首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phycobilisomes (Pbsomes) are the supra macromolecular pigment protein complexes of cyanobacteria. Synechococcus Pbsomes are comprised of phycocyanins (PC) and allophycocyanins (APC). Pbsomes are major light harvesting antennae and also absorb ultraviolet-B (UV-B) radiation (280-320 nm). Synechococcus Pbsomes, upon exposure to low dose of UV-B (0.28 mW cm-2) for different time intervals showed profound alteration in their steady state absorption, fluorescence excitation and emission characteristics (Sah et. al. Biochem. Mol. Biol.Int., Vol. 44, No. 2, 245-247). In the present study, we investigated the effect of low dose of UV-B on isolated Pbsome of Synechococcus. Our results demonstrate the following alterations. Absorbance at 623 nm initially showed a sharp decrease with increasing exposure time to UV-B radiation. The changes in the visible to near ultraviolet absorption and excitation ratio indicated a change in chromophore conformation, upon prolonged exposure of Pbsomes to UV-B radiation. This modification of chromophore conformation appeared to be associated with the loss of energy transfer from PC to APC. Circular dichroism spectra in the amide region showed a significant loss of the alpha helical content of Pbsomes when exposed for longer duration to UV-B. CD spectra in the visible region revealed a marked decrease in the rotational strength at 620 nm. Close monitoring of CD signals emanating in the 500 to 700 nm range further revealed that the decrease in the rotational strength was closely associated with an initial red shift in the positive CD band of Pbsomes when exposed to UV-B for short duration. However, the peak became constant over prolonged exposure to UV-B radiation and accompanied a prominent blue shoulder in the positive CD band which suggests the modification and uncoupling of the various phycocyanobilin (PCB) chromophores of the Synechococcus Pbsomes.  相似文献   

2.
Comparison of absorption and circular dichroism (CD) spectra in the near infrared region was made with chromatophore and subchromatophore preparations obtained from Rhodopseudomonas sphaeroides. The 850 nm absorption band had a positive correlation with the 850 nm and 870 nm CD bands. The 800 nm and 870 nm absorption bands seemed not to correlate with any CD bands. Lipid contents in chromatophores and subchromatophores were measured. Lipids in membranes seemed to contribute to the appearance of the 870 nm absorption band, but not to that of the 800 nm and 850 nm absorption bands. The time courses of absorbance changes were compared at 800, 850, and 870 nm in detergent-treated chromatophores. Relative changes of absorbances differed from one another. The present results suggest that the three absorption bands are due to three different bacteriochlorophyll a-types and the 850 nm absorption band originates from exciton-coupling of bacteriochlorophyll a.  相似文献   

3.
The luminescence and excitation spectra of polythymidylic acid aqueous solutions at room temperature were studied. In addition to the previously described band at 338 nm, two new bands at 320 and 350 nm were recorded at various excitation wavelengths. An examination of the excitation spectra that had not been studied previously, as well as their comparison with the differential absorption spectra previously recorded during photodimerization, allowed us to interpret the band at 320 nm as the band of noninteracting chromophores; the band at 338 nm as the band of the most photochemically active, densely packed stacking dimmers (exciton splitting of absorption band of ~4000 cm?1); and the band at 350 nm as the band of photochemically inactive large stacking aggregates (n ≥ 10, exciton splitting of ~8000 cm?1). The changes in the optical density of the polythymidylic acid aqueous solution at γ = 270 nm after successive irradiation of the solution with light at 279 + 302 and 248 nm were studied. The reasons for their incomplete reversibility are discussed.  相似文献   

