首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging-related decrease in hepatic cytochrome oxidase of the Fischer 344 rat   总被引:1,自引:0,他引:1  
The effect of aging on the hepatic mitochondrial population has been determined using a rigorously defined group of Fischer 344 rats with known survivorship data. The age groups studied included mature adult controls (8.5 months; 100% survivorship), an intermediate aged group (17.5 months; 90% survivorship), and an aged group (29 months; 20% survivorship). Cytochrome oxidase activity and content were determined in homogenates and mitochondrial fractions. The mitochondrial fractions were characterized by determination of respiratory activity, and monoamine oxidase activity as well as evaluation of the polypeptide composition by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional electrophoresis. The yield of protein in the isolated mitochondrial fraction as well as the mitochondrial specific content decreased significantly as a function of aging. Mitochondrial specific content was determined from the specific activities of cytochrome oxidase in the homogenate (per gram liver) and in the isolated mitochondrial fraction (per mg protein). Specific activity of hepatic cytochrome oxidase decreased approximately 15% (P = 0.035) in homogenates from the 17.5-month animals with a further, highly significant (P = 0.0002) decrease (29%) in the 29-month animals. In contrast, there was no statistically significant difference among the age groups in the cytochrome oxidase specific activity in the isolated hepatic mitochondrial fractions. However, the percentage of the total homogenate cytochrome oxidase activity recovered in the isolated mitochondrial fraction decreased significantly in the 29-month animals (P = 0.0063 vs the 8.5-month controls; P = 0.022 vs the 17.5-month group). Cytochrome aa3 content of total liver homogenates from aged animals decreased (P = 0.00064) which is in agreement with the decline in cytochrome oxidase specific activity in this age group. In the mitochondrial fraction from the aged animals, cytochrome aa3 content was essentially unchanged which is consistent with the lack of aging-related change in mitochondrial cytochrome oxidase specific activity. In freshly isolated mitochondrial fractions, no aging-related alterations were observed in respiratory control and ADPO ratios. The addition of exogenous NADH and cytochrome c did not change significantly the respiratory rate of hepatic mitochondria from control or aged animals. These results demonstrate the integrity of freshly isolated mitochondrial preparations from both control and aged Fischer 344 rats. In addition, there was no aging-related alteration in either monoamine oxidase specific activity or polypeptide composition. The similarities observed in the specific activities of cytochrome oxidase and monoamine oxidase, as well as in the cytochrome aa3 content and polypeptide composition of the isolated mitochondrial fraction, suggest a generalized decrease in hepatic mitochondrial content as a function of aging rather than a selective loss of mitochondrial components.  相似文献   

2.
The effect of aging on the activity of the phosphate carrier and on the lipid composition in rat liver mitochondria has been investigated. It was found that the rate of phosphate transport in mitochondria from aged rats (28 months old) is significantly reduced (around 40%) compared to that obtained in mitochondria from young control rats (5 months old). Kinetic analysis of the phosphate transport indicates that only the Vmax of this process is affected, while there is no change in the Km values. The lower activity of the phosphate carrier in mitochondria from aged rats is also documented by swelling experiments. The age-related decrement in the activity of the phosphate carrier was found not to be due neither to a change in the endogenous content of phosphate nor to a change in the transmembrane delta pH value. Inhibitor titrations with mersalyl provide no evidence for a lower content of functional phosphate translocase in mitochondria from aged rats. There is no difference either in the respiratory control ratios or in the ADP/O ratios between mitochondria from young and aged animals. The hepatic mitochondrial lipid composition is altered significantly in aged rats: the total cholesterol increases (31%), the phospholipids decrease (12%), and the cholesterol/phospholipid molar ratio increases (44%). Among the phospholipids cardiolipin shows the greatest alteration (30% decrease with age). Alterations were also found in the pattern of fatty acids. The age-related decrement in the activity of the phosphate carrier appears to be dependent on changes in the lipid domain surrounding the carrier protein molecule in the mitochondrial membrane.  相似文献   

