首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrations of mRNA coding for the opioid peptide precursor proenkephalin A were measured in bovine brain areas, pituitary and adrenal medulla. In all tissues, a single hybridizable species of 1400 bases in size was found by Northern blot analysis using as a probe a single-stranded (ss) cDNA complementary to bovine proenkephalin A mRNA. In solution hybridization experiments the distribution of the mRNA was quantified. Considerable differences were found for the abundance of proenkephalin A mRNA in the various tissues: from 0.023% in the adrenal medulla to 0.00002% in the adenohypophysis. Relative abundance in the various brain areas varied greater than 20-fold, being highest in the caudate nucleus (0.0025%) and lowest in the thalamus and substantia nigra (0.0001%). Comparison with immunoreactive peptide concentrations in these tissues showed a close correlation between the levels of proenkephalin A mRNA and the immunoreactive peptides.  相似文献   

2.
The total enkephalin-like immunoreactive peptide content of adrenal glands from dog, cattle, guinea pig and rat was investigated by radioimmunoassay using a (met5)-enkephalin antiserum. Dog adrenals contain the highest amount of peptides, cattle and guinea pig adrenals contain lesser amounts, and the rat adrenals had the least amount (0.05% that of the dog). Comparison of the (met5)-enkephalin content of the adrenal cortex and medulla with that of whole bovine adrenal gland indicates that the peptides are concentrated in the medulla. Analysis of the chromaffin granules from bovine adrenal medulla indicates this to be the primary storage site for (met5)-enkephalin-like peptides. Gel chromatography reveals a molecular heterogeneity of the immunoreactive peptides in all species tested; high molecular weight peptides account for a larger proportion of the immunoreactivity when compared with the low molecular weight peptides.  相似文献   

3.
The molecular forms of opioid peptides in human adrenal have not been well characterised. These peptides are predominantly derived from the proenkephalin A precursor, which has the sequence of Met-enkephalin(Arg6,Phe7) as its carboxyl terminus. We have looked in the present study at the subcellular distribution and the molecular form of immunoreactivity to this sequence in post-mortem human adrenal medulla and in phaeochromocytoma. In the human adrenal homogenates, the immunoreactivity distributes on a sucrose gradient in a manner consistent with localisation in chromaffin granules. On chromatography, the immunoreactivity from adrenal medulla is predominantly in the heptapeptide form; the intermediate (3000–4000) molecular weight material is only a minor component of immunoreactivity, in contrast to bovine tissue extracts where this is the major form of immunoreactivity. In the phaeochromocytoma extracts, the heptapeptide sequence again predominates over a minor amount of intermediate sized material. The results are discussed in terms of post-mortem changes, precursor processing and the function of the adrenal medulla.  相似文献   

4.
Abstract: The primary sequence of adrenal proenkephalin was recently deduced from the structure of the cloned cDNA that codes for this protein. Several enkephalin-containing proteins with molecular weights between 8,000 and 20,000 daltons were purified from the bovine adrenal medulla. These proteins appear to represent intermediates in the processing of proenkephalin into physiologically active opioid peptides. While the concentrations of these large processing intermediates in the adrenal medulla are quite high, similar proteins have not yet been shown to be present in brain, and there is some question as to whether the brain synthesizes an enkephalin precursor similar to adrenal proenkephalin. We report here the purification from bovine caudate nucleus of synenkephalin, the N-terminal fragment of adrenal proenkephalin. The amino acid composition of synenkephalin indicates that the protein represents residues 1–70 of adrenal proenkephalin. Thus the brain and adrenal glands appear to utilize a similar precursor for enkephalin biosynthesis.  相似文献   