4.
The effects of high temperature (30-52.5 degrees C) on excitation energy transfer from phycobilisomes (PBS) to photosystem I (PSI) and photosystem II (PSII) in a cyanobacterium Spirulina platensis grown at 30 degrees C were studied by measuring 77 K chlorophyll (Chl) fluorescence emission spectra. Heat stress had a significant effect on 77 K Chl fluorescence emission spectra excited either at 436 or 580 nm. In order to reveal what parts of the photosynthetic apparatus were responsible for the changes in the related Chl fluorescence emission peaks, we fitted the emission spectra by Gaussian components according to the assignments of emission bands to different components of the photosynthetic apparatus. The 643 and 664 nm emissions originate from C-phycocyanin (CPC) and allophycocyanin (APC), respectively. The 685 and 695 nm emissions originate mainly from the core antenna complexes of PSII, CP43 and CP47, respectively. The 725 and 751 nm band is most effectively produced by PSI. There was no significant change in F725 and F751 during heat stress, suggesting that heat stress had no effects on excitation energy transfer from PBS to PSI. On the other hand, heat stress induced an increase in the ratio of Chl fluorescence yield of PBS to PSII, indicating that heat stress inhibits excitation energy transfer from PBS to PSII. However, this inhibition was not associated with an inhibition of excitation energy transfer from CPC to APC since no significant changes in F643 occurred at high temperatures. A dramatic enhancement of F664 occurring at 52.5 degrees C indicates that excitation energy transfer from APC to the PSII core complexes is suppressed at this temperature, possibly due to the structural changes within the PBS core but not to a detachment of PBS from PSII, resulting in an inhibition of excitation energy transfer from APC to PSII core complexes (CP47 + CP43). A decrease in F685 and F695 in heat-stressed cells with excitation at 436 nm seems to suggest that heat stress did not inhibit excitation energy transfer from the Chl a binding proteins CP47 and CP43 to the PSII reaction center and the decreased Chl fluorescence yields from CP43 and CP47 could be explained by the inhibition of the energy transfer from APC to PSII core complexes (CP47 + CP43).  相似文献   

5.
Malkin VM  Rapoport VL 《Biofizika》2008,53(5):734-739
Luminescence and excitation luminescence spectra of water solutions of polythymidylic acid at room temperature were studied. Three luminescence bands at different excitation wavelengths were observed: at 338 nm, which was known earlier, and two new bands, at 320 and 350 nm. The study of excitation luminescence spectra that have not been studied earlier led us to interpret the band at 320 nm as a band of chromophores that do not interact, the band at 338 nm as a band of photochemically most active densely packed stacking dimers (absorption band exciton splitting approximately 4000 cm(-1)), and the band at 350 nm as a band of photochemically inactive big stacking aggregates (n > or = 10, exciton splitting approximately 8000 cm(-1)). Changes in optical density at 270 nm of poly-T water solutions after consecutive irradiations with UV light at 297+302 and 248 nm were studied. The causes of incomplete reversibility are discussed.  相似文献   

6.
Emission spectra of bacteriochlorophyll a fluorescence and absorption spectra of various purple bacteria were measured at temperatures between 295 and 4 K. For Rhodospirillum rubrum the relative yield of photochemistry was measured in the same temperature region. In agreement with earlier results, sharpening and shifts of absorption bands were observed upon cooling to 77 K. Below 77 K further sharpening occurred. In all species an absorption band was observed at 751-757 nm. The position of this band and its amplitude relative to the concentration of reaction centers indicate that this band is due to reaction center bacteriopheophytin. The main infrared absorption band of Rhodopseudomonas sphaeroides strain R26 is resolved in two bands at low temperature, which may suggest that there are two pigment-protein complexes in this species. Emission bands, like the absorption bands, shifted and sharpened upon cooling. The fluorescence yield remained constant or even decreased in some species between room temperature and 120 K, but showed an increased below 120 K. This increase was most pronounced in species, such as R. rubrum, which showed single banded emission spectra. In Chromatium vinosum three (835, 893 and 934 nm) and in Rps. sphaeroides two (888 and 909 nm) emission bands were observed at low temperature. The temperature dependence of the amplitudes of the short wavelength bands indicated the absence of a thermal equilibrium for the excitation energy distribution in C. vinosum and Rps. sphaeroides. In all species the increased in the yield was larger when all reaction centers were photochemically active than when the reaction centers were closed. In R. rubrum the increase in the fluorescence yield was accompanied by a decrease of the quantum yield of charge separation upon excitation of the antenna but not of the reaction center chlorophyll. Calculation of the F?rster resonance integral at various temperatures indicated that the increase in fluorescence yield and the decrease in the yield of photochemistry may be due to a decrease in the rate of energy transfer between antenna bacteriochlorophyll molecules. The energy transfer from carotenoids to bacteriochlorophyll was independent of the temperature in all species examined. The results are discussed in terms of existing models for energy transfer in the antenna pigment system.  相似文献   