3.
We studied the short-term effects of a 20% coconut oil supplementation to the chick diet on lipid composition of liver and hepatic mitochondria, and changes that occurred in mitochondrial-associated enzymes as a result of this diet. No significant differences were observed in the lipid contents of liver when young chicks were fed the experimental diet, whereas hepatic mitochondria rapidly changed in response to this diet. Total cholesterol significantly increased in mitochondria at 24 hours of coconut oil diet feeding and decreased when dietary treatment was prolonged for 5 to 14 days. Changes in total mitochondrial phospholipids showed an inverse profile. A significant decrease in phosphatidylethanolamine and an increase in sphingomyelin were found at 24 hours. The cholesterol/phospholipid molar ratio significantly and rapidly (24 hours) increased in mitochondria from treated animals. Cytochrome oxidase activity drastically increased after 24 hours of experimental diet feeding and lowered to the control values when dietary manipulation was prolonged for 5 to 14 days. ATPase activity showed an inverse profile. Changes in cytochrome oxidase activity were parallel to changes in the cholesterol/phospholipid molar ratio, whereas changes in ATPase activity showed an inverse correlation with changes in this molar ratio. To our knowledge, this is one of the first reports on the very rapid response (24 hours) of mitochondrial lipid composition and function to saturated fat feeding.  相似文献   

4.
Antecedent studies have suggested that lipid composition and fluidity of cellular membranes of various organs are altered in response to thyroid hormone status. To date, the effects of thyroid hormone status on these parameters have not been examined in rat renal apical membrane in regard to sodium-dependent phosphate transport. In the present study, we determined the potential role of alterations in cortical brush-border membrane lipid composition and fluidity in modulation of Na+–Pi transport activity in response to thyroid hormone status. Thyroid hormone status influences the fractional excretion of Pi, which is associated with alteration in renal brush-border membrane phosphate transport. The increment in Na+–Pi transport in renal BBMV isolated from Hyper-T rats is manifested as an increase in the maximal velocity (Vmax) of Na+–Pi transport. Further, the cholesterol content was significantly increased in renal BBM of Hypo-T rats and decreased in Hyper-T rats as compared to the Eu-T rats. The molar ratio of cholesterol/phospholipids was also higher in renal BBM from hypo-T rats. Subsequently, fluorescence anisotropy of diphenyl hexatriene (rDPH) and microviscosity were significantly decreased in the renal BBM of the Hyper-T rats and increased in the Hypo-T rats as compared to Eu-T rats. The result of this study, therefore, suggest that alteration in renal BBM cholesterol, cholesterol/phospholipid molar ratio, and membrane fluidity play an important role in the modulation of renal BBM Na+–Pi transport in response to thyroid hormone status of animals. (Mol Cell Biochem 268: 75–82, 2005)  相似文献   

5.
The cholesterol, phospholipid, and fatty acid compositions in synaptic and nonsynaptic mitochondria from rat brains and the effect of aging were studied. Both cholesterol and phospholipid contents were found to be significantly different in synaptic compared to nonsynaptic mitochondria. In both types of brain mitochondria, aging decreases the cholesterol content by 27% and the phospholipid content by approximately 12%. The difference between these decreases observed in the organelles causes decreases in the cholesterol/phospholipid molar ratios for synaptic and nonsynaptic mitochondria of 17 and 19%, respectively. Also, the phospholipid composition is significantly different in synaptic compared to nonsynaptic mitochondria. Among phospholipids, only the cardiolipin fraction showed a significant decrease (26%) in nonsynaptic mitochondria from the brains of aged rats. Instead, the fatty acid composition was not significantly different in synaptic compared to nonsynaptic mitochondria. The 21% aging decrease in linoleic acid (18:2), observed only in nonsynaptic mitochondria, may be related to a decrease in cardiolipin, which contains a large amount of this fatty acid.  相似文献   

6.
1. A comparative study of the effects of aging on the transport of phosphate and on the lipid composition in cardiac mitochondria isolated from young and aged rats was carried out. 2. Mitochondria from aged rats (26 month old) translocate phosphate much more slowly than do mitochondria from young control rats (4 month old). 3. Kinetic analysis of the phosphate transport show that only the Vmax of this process is decreased while there is no change in the Km value. 4. There is no appreciable difference in either the respiratory control ratios or in the ADP/O ratios between mitochondria from young and aged rats. 5. The heart mitochondrial lipid composition is altered in aged rats; in particular, the cholesterol/phospholipid molar ratio increases and the content of cardiolipin decreases with aging.  相似文献   