5.
Recent studies have shown that during its biosynthesis in bovine adrenal medulla, the opioid precursor proenkephalin A, may be both N-glycosylated and phosphorylated. To investigate whether these chemical modifications were common to proenkephalin A processing in other tissues, we have sought to characterize enkephalin-containing peptides from bovine adrenal medulla, spinal cord and ileum. The peptides were identified using antiserum L189, specific for the C-terminus of Met-enkephalin Arg6Gly7Leu8 (MERGL), and L152, specific for the C-terminus of Met-enkephalin Arg6Phe7 (MERF). Glycosylated MERGL-immunoreactive peptides of 23, 20, 16 and 13 kDa were identified in adrenal medulla using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and concanavalin A-Sepharose affinity chromatography. Sephadex G50 gel filtration fractionated the glycosylated peptides into two immunoreactive peaks. Similar peaks of concanavalin A-binding MERGL immunoreactivity were detected in extracts of spinal cord and ileum, although there were differences in relative proportions of the two peaks. Antiserum L152 identified phosphorylated N-terminally extended variants of MERF when boiling water extracts of adrenal medulla, spinal cord and ileum were separated by anion exchange chromatography. In adrenal medulla these peptides were more than 99% phosphorylated, whereas in both ileum and spinal cord there was a relatively higher proportion of the unphosphorylated peptide. The results indicate that N-glycosylation and phosphorylation of proenkephalin A occurs in adrenal medulla, spinal cord and ileum, although there are tissue-specific differences in the relative proportions of the modified and unmodified peptides.  相似文献   

6.
We have recently isolated from bovine adrenal medulla a novel C-terminally amidated opioid peptide, amidorphin, which derives from proenkephalin A. Amidorphin revealed a widespread distribution in bovine, ovine, and porcine tissue. Particularly high concentrations of amidorphin immunoreactivity were detected in adrenal medulla, posterior pituitary, and striatum, similar to the major gene products of proenkephalin A. In the adrenal medulla of each species, authentic amidorphin was the predominant immunoreactive form. Pituitary and brain, however, contained predominantly putative N-terminally shortened fragments of amidorphin of a slightly lower molecular weight and shorter retention times on HPLC. In addition, in ovine adrenal medulla, a putative high-molecular-weight form of amidorphin was detected. These findings are indicative of a tissue-specific processing of the proenkephalin A precursor, leading predominantly to authentic amidorphin in the adrenal medulla and further processing to smaller C-terminal fragments in the brain and pituitary.  相似文献   

7.
The enkephalins are present in many tissues not only as the free pentapeptides, but also as internal sequences in larger polypeptides of varying size. Fourteen enkephalincontaining peptides (EC peptides) from beef adrenal medulla were isolated and sequenced, and the presence of a protein that contained several [Met]enkephalin sequences and one of [Leu]enkephalin was demonstrated. Because the latter was assumed to represent the gene product, it was named proenkephalin. Sequence data from the EC peptides made possible the synthesis of a polynucleotide probe with essentially no degeneracy and permitted the cloning of a partial proenkephalin cDNA. The complete structure of proenkephalin was deduced from both peptide and cDNA sequencing data. Proenkephalin is now known to be one of three enkephalin-containing gene products, each of which gives rise to many physiologically active peptides.  相似文献   

8.
Soluble tyrosine hydroxylase from human pheochromocytoma, bovine adrenal medulla and rat striatum can be activated by Mg2+, ATP and cyclic AMP. In pheochromocytoma, this activation is due to a decreased Km for the pterin cofactor, whereas in adrenal medulla, it is a result of an increase in the Vmax. Norepinephrine increases the Km for pterin cofactor for tyrosine hydroxylase from both of these tissues. The Ki for norepinephrine is not altered by the presence of Mg2+, ATP and cyclic AMP with enzyme from pheochromocytoma or adrenal medulla. On the other hand, striatal tyrosine hydroxylase shows a two-fold increase in the Ki for dopamine after exposure to Mg2+, ATP and cyclic AMP.  相似文献   