7.
Flash-induced absorbance changes were measured in the Chl-c-containing alga Pleurochloris meiringensis (Xanthophyceae) between 430 and 570 nm. In addition to the bands originating from redox changes of cytochromes, three major positive and tow negative transient bands were observed both 0.7 and 20 ms after the exciting flash. These transient bands peaking at 520, 480 and 451 nm and 497 and 465 nm, respectively, could be assigned to an almost homogeneous shift of the absorbance bands with maxima at 506, 473 and 444 nm, respectively. The shape of the absorbance transients elicited from PS I or PS II was identical, and the two photosystems contributed nearly equally to the absorbance changes. Furthermore, the decay transients were sensitive to the preillumination of the cells. These data strongly suggest that the absorbance transients originate from an electrochromic response of carotenoid molecules. The pigment species responsible for the 506 nm absorption band, probably heteroxanthin or diatoxanthin, transferred excitation energy to both photosystems as shown by the aid of 77 K fluorescence excitation spectra.Abbreviation LHC light-harvesting complex  相似文献   

8.
The resonance Raman (RR) spectra of oxidized, reduced, and oxidized cyanide-bound cytochrome c oxidase with excitation at several wavelengths in the 600-nm region are presented. No evidence is found for laser-induced photoreduction of the oxidized protein with irradiation at lambda approximately 600 nm at 195 K, in contrast to the predominance of this process upon irradiation in the Soret region at this temperature. The Raman spectra of all three protein species are very similar, and there are no Raman bands which are readily assignable to either cytochrome a or cytochrome a3 exclusively. The Raman spectra of the three protein species do, however, exhibit a number of bands not observed in the RR spectra of other hemoproteins upon exicitation in their visible absorption bands. In particular, strong Raman bands are observed in the low-frequency region of the RR spectra (less than 500 cm-1). The frequencies of these bands are similar to those of the copper-ligand vibrations observed in the RR spectra of type 1 copper proteins upon excitation in the 600-nm absorption band characteristic of these proteins. In cytochrome c oxidase, these bands do not disappear upon reduction of the protein and, therefore, cannot be attributed to copper-ligand vibrations. Thus, all the observed RR bands are associated with the two heme A moieties in the enzyme.  相似文献   

9.
The steady-state fluorescence properties and uphill energy transfer were analyzed on intact cells of a chlorophyll (Chl) d-dominating photosynthetic prokaryote, Acaryochloris marina. Observed spectra revealed clear differences, depending on the cell pigments that had been sensitized; using these properties, it was possible to assign fluorescence components to specific Chl pigments. At 22 degrees C, the main emission at 724 nm came from photosystem (PS) II Chl d, which was also the source of one additional band at 704 nm. Chl a emissions were observed at 681 nm and 671 nm. This emission pattern essentially matched that observed at -196 degrees C, as the main emission of Chl d was located at 735 nm, and three minor bands were observed at 704 nm, 683 nm, and 667 nm, originating from Chl d, Chl a, and Chl a, respectively. These three minor bands, however, had not been sensitized by carotenoids, suggesting specific localization in PS II. At 22 degrees C, excitation of the red edge of the absorption band (which, at 736 nm, was 20 nm longer than the absorption maximum), resulted in fluorescence bands of Chl d at 724 nm and of Chl a at 682 nm, directly demonstrating an uphill energy transfer in this alga. This transfer is a critical factor for in vivo activity, due to an inversion of energy levels between antenna Chl d and the primary electron donor of Chl a in PS II.  相似文献   