7.
The role of lipids in membrane structure and function was studied by measuring the major lipid classes in mitochondria isolated from flight muscle of the blowfly, Phormia regina. Approximately 98% of the total lipid is phospholipid. Neutral lipid constitutes the remaining 2% of the total. Phosphatidylethanolamine accounts for 55–60% of the phospholipid. A molecular ratio of 4:1:1 is found for phosphatidylethanolamine, phosphatidylcholine, and cardiolipin (diphosphatidylglycerol). The neutral lipids include cholesterol, about 20%, and quinone, 40–45% of the total. The free fatty acid content of the neutral lipid fraction is variable, apparently being generated by endogenous phospholipase activity. The fatty acids of the neutral and phospholipid classes are predominantly 14–18 carbon acids; long-chain fatty acids of 20 and 22 carbons are essentially absent. The neutral lipid fraction contains 43% saturated and 51% monoenoic fatty acids. More than 65% of the phospholipid fatty acids are unsaturated. The principal fatty acids are palmitic, palmitoleic, oleic, linoleic, and linolenic. No trace of α- or β-tocopherol is detected. As vitamin E is considered an important naturally occuring antioxidant that prevents lipid peroxidation, the apparent absence of α- and β-tocopherol in these mitochondria coupled with intense oxidative activity of the mitochondria leads to the suggestion that blowfly flight muscle mitochondria may be particularly susceptible to peroxidative damage.  相似文献   

8.
A high saturated fat diet induces free cholesterol and phospholipid accumulation in the plasma of phospholipid transfer protein (Pltp)-deficient mice. In this study, we examined the atherogenic consequence of this phenomenon and investigated the possible mechanism(s). Pltp KO/Apoe KO mice that were fed a coconut oil-enriched high-fat diet (COD) for 7 weeks had higher plasma free cholesterol (149%), phospholipids (15%), and sphingomyelin (54%) than Apoe KO controls. In contrast to chow-fed animals, COD-fed Pltp KO/Apoe KO mice had the same atherosclerotic lesion size as that of Apoe KO mice. Similar to Pltp KO mice, plasma from COD-fed Pltp KO/Apoe KO mice contained VLDL/LDL-sized lamellar particles. Bile measurement indicated that COD-fed Pltp KO mice have 33% less hepatic cholesterol output than controls. In conclusion, COD-fed, Pltp-deficient mice are no longer protected from atherosclerosis and have impaired biliary lipid secretion, which is associated with free cholesterol and phospholipid accumulation.  相似文献   

9.
Cholesterol ester-storage granules were isolated from luteinized rat ovary and rabbit ovarian interstitial tissue by centrifugal flotation and were investigated with regard to their structure and function. Cholesterol ester, protein, phospholipid and unesterified cholesterol accounted for the dry weight of granules from luteinized rat ovary. The protein and the phospholipid were resistant to removal by washing. Substrate specificities of nucleotide phosphatase and specific radioactivities of lipid-soluble P (determined after administration of [32P]Pi in vivo) were the same in granules and in a microsomal fraction from the same tissue. After administration of [32P]Pi in vivo, luteinizing hormone increased the specific radioactivity of lipid-soluble P in granules, mitochondria and the microsomal fraction. Since granules did not swell in hypo-osmotic media, whereas microsomal particles did, it is suggested that adherent phospholipid and protein in granule suspensions is unlikely to result from contamination with endoplasmic reticulum. Luteinizing hormone administered in vivo increased the phospholipid and unesterified cholesterol contents of isolated granules relative to their cholesterol ester content, and also tended to raise their protein content. This treatment decreased the ability of isolated granules to act as a substrate for cholesterol esterase in vitro and increased the activity of cholesterol esterase. Cycloheximide in vivo also raised the unesterified cholesterol/cholesterol ester ratio of isolated granules, and when administered with luteinizing hormone acted synergistically to bring about a further increase. These results are considered compatible with evidence obtained by microscopy which suggests that granules may be surrounded by a membrane, that they arise by pinching off from the endoplasmic reticulum, and that they shrink on trophic stimulation of the tissue.  相似文献   