9.
An antiserum was generated against a synthetic peptide corresponding to amino acids 95-117 of bovine proenkephalin, and a sensitive radioimmunoassay was developed. Comparison of the reactivities of the synthetic peptide, its specific cleavage products, and other synthetic peptides showed that the important immunological determinant was contained within residues 101-109 of bovine proenkephalin (-Gly-Gly-Glu-Val-Leu-Gly-Lys-Arg-Tyr-). Radioimmunoassay of fractions after gel filtration of bovine adrenal medullary chromaffin granule lysate showed three pools of immunoreactivity: pool 1 (Mr 20,000-30,000), pool 2 (Mr 10,000-20,000), and pool 3 (Mr approximately 5,000). Further characterization by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting showed that the antiserum recognized 27-, 20.5-, 16.5-, and 5.6-kilodalton enkephalin-containing proteins. The radioimmunoassay was also used to detect proenkephalin-like material in extracts of rat adrenal and regions of rat brain and spinal cord following gel filtration. Immunoreactivity from the rat adrenal chromatographed predominantly as high molecular weight material (Mr 31,500-43,500), whereas material in regions of rat brain showed a broader molecular weight distribution (Mr 4,000-43,500). This indicated differences in the processing of proenkephalin between rat adrenal and brain tissue. Differences were also seen in the molecular weight profile of immunoreactivity in different brain regions, most noticeable in the case of striatum and hypothalamus, suggesting regional differences in processing. Based on quantitation of higher molecular weight immunoreactive proenkephalin-like material and free Met-enkephalin immunoreactivity in different brain regions, it was apparent that extensive processing of proenkephalin occurs in brain. We concluded that antisera against proenkephalin-(95-117) recognize a wide range of intermediates in the processing of proenkephalin in both bovine adrenal medulla and rat adrenal, brain, and spinal cord, making it a useful tool for further studies concerned with the expression and post-translational processing of proenkephalin.  相似文献   

10.
Recent studies have supported the suggestion that proenkephalin is the same in both adrenal medulla and brain. However, although previous investigations have characterized enkephalin-containing adrenal intermediates derived from proenkephalin, as yet no such intermediates have been isolated from the brain. This has led to the belief that the processing of proenkephalin in the brain is extremely rapid and enkephalin-containing intermediates do not accumulate. In this investigation Sephacryl-300 gel filtration chromatography of guinea pig striata, extracted in 8 M urea, demonstrated several peaks of both bioactive and immunoreactive enkephalin-like peptides after enzymatic digest (trypsin followed by carboxypeptidase B). Comparable profiles were obtained using rat and bovine striatal tissue. In guinea pig the major species emerging from gel filtration, eluting with an apparent molecular weight of 29,000, represented approximately 9% of the total (methionine) enkephalin immunoreactivity. It had an apparent pI of 5.0 when subjected to chromatofocusing. This species was further characterized using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and nitrocellulose blotting techniques as well as highly specific radioimmunoassays to (Met5)-enkephalin, (Leu5)-enkephalin, and (Met5)-enkephalin-Arg6-Phe7. This species was found to contain these opioid peptides in an approximately 6:1:1 ratio, respectively, and to have an apparent molecular weight of 31,000. It was also indicated that (Met5)-enkephalin-Arg6-Phe7 constituted the C-terminal seven residues of this molecule.  相似文献   

11.
R Micanovic  W Kruggel  P Ray  R V Lewis 《Peptides》1984,5(5):853-856
A non-enkephalin containing pentadeca peptide derived from ovine adrenal proenkephalin has been purified and sequenced. The sequence of the peptide is: Phe-Ala-Glu-Pro-Leu-Pro-Ser-Glu-Glu-Glu-Gly-Glu-Ser-Tyr-Ser (preproenkephalin 237-251) representing the amino portion of peptide B (preproenkephalin 237-268). The sequence is identical to bovine preproenkephalin 237-251, differing from the corresponding human sequence at positions 240 and 244. This peptide can be generated by a processing event common to other opioid peptides and is present in chromaffin granules in significant amounts. The presence of this peptide in substantial quantities suggests a possible difference in proenkephalin processing between the bovine and ovine adrenal medulla.  相似文献   

12.
Wang H  Dass C 《Peptides》2002,23(12):2143-2150
A method based upon a combination of fast high-performance liquid chromatography (HPLC) and electrospray ionization (ESI)–mass spectrometry (MS) is developed for the analysis of bioactive peptides in bovine adrenal medulla. The fast HPLC uses a short column (33 mm×4.6 mm) packed with nonporous silica-based C-18 stationary phase. Prior to HPLC separation, the medulla was homogenized and the peptide-rich fraction was isolated from it by solid-phase extraction. In-source collision-induced dissociation and tandem MS were used to obtain the sequence of the suspected peptides. Several peptides, including Met–Enk, Leu–Enk, Leu–Enk–Lys, bovine adrenal medullary (BAM)-12 (Met–Enk–RRVGRPE), Leu–Enk–Arg, and YGGT, were unambiguously identified. The first four peptides are the products of proenkephalin A precursor protein and Leu–Enk–Arg belongs to the dynorphin family and is derived from proenkephalin B (prodynorphin) precursor. The database search revealed that YGGT is a part of the sequence of five different precursor proteins.  相似文献   