10.
The relative orientation of the pigments of reaction centers from Rhodopseudomonas sphaeroides has been studied by the photoselection technique. A high value (+0.45) of p=(delta AV--delta AH)/(delta AV + delta AH) is obtained when exciting and observing within the 870 nm band which is contradictory to the results of Mar and Gingras (Mar, T. and Gringras, G. (1976) Biochim. Biophys. Acta 440, 609-621) and Shuvalov et al. (Shuvalov, V.A., Asadov, A.A. and Krakhmaleva, I.N. (1977) FEBS Lett. 16, 240-245). It is shown that the low values of p obtained by both groups were erroneous due to excitation conditions. Analysis of the polarization of light-induced changes when exciting with polarized light in single transitions (spheroiden band and bacteriopheophytin Qx bands) enable us to propose a possible arrangement of the pigments within the reaction center. It is concluded that the 870 nm band corresponds to a single transition and is one of the two bands of the primary electron donor (P-870). The second band of the bacteriochlorophyll dimer is centered at 805 nm. The Qx transitions of the molecules constituting the bacteriochlorophyll dimer are nearly parallel (angle less than 25 degrees). The two bacteriopheophytin molecules present slightly different absorption spectra in the near infra-red. Both bacteriopheophytin absorption bands are subject to a small shift under illumination. The angle between the Qy bacteriopheophytin transitions is 55 degrees or 125 degrees. Both Qy transitions are nearly perpendicular to the 870 nm absorption band. Finally, the carotenoid molecules makes an angle greater than 70 degrees with the 870 nm band and the other bacteriochlorophyll molecules.  相似文献   

11.
Absorption and fluorescence spectra in the red region of water-soluble chlorophyll proteins, Lepidium CP661, CP663 and Brassica CP673, pigment System II particles of spinach chloroplasts and chlorophyll a in diethylether solution at 25 degrees C were analyzed by the curve-fitting method (French, C.S., Brown, J.S. and Lawrence, M.C. (1972) Plant Physiol 49, 421--429). It was found that each of the chlorophyll forms of the chlorophyll proteins and the pigment System II particles had a corresponding fluorescence band with the Stokes shift ranging from 0.6 to 4.0 nm. The absorption spectrum of chlorophyll a in diethylether solution was analyzed to one major band with a peak at 660.5 nm and some minor bands, while the fluorescence spectrum was analyzed to one major band with a peak at 664.9 nm and some minor bands. A mirror image was clearly demonstrated between the resolved spectra of absorption and fluorescence. The absorption spectrum of Lepidium CP661 was composed of a chlorophyll b form with a peak at 652.8 nm and two chlorophyll a forms with peaks at 662.6 and 671.9 nm. The fluorescence spectrum was analyzed to five component bands. Three of them with peaks at 654.8, 664.6 and 674.6 nm were attributed to emissions of the three chlorophyll forms with the Stokes shift of 2.0--2.7 nm. The absorption spectrum of Brassica CP673 had a chlorophyll b form with a peak at 653.7 nm and four chlorophyll a forms with peaks at 662.7, 671.3, 676.9 and 684.2 nm. The fluorescence spectrum was resolved into seven component bands. Four of them with peaks at 666.7, 673.1, 677.5 and 686.2 nm corresponded to the four chlorophyll a forms with the Stokes shift of 0.6--4.0 nm. The absorption spectrum of the pigment System II particles had a chlorophyll b form with a peak at 652.4 nm and three chlorophyll a forms with peaks at 662.9, 672.1 and 681.6 nm. The fluorescence spectrum was analyzed to four major component bands with peaks at 674.1, 682.8, 692.0 and 706.7 nm and some minor bands. The former two bands corresponded to the chlorophyll a forms with peaks at 672.1 and 681.6 nm with the Stokes shift of 2.0 and 1.2 nm, respectively. Absorption spectra at 25 degrees C and at --196 degrees C of the water-soluble chlorophyll proteins were compared by the curve-fitting methods. The component bands at --196 degrees C were blue-shifted by 0.8--4.1 nm and narrower in half widths as compared to those at 25 degrees C.  相似文献   

