首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
On starch-gel or polyacrylamide-gel electrophoresis of human serum, a supernumerary zone of aspartate aminotransferase activity may be demonstrated, migrating with the slow alpha(2) protein zone. This appearance is due only to cationic aspartate aminotransferase, bound by alpha(2)-macroglobulin. The binding is strongly potentiated by dilute borate buffers.  相似文献   

2.
3.
N.K. Matheson 《Phytochemistry》1975,14(9):2017-2021
After removal of granular starch at low centrifugal force, the centrifugation, at increasing forces, of aqueous extracts of su1 corn gave a series of α-glucan precipitates that contained amylose. The amylose content decreased as the force increased. In contrast, in normal corn all the α-glucan precipitated as starch granules at low forces. In the sweet corn precipitates, apart from the granular starch, the branched α-glucan was phytoglycogen. The MW of this decreased as the proportion of amylose decreased. It appears that, as well as starch granules and soluble phytoglycogen, sweet corn contains granules, smaller than starch, of a range of sizes, and these are made up of phytoglycogen and amylose. As granule size decreases, so does the MW of the phytoglycogen and the content of amylose. A method of quantitative extraction of starch giving minimal depolymerization is described. The isopotential iodine absorption of a quantitative extract of sweet corn flour indicated that the total ratio of linear (amylose) fraction to branched (amylopectin + phytoglycogen) fraction was near the normal value of 1:4.  相似文献   

4.
Amyloid fibrils are stable aggregates of misfolded proteins and polypeptides that are insoluble and resistant to protease activity. Abnormal formation of amyloid fibrils in vivo may lead to neurodegenerative disorders and other systemic amyloidosis, such as Alzheimer’s, Parkinson’s, and atherosclerosis. Because of their clinical importance, amyloids are under intense scientific research. It is believed that short polypeptide segments within proteins are responsible for the transformation of correctly folded proteins into parts of larger amyloid fibrils and that this transition is modulated by environmental factors, such as pH, salt concentration, interaction with the cell membrane, and interaction with metal ions. Most studies on amyloids focus on the amyloidogenic sequences. The focus of this study is on the structure of the amyloidogenic α-helical segments because the α-helical secondary structure has been recognized to be a key player in different stages of the amyloidogenesis process. We have previously shown that the α-helical conformation may be expressed by two parameters (θ and ρ) that form orthogonal coordinates based on the Ramachandran dihedrals (φ and ψ) and provide an illuminating interpretation of the α-helical conformation. By performing statistical analysis on α-helical conformations found in the Protein Data Bank, an apparent relation between α-helical conformation, as expressed by θ and ρ, and amyloidogenicity is revealed. Remarkably, random amino acid sequences, whose helical structures were obtained from the most probable dihedral angles, revealed the same dependency of amyloidogenicity, suggesting the importance of α-helical structure as opposed to sequence.  相似文献   

5.
The effects of branching and substitution of branches by sialic acid and fucose on the interaction ofN-linked glycopeptides and related oligosaccharides with immobilizedPhaseolus vulgaris leukoagglutinating lectin (L-PHA) were examined. Asialo bi-, tri-and tetra-antennary glycans were all retarded but to different extents on a long column of L-PHA-agarose. Asialo tri- and tetra-antennary glycans containing the pentasaccharide unit Gal1-4GlcNAc1-2[Gal1-4GlcNAc1-6]Man were strongly retarded, whereas asialo bi- and tri-antennary glycans lacking the Gal1-4GlcNAc1-6 branch were only weakly retarded. In all instances the interaction with the lectin was completely abolished when either (2–6)-linkedN-acetylneuraminic acid or (1–3)-linked fucose was present at the galactose orN-acetylglucosamine residue of the Gal1-4GlcNAc1-6Man1-6 branch, respectively. The same substitutions on the Gal1-4GlcNAc1-6Man1-6 branch decreased but did not abolish the affinity of the lectin for the glycans. The presence of NeuAc2-6 and Fuc1-3 on the other two branches did not interfere with the binding of the glycans to L-PHA. Furthermore, it appeared that the presence of the Man1-4GlcNAc unit is requried for interaction with the lectin. In order to obtain reliable information on the relative occurrence of tri- and tetra-antennary glycopeptides, this study shows that it is essential to desialylate and to defucosylate the glycans prior to application to L-PHA-agarose.Abbreviations L-PHA leukoagglutinating phytohemagglutinin - CMP-NeuAc cytidine-5-monophospho-N-acetylneuraminic acid - GP glycopeptide - OS oligosaccharide - HPLC high-performance liquid chromatography - FNR fraction not retarded - FR fraction retarded suffixes MS, BS and TS indicate mono-, bi- and trisialyl derivatives respectively; suffix MF indicates monofucosyl derivatives.structures of the substratesOS2, OS3, OS3, OS4, GP2, GP3, GP4, GP4-MF, OS2(3) andOS2(-) are presented in Fig. 2  相似文献   

6.