13.
Abstract

Previous studies using a variety of opiate ligands have suggested the existence of several subclasses of opiate receptors in crude membrane fractions of rat brain, and a similar diversity in bovine adrenal medulla. To examine the receptor profile of bovine adrenal medulla in detail we have studied the binding of classical ligands for mu (μ), delta (δ) and kappa (k) opiate receptors. [3H]naloxone ([3H]NAL), [3H] morphine ([3H]MOR), [3H]D-Ala2-D-Leu5-enkephalin ([3H]DAL) and [3H]ethyl-ketocyclazocine ([3H]EKCZ) were used as tracers; unlabeled competitors were NAL, MOR, DAL and ketocyclazocine (KCZ). In adrenal medulla [3H]NAL was specifically bound with a hierarchy of displacement NAL > MOR > KCZ ? DAL. No specific binding of [3H]DAL or [3H]EKCZ was found; for [3H]MOR very low levels of binding were seen, with no displacement by NAL or DAL, inconsistent displacement by KCZ and substantial displacement by MOR with an ED50 of 1.5 nM. In parallel studies rat brain membranes bound each labeled ligand with affinity and specificity consistent with previously published reports. Identical results were obtained in membranes from both tissues prepared with a preincubation step including 100 mM Na+, suggesting that the results were not influenced by occupation of binding sites by endogenous ligands. We interpret these data as supporting the existence of opiate receptors of the μ subtype in bovine adrenal medulla. We find, however, no evidence of δ or k sites in this tissue.  相似文献   

14.
The incorporation of enkephalin-containing peptides (ECPs) derived from proenkephalin into chromaffin vesicles was examined in primary cultures of adrenal medullary chromaffin cells. Cells were pulse-labeled with [35S]methionine and chased for periods up to 24 h. Chromaffin vesicles in cell homogenates were then fractionated by density gradient centrifugation and the presence of [35S]Met-enkephalin sequences in gradient fractions determined. 35S-ECPs were incorporated into particles suggestive of immature vesicles within 1-2 h after radiolabeling. Vesicle maturation, measured by co-equilibration of 35S-ECPs and total ECPs in the gradients, was complete within 9-12 h and was unaffected by treatments that increase proenkephalin synthesis. Incorporation of [35S]chromogranin A into chromaffin vesicles followed a similar time course, but 35S-labeled dopamine beta-hydroxylase was much more slowly incorporated, possibly reflecting differences in incorporation of membrane and soluble components. In summary, the data demonstrate that ECPs are rapidly sequestered in immature chromaffin vesicles, a process unaltered by changing rates of proenkephalin synthesis.  相似文献   

15.
S P Wilson 《Life sciences》1987,40(7):623-628
The neuropeptides substance P and vasoactive intestinal peptide (VIP), reported to exist in the splanchnic nerve terminals innervating the adrenal medulla, elevate the levels of enkephalin-containing peptides (ECPs) in cultured bovine adrenal medullary chromaffin cells. Cellular ECP stores were increased over 48 hr by 72 and 46 percent, respectively, following incubation with 5 microM VIP or 10 microM substance P, maximally effective concentrations. The results suggest that VIP and substance P may be trans-synaptic modulators of chromaffin cell ECP stores.  相似文献   

16.
The levels of enkephalin-containing polypeptides (ECPs) in the adrenal glands of normal tensive rats (WKY) and spontaneously hypertensive rats (SHR) were compared. Innervated and denervated adrenals from both types of rats showed very similar levels of ECPs. The only difference observed was a small increase in the 18 kdal ECP and a concomitant decrease in the 12 kdal and 5.3 kdal ECPs in the innervated SHR rat adrenal gland. From these data it appears that the adrenal ECPs are not a major contributor to hypertension in the SHR rat nor does hypertension, at this age, affect the ECP levels.  相似文献   