10.
We studied the effect of a bean diet on biliary lipid secretion, serum cholesterol concentration, and hepatic cholesterol metabolism in the rat. Rats fed a bean diet for 10-12 days had increased biliary cholesterol output and molar percentage by 300% and 200%, respectively, compared to rats fed an isocaloric and isoprotein casein diet. Biliary phospholipid output increased 180%. Bile flow and biliary bile salt output remained in the normal range. Total serum and VLDL cholesterol concentration significantly decreased 27% and 50%, respectively, in the rats fed the bean diet. Hepatic cholesterogenesis was increased 170% in the bean-fed animals. The relative contribution of newly synthesized hepatic cholesterol to total biliary cholesterol increased 200%, and that of endogenous origin only 50%. These results suggested that newly synthesized hepatic cholesterol was preferentially channelled to the biliary cholesterol secretory pathway in bean-fed rats. Although hepatic cholesteryl ester concentration increased 240%, the incorporation of [14C]oleate into hepatic cholesteryl esters was significantly decreased by 30% in isolated hepatocytes of bean-fed animals. These results were consistent with the possibility that the availability of hepatic free cholesterol for biliary secretion was increased in the bean-fed animals. This study demonstrates that bean intake has a profound effect on the metabolic channelling and compartmentalization of hepatic cholesterol, resulting in a significant decrease in total serum and very low density lipoprotein cholesterol concentrations and a high biliary cholesterol output.  相似文献   

11.
This paper reports the effects of amphotericin B, a polyene antibiotic, on the water and nonelectrolyte permeability of optically black, thin lipid membranes formed from sheep red blood cell lipids dissolved in decane. The permeability coefficients for the diffusion of water and nonelectrolytes (PDDi) were estimated from unidirectional tracer fluxes when net water flow (Jw) was zero. Alternatively, an osmotic water permeability coefficient (Pf) was computed from Jw when the two aqueous phases contained unequal solute concentrations. In the absence of amphotericin B, when the membrane solutions contained equimolar amounts of cholesterol and phospholipid, Pf was 22.9 ± 4.6 µsec-1 and P DDHDH2O was 10.8 ± 2.4 µsec-1. Furthermore, PDDi was < 0.05 µsec-1 for urea, glycerol, ribose, arabinose, glucose, and sucrose, and σi, the reflection coefficient of each of these solutes was one. When amphotericin B (10-6 M) was present in the aqueous phases and the membrane solutions contained equimolar amounts of cholesterol and phospholipid, P DDHDH2O was 18.1 ± 2.4 µsec-1; Pf was 549 ± 143 µsec-1 when glucose, sucrose, and raffinose were the aqueous solutes. Concomitantly, PDDi varied inversely, and σi directly, with the effective hydrodynamic radii of the solutes tested. These polyene-dependent phenomena required the presence of cholesterol in the membrane solutions. These data were analyzed in terms of restricted diffusion and filtration through uniform right circular cylinders, and were compatible with the hypothesis that the interactions of amphotericin B with membrane-bound cholesterol result in the formation of pores whose equivalent radii are in the range 7 to 10.5 A.  相似文献   

12.
In patients with liver disease there are usually increases in erythrocyte cholesterol and phosphatidylcholine concentrations. This increase in membrane lipid changes the shape of the erythrocyte and “spur” or “target” cells may be present. Sodium fluxes were measured in erythrocytes from 17 patients with a variety of liver diseases and from 17 normal subjects and the values related to the lipid content of the membrane. Ouabain-insensitive and ouabain-sensitive effluxes were lower in patients than in normal subjects and the reduction in ouabain-insensitive efflux was more marked. Sodium influx was also significantly lower in erythrocytes from patients than controls. Ouabain-sensitive and ouabain-insensitive effluxes and sodium influx did not correlate with the cholesterol content of erythrocytes from patients. Significant negative correlations were noted between ouabain-insensitive sodium efflux (r = ?0.63, P < 0.01), sodium influx (r = ?0.61, P < 0.01) and intracellular sodium concentration (r = ?0.66, P < 0.01) and the cholesterol : phospholipid molar ratio of the cell but there was no significant correlation between this ratio and the ouabain-sensitive sodium efflux (r = 0.41, P > 0.05). These results support the hypothesis that an altered lipid composition may affect the permeability of the erythrocyte membrane in patients with liver disease.  相似文献   

