dabrowski, U., 1981, Arch. Biochem. Biophys., 210, 405–411) the complete structures of the oligosaccharide chains of the Lea-, Leb-, and H-type 1-active glycolipids were established: Galβ1 → 3GlcNAc(4 ← 1αFuc)β1 → 3Galβ1 → 4Glcβ1 → 1 Cer for the Lea antigens; Fucα1 → 2Galβ1 → 3GlcNAc(4 ← 1αFuc)β1 → 3Galβ1 → 4Glcβ1 → 1 Cer for the Leb antigens; and Fucα1 → 2Galβ1 → 3GlcNAcβ1 → 3Galβ1 → 4Glcβ1 → 1 Cer for the H-type 1 (LedH) glycolipids. The diverse antigens of the same blood-group specificity obviously differ from one another in their lipid residue. In addition, plasmatic neolactotetraosylceramide could be identified, differing from that of human erythrocytes by a slower migration behavior in thin-layer chromatography.  相似文献   

3.
Gas chromatography-mass spectrometric identification of partially methylated aminosugars has been developed: (a) various kinds of O-methylated 2-deoxy-2-(N-methyl)-acetamidohexitols were prepared from partially O-(1-methoxy)-ethylated 2-deoxy-2-acetamidohexoses, and their gas chromatography-mass spectrometric patterns were determined; (b) permethylated glycolipids gave a satisfactory yield of 2-deoxy-2-N-methyl-amidohexoses by acetolysis with 0.5 n sulfuric acid in 95% acetic acid, followed by aqueous hydrolysis; (c) the resulting partially methylated aminosugars and neutral sugars were analyzed after borohydride reduction and acetylation according to the procedure of Lindberg and associates (Björndal, Lindberg and Svennson, 1967; Björndal, Hellerqvist, Lindberg and Svensson, 1970).This method was successfully applied to analysis of aminosugar linkages in blood group B-active ceramide pentasaccharide from rabbit erythrocytes and in Forssman antigen of equine spleen. The structure of blood group B-active glycolipid of rabbit erythrocyte was found to be Galα1 → 3Galβ1 → 4G1cNAcβ1 → 3Ga11 → 4Glc → Cer, and that of Forssman antigen to be GaNAcα1 → 3GalNAcβ1 → 3Galα1 → 4Ga11 → 4Glc → Cer.  相似文献   

4.
Abstract: The influence of divalent cations on glycosphingolipid metabolism was examined in the NB41A mouse neuroblastoma clonal cell line. HPLC methods were utilized to quantitate the effects on neutral glycolipids and monosialogangliosides. NB41A cells were shown to contain GM3, GM2, GM1, GD3, and GD1a by HPLC and TLC. The neutral glycosphingolipids consisted of glucosylceramide (GlcCer), lactosylceramide (LacCer), GaINAc(β1→4) Gal(β1→4)Glc(β1→1)Cer (GgOse3Cer), and GaINAc(β1→3)Gal(α1→4) Gal-(β1→4)Glc(β1→1)Cer (GbOse3Cer) according to their HPLC behavior. Cells grown in the presence of 1.85 mm -EGTA showed a two- to threefold increase in GM3 whereas other glycosphingolipids were only slightly affected. When cells were grown in the presence of 1.45 mm -EGTA plus 0.4 mm -EDTA a similar increase in GM3 was observed but this change was now accompanied by decreases in GM2, GM1 GgOse3Cer, and GbOse4Cer. The EGTA-EDTA effects were reversed when growth was in the presence of Ca2+ sufficient to bind all chelator. Mn2+ replacement reversed the chelator effects differentially; GM2 and GM1 levels were the most sensitive to increases in Mn2+ concentration; GgOse3Cer and GbOse4Cer were also sensitive, whereas GM3 was the least affected. These results suggest calcium serves an important regulatory role on GM3 levels and that manganese concentration may regulate the levels of galactosamine-containing glycolipids in mouse NB41A neuroblastoma cells.  相似文献   