12.
V.A. Sineshchekov  F.F. Litvin 《BBA》1977,462(2):450-466
Red luminescence of purple membranes from Halobacterium halobium cells in suspension, dry film or freeze-dried preparations was studied and its emission, excitation and polarization spectra are reported. The emission spectra have three bands at 665–670, 720–730 and at 780–790 nm. The position (maximum at 580 nm) and shape of the excitation spectra are close to those of the absorption spectra. The spectra depend on experimental conditions, in particular on pH of the medium. Acidification increases the long wavelength part of the emission spectra and shifts the main excitation maximum 50–60 nm to the longer wavelength side. Low-temperature light-induced changes of the absorption, emission and excitation spectra are presented. Several absorbing and emitting species of bacteriorhodopsin are responsible for the observed spectral changes. The bacteriorhodopsin photoconversion rate constant was estimated to be about 1 · 1011 s?1 at ? 196°C from the quantum yields of the luminescence (1 · 10?3) and photoreaction (1 · 10?1). The temperature dependence of the luminescence quantum yield points to the existence of two or three quenching processes with different activation energies. High degree of luminescence polarization (about 45–47%) throughout the absorption and fluorescence spectra and its temperature independence show that there is no energy transfer between bacteriorhodopsin molecules and no chromophore rotation during the excitation lifetime. In carotenoid-containing membranes, energy migration from the bulk of carotenoids to bacteriorhodopsin was not found either. Bacteriorhodopsin phosphorescence was not observed in the 500–1100 nm region and the emission is believed to be fluorescence by nature.  相似文献   

13.
The cyanobacterium Acaryochloris marina developed two types of antenna complexes, which contain chlorophyll-d (Chl d) and phycocyanobilin (PCB) as light-harvesting pigment molecules, respectively. The latter membrane-extrinsic complexes are denoted as phycobiliproteins (PBPs). Spectral hole burning was employed to study excitation energy transfer and electron–phonon coupling in PBPs. The data reveal a rich spectral substructure with a total of four low-energy electronic states whose absorption bands peak at 633, 644, 654, and at about 673 nm. The electronic states at ~633 and 644 nm can be tentatively attributed to phycocyanin (PC) and allophycocyanin (APC), respectively. The remaining low-energy electronic states including the terminal emitter at 673 nm may be associated with different isoforms of PC, APC, or the linker protein. Furthermore, the hole burning data reveal a large number of excited state vibrational frequencies, which are characteristic for the chromophore PCB. In summary, the results are in good agreement with the low-energy level structure of PBPs and electron–phonon coupling parameters reported by Gryliuk et al. (BBA 1837:1490–1499, 2014) based on difference fluorescence line-narrowing experiments.  相似文献   

14.
Circular dichroism (CD) spectra of catechol 1,2-dioxygenase from Acinetobacter calcoaceticus exhibit three positive ellipticity bands between 240 and 300 nm (250, 283, and 292 nm), two negative bands at 327 and 480 nm, and a low-intensity positive band at 390 nm. The fractions of helix β-form, and unordered form of the enzyme are 8, 38, and 54%, respectively. The circular dichroic bands at 327 and 480 nm and a part of the positive bands at 292 and 390 nm are associated with enzyme activity. Significant changes in absorption and CD spectra of the enzyme were observed when the temperature of the enzyme preparation was increased to 47°C, coinciding with the sharp decrease in enzyme activity observed at this temperature.  相似文献   