13.
Rats treated with ethynyloestradiol have marked hypolipidaemia: serum cholesterol is decreased to 5%, triacylglycerol to 10% and phospholipid to 70% of control concentrations. Loss of serum cholesterol follows an exponential decay, with a half-life of 1.13±0.09 days. After 4 days of treatment, serum cholesterol concentrations remain relatively constant (ranging from 1 to 20mg/100ml) for at least 30 days. There is a concomitant 20-fold decrease in the d<1.21 fraction of serum proteins and a similar decrease in serum apolipoproteins as measured by sodium dodecyl sulphate/10%-polyacrylamide-gel electrophoresis. The activity of hepatic microsomal acyl-CoA–cholesterol O-acetyltransferase (EC 2.3.1.26) was significantly increased by ethynyloestradiol treatment (P<0.05). This activation caused hepatic cholesteryl esters containing mainly C18:1 fatty acids to increase linearly as serum cholesterol concentrations decreased (r=0.9675, P<0.001). Triton WR-1339, a non-ionic detergent that inhibits lipoprotein catabolism, was used to estimate hepatic lipid secretion by measuring the increment in serum lipids after its administration. At 15h after Triton WR-1339 administration, serum cholesterol concentrations were increased equally in both control and ethynyloestradiol-treated rats. In contrast, the increment of serum triacylglycerol of treated rats was 40% of that found in control rats, indicating that ethynyloestradiol inhibits hepatic triacylglycerol secretion. Triton WR-1339 inhibited the oestrogen activation of hepatic microsomal acyl-CoA–cholesterol O-acyltransferase and restored hepatic cholesteryl ester concentrations to normal values. These data suggest that ethynyloestradiol and its pharmacological `antagonist' Triton WR-1339 alter hepatic triacylglycerol secretion via a mechanism associated with changes in hepatic cholesterol esterification.  相似文献   

14.
Pathogenesis of pregnancy toxemia (PT) is believed to be associated with the disruption of lipid metabolism. The present study aimed to explore the underlying mechanisms of lipid metabolism disorder in the livers of ewes with PT. In total, 10 pregnant ewes were fed normally (control group) whereas another 10 were subjected to 70% level feed restriction for 15 days to establish a pathological model of PT. Results showed that, as compared with the controls, the levels of blood β-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFAs) and cholesterol were greater (P<0.05) and blood glucose level was lower (P<0.05) in PT ewes. The contents of NEFAs, BHBA, cholesterol and triglyceride were higher (P<0.05) and glycerol content was lower (P<0.05) in hepatic tissues of PT ewes than those of the controls. For ewes with PT, excessive fat vacuoles were observed in liver sections stained with hematoxylin–eosin; furthermore, inner structures of hepatocytes including nuclei, mitochondria and endoplasmic reticulum were damaged seriously according to the results of transmission electron microscope. Real-time PCR data showed that compared with the controls, the expression of hepatic genes involved in fatty acid oxidation (FAO) and triglyceride synthesis (TGS) was enhanced (P<0.05) whereas that related to acetyl-CoA metabolism (ACM) was repressed (P<0.05) in PT ewes. Generally, our results showed that negative energy balance altered the expression of genes involved in FAO, ACM and TGS, further caused lipid metabolism disorder in livers, resulting in PT of ewes. Our findings may provide the molecular basis for novel therapeutic strategies against this systemic metabolic disease in sheep.  相似文献   