Background  

The PDZ-LIM proteins are a family of signalling adaptors that interact with the actin cross-linking protein, α-actinin, via their PDZ domains or via internal regions between the PDZ and LIM domains. Three of the PDZ-LIM proteins have a conserved 26-residue ZM motif in the internal region, but the structure of the internal region is unknown.  相似文献   

7.
The interaction between duodenase, a newly recognized serine proteinase belonging to the small group of Janusfaced proteinases, and 1-proteinase inhibitor (1-PI) from human serum was investigated. The stoichiometry of the inhibition was 1.2 mol/mol. The presence of a stable enzyme–inhibitor complex was shown by SDS-PAGE. The mechanism of interaction between duodenase and 1-PI was shown to be of the suicide type. The equilibrium and inhibition constants are 13 ± 3 nM and (1.9 ± 0.3)·105 M–1·sec–1, respectively. Based on the association rate constant of the enzyme–inhibitor complex and localization of duodenase and 1-PI in identical compartments, 1-PI is suggested to be a duodenase inhibitor in vivo.  相似文献   

8.
Chromosome stability models are usually qualitative models derived from molecular-genetic mechanisms for DNA repair, DNA synthesis, and cell division. While qualitative models are informative, they are also challenging to reformulate as precise quantitative models. In this report we explore how (A) laboratory experiments, (B) quantitative simulation, and (C) seriation algorithms can inform models of chromosome stability. Laboratory experiments were used to identify 19 genes that when over-expressed cause chromosome instability in the yeast Saccharomyces cerevisiae. To better understand the molecular mechanisms by which these genes act, we explored their genetic interactions with 18 deletion mutations known to cause chromosome instability. Quantitative simulations based on a mathematical model of the cell cycle were used to predict the consequences of several genetic interactions. These simulations lead us to suspect that the chromosome instability genes cause cell-cycle perturbations. Cell-cycle involvement was confirmed using a seriation algorithm, which was used to analyze the genetic interaction matrix to reveal an underlying cyclical pattern. The seriation algorithm searched over 1014 possible arrangements of rows and columns to find one optimal arrangement, which correctly reflects events during cell cycle phases. To conclude, we illustrate how the molecular mechanisms behind these cell cycle events are consistent with established molecular interaction maps.  相似文献   

9.
The precise structural mechanism of G protein–coupled receptor (GPCR)–G protein coupling has been of significant research interest because it provides fundamental knowledge on cellular signaling and valuable information for GPCR-targeted drug development. Over the last decade, several GPCR–G protein complex structures have been identified. However, these structures are mere snapshots of guanosine diphosphate (GDP)-released stable GPCR–G protein complexes, which have limited the understanding of the allosteric conformational transition during receptor binding to GDP release and the GPCR–G protein coupling selectivity. Recently, deeper insights into the mechanism underlying stepwise conformational changes during GPCR–G protein coupling were obtained using hydrogen/deuterium exchange mass spectrometry, hydroxyl radical footprinting-mass spectrometry, X-ray crystallography, cryoelectron microscopy, and molecular dynamics simulation techniques. This review summarizes these recent developments.  相似文献   

10.
ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities. Adam22 is highly expressed in human brain. The adam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3 β interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3β was proved by in vitro binding assay and immunoprecipitation. The major 14-3-3β binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3β is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3β suggests that the ADAM22 may play a crucial role in neural function a  相似文献   

11.

Background

The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology of folate binding.

Methods

Self-association behavior of apo- and holo-FBP was addressed through size exclusion chromatography, SDS-PAGE, mass spectrometry, surface plasmon resonance and fluorescence spectroscopy.

Results

Especially holo-FBP exhibits concentration-dependent self-association at pH 7.4 (pI), and is more prone to associate into stable complexes than apo-FBP. Even more pronounced was the tendency to complexation between apo-FBP and holo-FBP in accord with a model predicting association between apo and holo monomers [19]. This will lead to removal of apo monomers from the reaction scheme resulting in a weak incomplete ligand binding similar to that observed at FBP concentrations < 10 nM. The presence of synthetic and natural detergents normalized folate binding kinetics and resulted in appearance of monomeric holo-FBP. Fluorescence spectroscopy indicated molecular interactions between detergent and tryptophan residues located in hydrophobic structures of apo-FBP which may participate in protein associations.