15.
Excitation spectra of chlorophyll a fluorescence in chloroplasts from spinach and barley were measured at 4.2 K. The spectra showed about the same resolution as the corresponding absorption spectra. Excitation spectra for long-wave chlorophyll a emission (738 or 733 nm) indicate that the main absorption maximum of the photosystem (PS) I complex is at 680 nm, with minor bands at longer wavelengths. From the corresponding excitation spectra it was concluded that the emission bands at 686 and 695 nm both originate from the PS II complex. The main absorption bands of this complex were at 676 and 684 nm. The PS I and PS II excitation spectra both showed a contribution by the light-harvesting chlorophyll ab protein(s), but direct energy transfer from PS II to PS I was not observed at 4 K. Omission of Mg2+ from the suspension favored energy transfer from the light-harvesting protein to PS I. Excitation spectra of a chlorophyll b-less mutant of barley showed an average efficiency of 50–60% for energy transfer from β-carotene to chlorophyll a in the PS I and in the PS II complexes.  相似文献   

16.
Absorption and fluorescence spectra in the red region of water-soluble chlorophyll proteins, Lepidium CP661, CP663 and Brassica CP673, pigment System II particles of spinach chloroplasts and chlorophyll a in diethylether solution at 25°C were analyzed by the curve-fitting method (French, C.S., Brown, J.S. and Lawrence, M.C. (1972) Plant Physiol. 49, 421–429). It was found that each of the chlorophyll forms of the chlorophyll proteins and the pigment System II particles had a corresponding fluorescence band with the Stokes shift ranging from 0.6 to 4.0 nm.The absorption spectrum of chlorophyll a in diethylether solution was analyzed to one major band with a peak at 660.5 nm and some minor bands, while the fluorescence spectrum was analyzed to one major band with a peak at 664.9 nm and some minor bands. A mirror image was clearly demonstrated between the resolved spectra of absorption and fluorescence. The absorption spectrum of Lepidium CP661 was composed of a chlorophyll b form with a peak at 652.8 nm and two chlorophyll a forms with peaks at 662.6 and 671.9 nm. The fluorescence spectrum was analyzed to five component bands. Three of them with peaks at 654.8, 664.6 and 674.6 nm were attributed to emissions of the three chlorophyll forms with the Stokes shift of 2.0–2.7 nm. The absorption spectrum of Brassica CP673 had a chlorophyll b form with a peak at 653.7 nm and four chlorophyll a forms with peaks at 662.7, 671.3, 676.9 and 684.2 nm. The fluorescence spectrum was resolved into seven component bands. Four of them with peaks at 666.7, 673.1, 677.5 and 686.2 nm corresponded to the four chlorophyll a forms with the Stokes shift of 0.6–4.0 nm. The absorption spectrum of the pigment System II particles had a chlorophyll b form with a peak at 652.4 nm and three chlorophyll a forms with peaks at 662.9, 672.1 and 681.6 nm. The fluorescence spectrum was analyzed to four major component bands with peaks at 674.1, 682.8, 692.0 and 706.7 nm and some minor bands. The former two bands corresponded to the chlorophyll a forms with peaks at 672.1 and 681.6 nm with the Stokes shift of 2.0 and 1.2 nm, respectively.Absorption spectra at 25°C and at ?196°C of the water-soluble chlorophyll proteins were compared by the curve-fitting method. The component bands at ?196°C were blue-shifted by 0.8–4.1 nm and narrower in half widths as compared to those at 25°C.  相似文献   