17.
Continuous sucrose density gradient subfractions from bovine adrenal medullary microsomes were found to accumulate 45Ca2+ in the presence of ATP and ammonium oxalate mainly in subfractions of intermediate density. (Na+ + K+)-ATPase (plasma membrane marker) and Ca2+-ATPase activities were also concentrated in these intermediate subfractions but thiamine pyrophosphatase (Golgi apparatus marker) was not. NADH oxidase (endoplasmic reticulum marker) activity was distributed throughout all subfractions.45Ca2+ accumulation in adrenal cortical microsomes was found to rise and fall in parallel with thiamine pyrophosphatase but not with (Na+ + K+)-ATPase or NADH oxidase activities.Accumulation of 45Ca2+ in membrane vesicles in these experiments suggests the existence of a calcium transfer mechanism in plasma membranes of the adrenal medulla but not adrenal cortex.  相似文献   

18.
Proenkephalin A-like mRNA in human leukemia leukocytes and CNS-tissues   总被引:1,自引:0,他引:1  
  相似文献   

19.
Processing of Proenkephalin in Adrenal Chromaffin Cells   总被引:1,自引:0,他引:1  
The processing of proenkephalin was studied using [35S]methionine pulse-chase techniques in primary cultures of bovine adrenal medullary chromaffin cells. Following radiolabeling, proenkephalin-derived peptides were extracted from the cells and separated by reverse-phase HPLC. Fractions containing proenkephalin fragments were digested with trypsin and carboxypeptidase B to liberate Met-enkephalin sequences and subjected to a second HPLC step to demonstrate association of radiolabel with Met-enkephalin. Processing of proenkephalin is complete within 2 h of synthesis, suggesting completion at or soon after incorporation into storage vesicles. Pretreatment of the cells with nicotine, histamine, or vasoactive intestinal peptide to enhance the rate of proenkephalin synthesis failed to alter the time course of processing and had minimal effects on the distribution of products formed. Addition of tetrabenazine, an inhibitor of catecholamine uptake into chromaffin vesicles, during radiolabeling and a 6-h chase period caused enhanced proenkephalin processing. These results suggest that the full range of proenkephalin fragments normally found in the adrenal medulla (up to 23.3 kDa) represents final processing products of the tissue and that termination of processing may depend on the co-storage of catecholamines.  相似文献   

20.
The mechanism by which organo-phosphorus-induced delayed polyneuropathy is induced relates to the specific inhibition and subsequent modification (“aging”) of a protein known as neuropathy target esterase (NTE), operatively defined as paraoxon-resistant and mipafox-sensi-tive phenyl valerate (PV) esterase activity. This protein has fundamentally been investigated in hen brain, the latter being the habitually employed OPIDP study model. In the present article, a partial characterization is made of the NTE and other related PV esterases in the bovine adrenal medulla and brain; NTE sensitivity to the neurotoxic or-ganophosphorus compound mipafox is investigated, and its subcellular distribution is studied. The NTE activity of the adrenal medulla was found to be the highest of those among the tissues studied to date (5000 ± 1400 mU/g tissue; ± SD, n = 12). This activity represented 93% of the PV esterase activity resistant to 40 μm paraoxon in the par-ticulate fraction of the adrenal medulla and approximately 50% of total PV esterase activity. In the bovine brain, these proportions were 72 and 26%, respectively, i.e., similar to those described in hen brain. The mipafox inhibition curve of PV esterase activity resistant to 40μM paraoxon in the particulate fraction of the adrenal medulla suggests that NTE activity fundamentally comprises a mipafox-sensitive component with an I 50 of 6.39 μM at 30 minutes, which is similar to the value reported in hen brain. NTE activity in the bovine adrenal medulla is almost exclusively limited to the particulate fraction, the microsomal fraction, plasma membrane, and chromaffin granule-enriched fractions being the highest in terms of specific activity. On the contrary, the mitochondria-enriched fraction was very poor in such activity. In bovine brain, most NTE activity was likewise limited to the particulate fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号