General significance

Self-association into multimers may protect binding sites, and in case of holo-FBP even folate from biological degradation. High-affinity folate binding in body secretions, typically containing 1–10 nM FBP, requires the presence of natural detergents, i.e. cholesterol and phospholipids, to avoid complexation between apo- and holo-FBP.  相似文献   

12.
ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities. Adam22 is highly expressed in human brain. The adam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3β interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3β was proved by in vitro binding assay and immunoprecipitation. The major 14-3-3β binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3β is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3β suggests that the ADAM22 may play a crucial role in neural function and development.  相似文献   

13.
ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities.Adam22 is highly expressed in human brain. Theadam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3 β interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3β was proved byin vitro binding assay and immunoprecipitation. The major 14-3-3β binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3β is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3β suggests that the ADAM22 may play a crucial role in neural function and development.  相似文献   

14.
Polo-like kinase 1 (Plk1) is an instrumental kinase that modulates many aspects of the cell cycle. Previous investigations have indicated that Plk1 is a target of the DNA damage response, and Plk1 inhibition is dependent on ATM/ATR and Chk1. But the exact mechanism remains elusive. In a proteomic screen to identify Chk1-interacting proteins, we found that myosin phosphatase targeting protein 1 (MYPT1) was present in the immunocomplex. MYPT1 is phosphorylated by CDK1, thus recruiting protein phosphatase 1β (PP1cβ) to dephosphorylate and inactivate Plk1. Here we identified that Chk1 directly interacts with MYPT1 and preferentially phosphorylates MYPT1 at Ser20, which is essential for MYPT1-PP1cβ interaction and subsequent Plk1 dephosphorylation. Phosphorylation of Ser20 is abolished during mitotic damage when Chk1 is inhibited. The degradation of MYPT1 is also regulated by Chk1 phosphorylation. Our results thus unveil the underlying machinery that attenuates Plk1 activity during mitotic damage through Chk1-induced phosphorylation of MYPT1.  相似文献   

15.
The deposition of α-syn (α-synuclein) as amyloid fibrils and the selective loss of DA (dopamine) containing neurons in the substantia nigra are two key features of PD (Parkinson''s disease). α-syn is a natively unfolded protein and adopts an α-helical conformation upon binding to lipid membrane. Oligomeric species of α-syn have been proposed to be the pathogenic species associated with PD because they can bind lipid membranes and disrupt membrane integrity. DA is readily oxidized to generate reactive intermediates and ROS (reactive oxygen species) and in the presence of DA, α-syn form of SDS-resistant soluble oligomers. It is postulated that the formation of the α-syn:DA oligomers involves the cross-linking of DA-melanin with α-syn, via covalent linkage, hydrogen and hydrophobic interactions. We investigate the effect of lipids on DA-induced α-syn oligomerization and studied the ability of α-syn:DA oligomers to interact with lipids vesicles. Our results show that the interaction of α-syn with lipids inhibits the formation of DA-induced α-syn oligomers. Moreover, the α-syn:DA oligomer cannot interact with lipid vesicles or cause membrane permeability. Thus, the formation of α-syn:DA oligomers may alter the actions of α-syn which require membrane association, leading to disruption of its normal cellular function.  相似文献   

16.
α-Lactalbumin is a globular protein containing helical regions with highly amphiphathic character. In this work, the interaction between bovine α-lactalbumin and sonicated dimyristoylphosphatidylcholine vesicles has been compared in different circumstances which influence the protein conformation i.e., pH, ionic strength, decalcification, guanidine hydrochloride denaturation. Above the isoelectric point the interaction is mainly electrostatic; improved electrostatic interaction results in better contact with the apolar lipid phase. Below the isoelectric point, hydrophobic forces dominate the interaction and the vesicles are solubilized. The mode of interaction is not determined to a great extent by the demetallization of the protein. However, by a more explicit unfolding of the globular structure with guanidine hydrochloride, micellar complexes can be formed with the lipid, even at neutral pH. From this study it is obvious that the presence or capability for formation of helices with high amphipathic character is not a sufficient condition for lipid solubilization by a globular protein. Also, the capability of a globular protein to unfold its tertiary structure seems to be a prerequisite for its capability to lipid solubilization.  相似文献   