5.
Two major glycolipids accumulating in a human primary liver adenocarcinoma, but absent in normal liver, were characterized as lacto-N-fucopentaosyl(III)ceramide and difucosyllacto-N-nor-hexaosylceramide, (Galβ1→4[Fucα1→3]GlcNAcβ1→3Galβ1→4[Fucα1→3]GlcNAcβ1→3Galβ1→4Glcβ1→1Cer), a new type of glycolipid with Lex-determinant. Comparison of glycolipids bearing Lex-determinant in various cases of human colonic adenocarcinoma, in adjacent normal mucosa tissue, and in erythrocytes reveals a possibility that glycolipids accumulating in human adenocarcinoma, but not in normal tissue, have a common structural unit as identified below:
  相似文献   

6.
Two species of Propionibacterium were analysed regarding their binding to glycosphingolipids. Bacteria were labeled with 125I and selective interaction with glycolipids on thin-layer chromatograms was revealed by autoradiography. The carbohydrate site in common for active molecular species appeared to be lactose. The two bacteria differed, however, in the overall binding pattern on the chromatogram, probably due to recognition of separate epitopes on lactose. P. freudenreichii bound only to lactosylceramide while P. granulosum also recognized substituted lactosylceramide: Gal alpha 1----3Gal beta 1----4Glc beta Cer, GlcNAc beta 1----3Gal beta 1----4Glc beta Cer and Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4Glc beta Cer were active, but Gal-alpha 1----4Gal beta 1----4Glc beta Cer was inactive. Also, there was an interesting dependence on ceramide structure in the case of lactosylceramide. P. freudenreichii bound to lactosylceramide with sphingosine and non-hydroxy fatty acids but not to species with sphingosine and 2-hydroxy fatty acids, phytosphingosine and non-hydroxy fatty acids or phytosphingosine and 2-hydroxy fatty acids. For P. granulosum the situation was reversed. This may be explained by an influence of ceramide structure on the presentation of the two lactose epitopes at the assay surface. These results were supported by curves from the binding of labeled bacteria to glycolipids coated in microtiter wells and in part by binding to glycolipid-coated chicken erythrocytes.  相似文献   

7.
Pseudomonas aeruginosa infection in the lungs is a leading cause of death of patients with cystic fibrosis, yet a specific receptor that mediates adhesion of the bacteria to host tissue has not been identified. To examine the possible role of carbohydrates for bacterial adhesion, two species of Pseudomonas isolated from patients with cystic fibrosis were studied for binding to glycolipids. P. aeruginosa and P. cepacia labeled with 125I were layered on thin-layer chromatograms of separated glycolipids and bound bacteria were detected by autoradiography. Both isolates bound specifically to asialo GM1 (Gal beta 1-3GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer) and asialo GM2 (GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer) but not to lactosylceramide (Gal beta 1-4Glc beta 1-1Cer), globoside (GalNAc beta 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1-1Cer), paragloboside (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-1Cer), or several other glycolipids that were tested. Asialo GM1 and asialo GM2 bound the bacteria equally well, exhibiting similar binding curves in solid-phase binding assays with a detection limit of 200 ng of either glycolipid. Both isolates also did not bind to GM1, GM2, or GDla suggesting that substitution of the glycolipids with sialosyl residues prevents binding. As the Pseudomonas do not bind to lactosylceramide, the beta-N-acetylgalactosamine residue, positioned internally in asialo GM1 and terminally in asialo GM2, is probably required for binding. beta-N-Acetylgalactosamine itself, however, is not sufficient as the bacteria do not bind to globoside or to the Forssman glycolipid. These data suggest that P. aeruginosa and P. cepacia recognize at least terminal or internal GalNAc beta 1-4Gal sequences in glycolipids which may be receptors for these pathogenic bacteria.  相似文献   

8.
High resolution nuclear magnetic resonance spectra were recorded in a chloroform solution of six Lewis-active or Lewis-like glycosphingolipids in permethylated and permethylated-reduced (LiAlH4) form. The samples were selected to cover the presently known structural variants of α-fucose linked to galactose and N-acetylglucosamine. Fucα1 → 2Gal, Fucα1 → 3GlcNAc, and Fucα1 → 4GlcNAc gave characteristic and well-separated anomeric resonances. Furthermore, upon reduction there was a strong deshielding effect on Fucα1 → 3GlcNAc and Galβ1 → 3GlcNAc (linkage vicinal to reduced amide), which makes it possible to differentiate type 1 (Galβ1 → 3GlcNAc) and type 2 (Galβ1 → 4GlcNAc) saccharide chains. This improved method of nuclear magnetic resonance spectroscopy is discussed in relation to sequence analysis by mass spectrometry, two microscale structural methods using the same type of derivatives and needing no degradations before analysis.  相似文献   