15.
The influence of hypothyroidism on the transport of phosphate and on the lipid composition in rat-liver mitochondria was examined. It was found that the rate of phosphate transport is reduced (around 40%) in mitochondria from hypothyroid rats compared to that obtained in mitochondria from normal rats. Treatment of hypothyroid rats with thyroid hormone reverses this effect completely. Kinetic analysis of the phosphate transport indicates that only the Vmax of this process is affected, while there is no change in the Km values. The lower rate of phosphate transport in mitochondria from hypothyroid rats is also demonstrated by swelling experiments. There is no significant difference either in the respiratory control ratios or in the ADP/O ratios between these two types of mitochondria. The hepatic mitochondrial lipid composition is altered significantly in hypothyroid rats. The total cholesterol increases, the phospholipids decrease and the cholesterol/phospholipid molar ratio increases (around 40%). Among the phospholipids, cardiolipin shows the greatest alteration (30% decrease in the hypothyroid rats). The phosphatidylethanolamine/phosphatidylcholine ratio also decreases. Alterations were also found in the pattern of fatty acids. These changes in lipid composition may be responsible, at least in part, for the depression of the phosphate carrier activity in mitochondria from hypothyroid rats.  相似文献   

16.
F. Feo  R.A. Canuto  R. Garcea  O. Brossa 《BBA》1978,504(1):1-14
The phospholipid depletion of rat liver mitochondria, induced by acetone-extraction or by digestion with phospholipase A2 or phospholipase C, greatly inhibited the activity of NADH-cytochrome c reductase (rotenone-insensitive). A great decrease of the reductase activity also occurred in isolated outer mitochondrial membranes after incubation with phospholipase A2. The enzyme activity was almost completely restored by the addition of a mixture of mitochondrial phospholipids to either lipid-deficient mitochondria, or lipid-deficient outer membranes. The individual phospholipids present in the outer mitochondrial membrane induced little or no stimulation of the reductase activity. Egg phosphatidylcholine was the most active phospholipid, but dipalmitoyl phosphatidylcholine was almost ineffective. The lipid depletion of mitochondria resulted in the disappearance of the non-linear Arrhenius plot which characterized the native reductase activity. A non-linear plot almost identical to that of the native enzyme was shown by the enzyme reconstituted with mitochondrial phospholipids. Triton X-100, Tween 80 or sodium deoxycholate induced only a small activation of NADH-cytochrome c reductase (rotenone-insensitive) in lipiddeficient mitochondria. The addition of cholesterol to extracted mitochondrial phospholipids at a 1 : 1 molar ratio inhibited the reactivation of NADH-cytochrome c reductase (rotenone-insensitive) but not the binding of phospholipids to lipid-deficient mitochondria or lipid-deficient outer membranes.These results show that NADH-cytochrome c reductase (rotenone-insensitive) of the outer mitochondrial membrane requires phospholipids for its activity. A mixture of phospholipids accomplishes this requirement better than individual phospholipids or detergents. It also seems that the membrane fluidity may influence the reductase activity.  相似文献   

17.
Aging is a major risk factor for many chronic diseases due to increased vulnerability to external stress and susceptibility to disease. Aging is associated with metabolic liver disease such as nonalcoholic fatty liver. In this study, we investigated changes in lipid metabolism during aging in mice and the mechanisms involved. Lipid accumulation was increased in liver tissues of aged mice, particularly cholesterol. Increased uptake of both cholesterol and glucose was observed in hepatocytes of aged mice as compared with younger mice. The mRNA expression of GLUT2, GK, SREBP2, HMGCR, and HMGCS, genes for cholesterol synthesis, was gradually increased in liver tissues during aging. Reactive oxygen species (ROS) increase with aging and are closely related to various aging‐related diseases. When we treated HepG2 cells and primary hepatocytes with the ROS inducer, H2O2, lipid accumulation increased significantly compared to the case for untreated HepG2 cells. H2O2 treatment significantly increased glucose uptake and acetyl‐CoA production, which results in glycolysis and lipid synthesis. Treatment with H2O2 significantly increased the expression of mRNA for genes related to cholesterol synthesis and uptake. These results suggest that ROS play an important role in altering cholesterol metabolism and consequently contribute to the accumulation of cholesterol in the liver during the aging process.  相似文献   