17.
RAR1 and SGT1 are required for development and disease resistance in plants. In many cases, RAR1 and SGT1 regulate the resistance (R)-gene-mediated defense signaling pathways. Lr21 is the first identified NBS-LRR-type R protein in wheat and is required for resistance to the leaf rust pathogen. The Lr21-mediated signaling pathways require the wheat homologs of RAR1, SGT1, and HSP90. However, the molecular mechanisms of the Lr21-mediated signaling networks remain unknown. Here I present the DNA and protein sequences of TaRAR1 and TaSGT1, and demonstrate for the first time a direct protein-protein interaction between them.  相似文献   

18.
α1-Acid glycoprotein (AGP) interacts with lipid membranes as a peripheral membrane protein so as to decrease the drug-binding capacity accompanying the β→α conformational change that is considered a protein-mediated uptake mechanism for releasing drugs into membranes or cells. This study characterized the mechanism of interaction between AGP and lipid membranes by measuring the vacuum-ultraviolet circular-dichroism (VUVCD) spectra of AGP down to 170 nm using synchrotron radiation in the presence of five types of liposomes whose constituent phospholipid molecules have different molecular characteristics in the head groups (e.g., different net charges). The VUVCD analysis showed that the α-helix and β-strand contents and the numbers of segments of AGP varied with the constituent phospholipid molecules of liposomes, while combining VUVCD data with a neural-network method predicted that these membrane-bound conformations comprised several common long helix and small strand segments. The amino-acid composition of each helical segment of the conformations indicated that amphiphilic and positively charged helices formed at the N- and C-terminal regions of AGP, respectively, were candidate sites for the membrane interaction. The addition of 1 M sodium chloride shortened the C-terminal helix while having no effect on the length of the N-terminal one. These results suggest that the N- and C-terminal helices can interact with the membrane via hydrophobic and electrostatic interactions, respectively, demonstrating that the liposome-dependent conformations of AGP analyzed using VUVCD spectroscopy provide useful information for characterizing the mechanism of interaction between AGP and lipid membranes.  相似文献   

19.
Alteration in the cellular energy metabolism is a principal feature of tumors. An important role in modifying cancer cell metabolism belongs to the cancer-associated fibroblasts. However, the regulation of their interaction has been poorly studied to date. In this study we monitored the metabolic status of both cell types by using the optical redox ratio and the fluorescence lifetimes of the metabolic co-factors NAD(P)H and FAD, in addition to the intracellular pH and the hydrogen peroxide levels in the cancer cells, using genetically encoded sensors. In the co-culture of human cervical carcinoma cells HeLa and human fibroblasts we observed a metabolic shift from oxidative phosphorylation toward glycolysis in cancer cells, and from glycolysis toward OXPHOS in fibroblasts, starting from Day 2 of co-culturing. The metabolic switch was accompanied by hydrogen peroxide production and slight acidification of the cytosol in the cancer cells in comparison with that of the corresponding monoculture. Therefore, our HeLa-huFb system demonstrated metabolic behavior similar to Warburg type tumors. To our knowledge, this is the first time that these 3 parameters have been investigated together in a model of tumor-stroma co-evolution. We propose that determination of the start-point of the metabolic alterations and understanding of the mechanisms of their realization can open a new ways for cancer treatment.  相似文献   

20.
KCNQ1 channels assemble with KCNE1 transmembrane (TM) peptides to form voltage-gated K+ channel complexes with slow activation gate opening. The cytoplasmic C-terminal domain that abuts the KCNE1 TM segment has been implicated in regulating KCNQ1 gating, yet its interaction with KCNQ1 has not been described. Here, we identified a protein–protein interaction between the KCNE1 C-terminal domain and the KCNQ1 S6 activation gate and S4–S5 linker. Using cysteine cross-linking, we biochemically screened over 300 cysteine pairs in the KCNQ1–KCNE1 complex and identified three residues in KCNQ1 (H363C, P369C, and I257C) that formed disulfide bonds with cysteine residues in the KCNE1 C-terminal domain. Statistical analysis of cross-link efficiency showed that H363C preferentially reacted with KCNE1 residues H73C, S74C, and D76C, whereas P369C showed preference for only D76C. Electrophysiological investigation of the mutant K+ channel complexes revealed that the KCNQ1 residue, H363C, formed cross-links not only with KCNE1 subunits, but also with neighboring KCNQ1 subunits in the complex. Cross-link formation involving the H363C residue was state dependent, primarily occurring when the KCNQ1–KCNE1 complex was closed. Based on these biochemical and electrophysiological data, we generated a closed-state model of the KCNQ1–KCNE1 cytoplasmic region where these protein–protein interactions are poised to slow activation gate opening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号