9.
Blood group H antigen with globo-series structure, reacting with the monoclonal antibody MBrl, was isolated and characterized from human blood group O erythrocytes. The structure was identified by methylation analysis, direct probe mass spectrometry, and 1H-nuclear magnetic resonance spectroscopy as shown below: Fucαl → 2Galβl → 3GalNAcβl → 3Galαl → 4Galβl → 4Glcβl → 1Cer  相似文献   

10.
Certain Helicobacter pylori strains adhere to the human gastric epithelium using the blood group antigen-binding adhesin (BabA). All BabA-expressing H. pylori strains bind to the blood group O determinants on type 1 core chains, i.e. to the Lewis b antigen (Fucα2Galβ3(Fucα4)GlcNAc; Le(b)) and the H type 1 determinant (Fucα2Galβ3GlcNAc). Recently, BabA strains have been categorized into those recognizing only Le(b) and H type 1 determinants (designated specialist strains) and those that also bind to A and B type 1 determinants (designated generalist strains). Here, the structural requirements for carbohydrate recognition by generalist and specialist BabA were further explored by binding of these types of strains to a panel of different glycosphingolipids. Three glycosphingolipids recognized by both specialist and generalist BabA were isolated from the small intestine of a blood group O pig and characterized by mass spectrometry and proton NMR as H type 1 pentaglycosylceramide (Fucα2Galβ3GlcNAcβ3Galβ4Glcβ1Cer), Globo H hexaglycosylceramide (Fucα2Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), and a mixture of three complex glycosphingolipids (Fucα2Galβ4GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer, Fucα2Galβ3GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer, and Fucα2Galβ4(Fucα3)GlcNAcβ6(Fucα2Galβ3GlcNAcβ3)Galβ3GlcNAcβ3Galβ4Glcβ1Cer). In addition to the binding of both strains to the Globo H hexaglycosylceramide, i.e. a blood group O determinant on a type 4 core chain, the generalist strain bound to the Globo A heptaglycosylceramide (GalNAcα3(Fucα2)Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), i.e. a blood group A determinant on a type 4 core chain. The binding of BabA to the two sets of isoreceptors is due to conformational similarities of the terminal disaccharides of H type 1 and Globo H and of the terminal trisaccharides of A type 1 and Globo A.  相似文献   

11.
Antiserum against galactosyl(α1 → 4)galactosyl(β1 → 4)glucosylceramide (globotriaosylceramide, Gb3) was raised in rabbits by the administration of four weekly intramuscular injections of 1.5 mg of the purified glycolipid along with bovine serum albumin and Freund's complete adjuvant. AntiGb3 activity was quantitated initially by immunoprecipitation employing Gb3 mixed with 100-fold excess of lecithin and cholesterol (1 : 1 or 1 : 2, by wt.) as antigen. Subsequently, complement fixation tests done with antigen preparations containing Gb3/lecithin/cholesterol (1 : 6 : 20, by wt.) showed antiGb3 titres of up to 1 : 8192. Fractionation of the antiserum by BioGel A5m chromatography indicated the antibody was an IgM immunoglobulin. The partially purified antibody stimulated complement-dependent release of glucose from glucose-containing liposomes prepared with sphingomyelin/cholesterol/dicetylphosphate/Gb3 (molar ratio, 100 : 75 : 11 : 1). The antibody crossreacted with the trisaccharide, Gal(α1 → 4)Gal(β1 → 4)Glc, but not with galactosylceramide, lactosylceramide, GM1 ganglioside, globotetraosylceramide, digalactosyldiglyceride or a number of low molecular weight saccharides.  相似文献   