18.
In the present study, we documented the promising role of thyroid hormones status in animals in modulation of Na+–Pi transport activity in intestinal brush border membrane vesicles (BBMV) which was accompanied with alterations in BBM lipid composition and fluidity. Augmentation of net Pi balance in hyperthyroid (Hyper-T) rats was fraternized with accretion of Pi transport across BBMV isolated from intestine of Hyper-T rats as compared to hypothyroid (Hypo-T) and euthyroid (Eu-T) rats while Na+–Pi transport across BBMV was decreased in Hypo-T rats relative to Eu-T rats. Increment in Na+–Pi transport in intestinal BBMV isolated from Hyper-T rats was manifested as an increase in the maximal velocity (Vmax) of Na+–Pi transport system. Furthermore, BBMV lipid composition profile in intestinal BBM from Hyper-T was altered to that of Hypo-T rats and Eu-T rats. The molar ratio of cholesterol/phospholipids was higher in intestinal BBM from Hypo-T rats. Fluorescence anistropy of diphenyl hexatriene (rDPH) and microviscosity were significantly decreased in the intestinal BBM of Hyper-T rats and decreased in Hypo-T rats as compared to Eu-T rats which corroborated with the alteration in membrane fluidity in response to thyroid hormone status of animals. Therefore, thyroid hormone mediated change in membrane fluidity might play an important role in modulating Na+–Pi transport activity of intestinal BBM. (Mol Cell Biochem 278: 195–202, 2005)  相似文献   

19.
We reported recently that the choline phospholipid-binding proteins (BSP-A1/-A2, BSP-A3 and BSP-30-kDa) of bovine seminal plasma (BSP) stimulate cholesterol and choline phospholipid efflux from fibroblasts. In this study, we characterized the lipid efflux particles generated by BSP proteins. The density gradient ultracentrifugation of the efflux medium from radiolabeled fibroblasts incubated with BSP proteins showed a single peak of [3H]cholesterol between density (d) 1.12 and 1.14 g/ml, which is in the range of high-density lipoproteins. Size-exclusion chromatographic and immunoblot analysis revealed that the efflux particles have a large size equal to or bigger than very low-density lipoproteins and contained BSP proteins. Lipid analysis of density gradient and gel filtration fractions from efflux medium of simultaneously labeled fibroblasts ([3H]cholesterol and [3H]choline) incubated with BSP proteins showed that the efflux particles were homogeneous and composed of cholesterol and choline phospholipids. The lipid particles contained BSP proteins, cholesterol and choline phospholipids in molar ratio of 0.05:1.21:1, respectively. Agarose gel electrophoresis showed that the BSP-generated lipid particles had a γ migration pattern which is slower than low-density lipoproteins. The sonication of cholesterol and BSP proteins followed by gel filtration chromatographic analysis indicated no direct binding of cholesterol to BSP proteins. These results taken together indicate that BSP proteins induce a concomitant cholesterol and choline phospholipid efflux and generate large protein–lipid particles.  相似文献   

20.
Microemulsions composed of a monolayer of dimyristoyl phosphatidylcholine enclosing a core of cholesterol oleate have been characterized with respect to size and the physical state of the monolayer lipid. Fluorescent and spin-labeled fatty acids (n-(9-anthroyloxy) stearates and n-doxyl stearates, respectively) have been used to examine the fluidity and the order at several depths within the monolayer. Below the phase transition of the phospholipid, the emulsion monolayer is more fluid than the vesicle bilayer composed of the same phospholipid. Above the phase transition, the bilayer is the more fluid structure. The phase transition of the surface monolayer in the emulsion is significantly broadened compared to the sharp transition which is characteristic of the lipid bilayer. The broadening is not an intrinsic characteristic of the monolayer, nor is it due to small amounts of cholesterol ester soluble in the monolayer. The broadening can be attributed to a disruption of the lipid packing at the monolayer-core interface or to difficulty in accommodating changes in the molar volume of the phospholipid through the transition. The use of fluorescence quenching techniques to quantitatively determine the partition of cholesterol esters between the monolayer and core compartments is described and the limitations of this technique are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号