17.
R A Copeland  T G Spiro 《Biochemistry》1987,26(8):2134-2139
Raman intensities obtained with UV laser excitation at 223, 218, 204, 200, and 192 nm are reported for the amide I, II, III, and II' bands of random-coil polylysine. The excitation profiles show enhancement via the pi-pi electronic transition, at approximately 190 nm. Enhancement for amide I is weak, however, and most of the intensity can be accounted for by preresonance with a deeper UV transition at approximately 165 nm. The amide II' band dominates the spectrum in D2O, consistent with the suggestion that the main distortion coordinate in the pi-pi excited state is the stretching of the C-N peptide bond. Amide II intensities with 200- and 192-nm excitation are reported for several proteins. The previously reported negative linear correlation with alpha-helix content (due to Raman hypochromism in the alpha-helices) is found not to apply to proteins with high beta-sheet content when the excitation wavelength is 200 nm. Much higher intensities are seen for these proteins and are attributed to a red shift of the pi-pi absorption for the beta-structure. A linear correlation with alpha-helix content is found for excitation of 192 nm, which corresponds to an isosbestic point of the beta-sheet and random-coil absorption bands. Characteristic amide II Raman cross sections are derived for alpha-helical, beta-sheet, and random-coil elements and are used to determine secondary structure for alpha 1- and beta-purothionin, by use of amide II intensities with 200- and 192-nm excitation. The results are in good agreement with a previous determination based on amide I band deconvolution in off-resonance Raman spectra.  相似文献   

18.
Fluorescence spectra in the blue-green region and excitation fluorescence spectra of green wheat leaves, etiolated wheat leaves and isolated inner etioplast membranes (prolamellar bodies and prothylakoids) were compared to specify the structure of the active protochlorophyllide pigment-protein complex of inner etioplast membranes. Three bands in the blue region at 420, 443 and 470 nm and a broader green band at 525 nm were found. Comparison of the emission and excitation spectra suggests that the main components responsible for the blue fluorescence of etioplast inner membranes are pyridine nucleotides and pterins. The green fluorescence (525 nm) excitation spectra of etiolated samples were identical to the excitation spectrum of flavin fluorescence. The fact confirms the suggestion that flavins are the constituents of the active protochlorophyllide-protein complex.  相似文献   

19.
The circular dichroism (CD) and absorption spectra of uridine, thymidine, purine ribonucleoside, and the four adenine derivatives 2′-deoxyadenosine, adenosine, adenosine-3′,5′-cyclic phosphate, and arabinosyl adenine were measured in water at pH 7 and pH 2. The absorption and CD spectra of the pyrimidines were simultaneously fitted to four Gaussian bands, and the dipole and rotational strengths of the electronic transitions determined. Adenine-derivative CD spectra were determined by computer averaging six runs. The spectra showed CD bands at 268, 226, 209, and 195 nm. The band at 226 nm probably is an n–π* transition; the band at 209 nm cannot be detected without a computer. The CD and absorption spectra of purine ribonucleoside indicate three transitions in the 230–310-nm region.  相似文献   

20.
Femtosecond excitation of the red edge of the chlorophyll a Q(Y) transition band in photosystem I (PSI), with light of wavelength > or = 700 nm, leads to wide transient (subpicosecond) absorbance changes: positive DeltaA between 635 and 665 nm, and four negative DeltaA bands at 667, 675, 683, and 695 nm. Here we compare the transient absorbance changes after excitation at 700, 705, and 710 nm at 20 K in several PSI preparations of Chlamydomonas reinhardtii where amino acid ligands of the primary donor, primary acceptor, or connecting chlorophylls have been mutated. Most of these mutations influence the spectrum of the absorbance changes. This supports the view that the chlorophylls of the electron transfer chain as well as the connecting chlorophylls are engaged in the observed absorbance changes. The wide absorption spectrum of the electron transfer chain revealed by the transient measurements may contribute to the high efficiency of energy trapping in photosystem 1. Exciton calculations, based on the recent PSI structure, allow an assignment of the DeltaA bands to particular chlorophylls: the bands at 675 and 695 nm to the dimers of primary acceptor and accessory chlorophyll and the band at 683 nm to the connecting chlorophylls. The subpicosecond transient absorption bands decay may reflect rapid charge separation in the PSI reaction center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号