12.
1. Neutral glycosphingolipids of hamster fibroblast NIL cells have been characterized as follows: glucosylceramide, lactosylceramide (betaGall yields 4Glc yields Cer), a digalactosylceramide (alphaGall yields 4betaGal yields Cer), a trihexosylceramide (alphaGall yields 4betaGall yields 4Glc yields Cer), two kinds of ceramide tetrasaccharides (A: alphaGa1NAcl yields 3betaGalNAcl yields 3alphaGall yields 4betaGall yields 1Cer, a new type of Forssman active glycolipid; B: globoside, betaGalNAcl yields 3alphaGall yields 4betaGall yields 4betaGlc yields Cer), and a ceramide pentasaccharide having a classical structure for Forssman antigen (alphaGalNAcl yields 3betaGalNAcl yields 3alphaGall yields 4betaGall yields 4Glc yields Cer). 2. Neutral glycosphingolipids of polyoma virus-transformed NIL cells (NILpy) have been characterized as having an additional ceramide tetrasaccharide which was absent in normal NIL cells. The structure of this specific glycolipid was identified as lacto-N-neotetraosylceramide (betaGall yields 4betaGlc-NAcl yields 3betaGall yields 4Glc yields Cer). Chemical quantities of ceramide tetra- and pentasaccharides in NILpy cells were much lower than in NIL cells. 3. All of these glycolipids, except glucosylceramide and lactosylceramide, were labeled externally by galactose oxidase and tritiated borohydride according to the method previously described (GAHMBERG, C. G, and HAKOMORI, S. (1973) J. Biol. Chem. 248, 4311-4317). The specific activities of the label in glycolipid of NIHpy cells were much greater than that in NIL cells, i.e. reactivity of glycolipids with galactose oxidase in NIHpy cells was much higher than for NIL cells. The surface label in glycolipids was cell cycle-dependent in NIL cells, and a remarkable exposure of a galactosyl residue of a ceramide tetrasaccharide was demonstrated only on the surface of NILpy cells, due to the presence of lacto-N-neotetraosylceramide.  相似文献   

13.
The enzyme which catalyzes the transfer of galactose from UDP-galactose to lactosylceramide (LacCer) was obtained in a 32,000-fold purified and apparently homogeneous form from rat liver by a procedure involving affinity chromatography on UDP-hexanolamine-Sepharose and LacCer-Sepharose. The enzyme is composed of two nonidentical subunits whose apparent molecular weights are 65,000 and 22,000. Methylation and hydrolysis of the product formed by incubation of the enzyme with UDP-galactose and [3H]LacCer yielded 2,3,6-tri-O-methyl-[3H]galactose, indicating that a galactose residue was introduced to position C-4 of the terminal galactose of the LacCer. The product also specifically reacted with monoclonal antibody directed to globotriaosylceramide (Gal alpha 1-4Gal beta 1-4Glc beta 1-1Cer). This indicates that the purified enzyme is exclusively alpha 1-4-galactosyltransferase. Studies on substrate specificity indicate that the purified enzyme is highly specific for the synthesis of GbOse3Cer and is clearly distinct from the enzymes responsible for the formation of iGbOse3Cer (Gal alpha 1-3Gal beta 1-4Glc-Cer) and blood group-B substance, which possess alpha 1-3 galactosidic linkages at the nonreducing termini. The enzyme is also distinct from the alpha 1-4-galactosyltransferase which catalyzes the formation of galabiaosylceramide (Gal alpha 1-4Gal beta 1-1Cer) and IV4Gal-nLacOse4 (P1 antigen). These studies represent the first report of the properties of a highly purified alpha-galactosyltransferase catalyzing the transfer of sugar residues to glycolipids.  相似文献   

14.
High resolution nuclear magnetic resonance spectra of permethylated and permethylated-reduced (LiAlH4) derivatives were recorded in chloroform solution for the following glycosphingolipids with known structure: lactotriaosylceramide, neolactotetraosylceramide (paragloboside), two blood group H-active pentaglycosylceramides (type 1 and type 2 saccharide chains, respectively), a B-active hexaglycosylceramide, an A-active hexaglycosylceramide, and an A-active octaglycosylceramide. Good quality and resolution allow a clear-cut diagnosis of α-anomeric protons of Fuc, Gal, and GalNAc, and in most cases of all β protons. Upon reduction there is a strong deshielding effect on H-1 of Gal of Galβ1 → 3GlcNAc but not on Gal of Galβ1 → 4GlcNAc. It is therefore possible to differentiate type 1 and type 2 chains by this method, a structural difference of importance for serological specificity. Nuclear magnetic resonance spectroscopy may therefore provide conclusive information on the anomeric structure of the immunodeterminant of blood group-active glycolipids using the same derivatives as for sequence analysis by mass spectrometry.  相似文献   

15.
A blood group H type pentaglycosylceramide was isolated in relatively large amounts from human adult small intestine (52mg from one individual) and human meconium (fetal origin). The structure was made likely by mass spectrometry and NMR spectroscopy of non-degraded permethylated and permethylated-LiAlH4-reduced glycolipid and by degradaton to be Fucα1 → 2GAlβ 1 → 3GlcNAcβ 1 → 3GAlβ 1 → 4Glcβ 1 → l Cer. The ceramide was composed mainly of phytosphingosine and 2-hydroxy 16–24 carbon fatty acids. This novel type 1 chain species (Galβ 1 → 3GlcNAc) was not accompanied by the type 2 chain isomer (Galβ 1 → 4GlcNAc) which in contrast is the sole species in human erythrocyte and dog small intestine.  相似文献   

16.
Glycolipid antigen reacting to the monoclonal antibody directed to the developmentally regulated antigen SSEA-1 was isolated from human erythrocytes and colonic adenocarcinoma. The antigens have the Lex (Galβl→4[Fucα]→3]GlcNAcβl→R) or Ley (Fucαl→2Galβl→4[Fucαl→3]GlcNAcβl→R) structure at the termini of the branched polylactosaminolipid. In addition, a novel polyfucosyl structure locating exclusively at the internal GlcNAc was detected in the tumor antigen. The antibody reacts with a simple monovalent Lex glycolipid (Galβl→4[Fucαl→3]GlcNAcβl→3Galβl→4Glcβl→Cer) previously isolated from colonic carcinoma when presented at a high density on liposomes. The antibody therefore may react to the bivalent or multivalent Lex or Ley structure.  相似文献   

17.
A monoclonal antibody (mAb), BR55-2, was generated from mice immunized with MCF-7 human breast carcinoma cells. This mAb specifically detected glycolipids with the Y determinant Fuc alpha 1----2Gal beta 1----4GlcNAc(3----1 alpha Fuc)-beta 1----3Gal beta 1----4Glc beta 1----1 Cer and the Y-related B-active difucosylated determinant Gal alpha 1----3Gal(2----1 alpha Fuc) beta 1----4GlcNAc(3----1 alpha Fuc) beta 1----3Gal beta 1----4Glc beta 1----1 Cer, but was not reactive with related monofucosylated glycolipids of type 2 chain (X-antigen, blood group H), type 1 chain (Lea antigen, blood group H and B) or with difucosylated type 2 and type 1 chain structures (A blood group antigen or blood group B and Leb, respectively). A series of glycolipids with Y and blood group B type 2 determinants were detected in human gastric adenocarcinoma cell line KATO III with mAb BR55-2 and with a previously characterized anti-blood group B mAb PA83-52 (Hansson, G. C., Karlsson, K.-A., Larson, G., McKibbin, J. M., Blaszczyk, M., Herlyn, M., Steplewski, Z., and Koprowski, H. (1983) J. Biol. Chem. 258, 4091-4097). The isolated antigens were structurally characterized by mass spectrometry of permethylated and permethylated-reduced derivatives and by proton NMR spectroscopy. In a chromatogram binding assay, mAb BR55-2 and mAb PA83-52 detected minor components with slower mobility than the Y-6 and blood group B-7-type 2 structures. The detection of a B type 2 determinant is the first chemical evidence for the presence of an autologous difucosyl blood group B type 2 antigen in human adenocarcinoma cells.  相似文献   

18.
Skin fibroblast cultures from patients with inherited lysosomal enzymopathies, alpha-N-acetylgalactosaminidase (alpha-NAGA) and alpha-galactosidase A deficiencies (Schindler and Fabry disease, respectively), and from normal controls were used to study in situ degradation of blood group A and B glycosphingolipids. Glycosphingolipids A-6-2 (GalNAc (alpha 1-->3)[Fuc alpha 1-->2]Gal(beta1-->4)GlcNAc(beta 1-->3)Gal(beta 1--> 4)Glc (beta 1-->1')Cer, IV(2)-alpha-fucosyl-IV(3)-alpha-N-acetylgalactosaminylneolactotetraosylceramide), B-6-2 (Gal(alpha 1-->3)[Fuc alpha 1--> 2] Gal (beta 1-->4)GlcNAc(beta 1-->3)Gal(beta 1-->4)Glc(beta 1-->1')Cer, IV(2)- alpha-fucosyl-IV(3)-alpha-galactosylneolactotetraosylceramide), and globoside (GalNAc(beta 1-->3)Gal(alpha 1-->4)Gal(beta 1-->4)Glc(beta 1-->1') Cer, globotetraosylceramide) were tritium labeled in their ceramide moiety and used as natural substrates. The degradation rate of glycolipid A-6-2 was very low in fibroblasts of all the alpha-NAGA-deficient patients (less than 7% of controls), despite very heterogeneous clinical pictures, ruling out different residual enzyme activities as an explanation for the clinical heterogeneity. Strongly elevated urinary excretion of blood group A glycolipids was detected in one patient with blood group A, secretor status (five times higher than upper limit of controls), in support of the notion that blood group A-active glycolipids may contribute as storage compounds in blood group A patients. When glycolipid B-6-2 was fed to alpha-galactosidase A-deficient cells, the degradation rate was surprisingly high (50% of controls), while that of globotriaosylceramide was reduced to less than 15% of control average, presumably reflecting differences in the lysosomal enzymology of polar glycolipids versus less-polar ones. Relatively high-degree degradation of substrates with alpha-D-Galactosyl moieties hints at a possible contribution of other enzymes.  相似文献   

19.
ON THE STRUCTURE OF A NEW, FUCOSE CONTAINING GANGLIOSIDE FROM PIG CEREBELLUM   总被引:12,自引:7,他引:5  
A new ganglioside, provisionally named GLIVa, was isolated in pure form from pig cerebellum. Ganglioside GLIVa is a disialoganglioside containing fucose. Its basic neutral glycosphingolipid core is the gangliotetraose ceramide: Gal, β 1 → 3 GalNAc, β 1 → 4 Gal, β 1 → 4 Glc, β 1 → Cer. Fucose is α-glycosidically linked to the 2-position of external galactose and one N-acetylneuraminic acid is linked to the other one by an α, 2 → 8 linkage. Thus the total structure of ganglioside GLIVa is the following: Fuc, α 1 → 2 Gal, β 1 → 3 GalNAc, β 1 → 4 (NeuAc, α 2 48 NeuAc, α 2 → 3) Gal, β 1 → 4 Glc, β 1 → Ceramide. According to the IUPAC-IUB Commission on Biochemical Nomenclature is indicated as II3α(NeuAc)2 IV2αFuc-GgOse4Cer.  相似文献   

20.
Escherichia coli K12, which possess the K99 plasmid and synthesize K99 fimbriae (E. coli K99), cause severe neonatal diarrhea in piglets, calves, and lambs but not in humans. The organism binds specifically and with high affinity to only two glycolipids in piglet intestinal mucosa as demonstrated by overlaying glycolipid chromatograms with 125I-labeled bacteria. These glycolipids, which are N-glycolyl-GM3 (NeuGc alpha 2-3Gal beta 1-4Glc beta 1-1Cer) and N-glycolylsialoparagloboside (NeuGc alpha 2-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-1Cer), occur at about 13 and 0.3 micrograms per gram wet weight of mucosa, respectively. E. coli K99 grown at 18 degrees C, a temperature at which the K99 fimbriae are not expressed, do not bind to these glycolipids. Of the standard glycolipids tested in solid phase binding assays, E. coli K99 binds with highest affinity to N-glycolylsialoparagloboside, with less affinity to N-glycolyl-GM3, and with very low affinity to N-acetylsialoparagloboside. The bacteria do not bind to GM3 (NeuAc alpha 2-3Gal beta 1-4Glc beta 1-1Cer), GM2 (GalNAc beta 1-4[Neu-Ac alpha 2-3]Gal beta 1-4Glc beta 1-1Cer), GM1 (Gal beta 1-3GalNAc beta 1-4[NeuAc alpha 2-3]Gal beta 1-4Glc beta 1-1Cer), or several other N-acetylsialic acid-containing gangliosides and neutral glycolipids at the levels tested. N-Glycolylsialyl residues are found in the glycoproteins and glycolipids of piglets, calves, and lambs but not in the glycoproteins and glycolipids of humans. Possibly this distribution of sialyl derivatives explains the host range of infection by the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号