首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective stabilization of either the N- or C-terminal half (by ligands binding to these regions) of rat brain hexokinase against partial denaturation with guanidine hydrochloride and subsequent digestion with trypsin has provided a means for isolating these regions, referred to as N fragment and C fragment, respectively, in quantities adequate for characterization. The N fragment (mol wt 52 kDa) is devoid of catalytic activity. In contrast, the C fragment (mol wt 51 kDa) has a specific activity of about 110 U/mg, nearly twice that (60 U/mg) of the intact 100-kDa enzyme, indicating that the kappa cat is virtually identical for both species. Unlike the parent enzyme, the C fragment is quite sensitive to inhibition by Pi (competitive vs ATP, noncompetitive vs Glc); sulfate and arsenate, but not acetate, inhibit with effectiveness similar to that seen with Pi. The Glc-6-P analog, 1,5-anhydroglucitol-6-P, also inhibits the C fragment (competitive vs ATP, uncompetitive vs Glc). Both N and C fragments bind to Affi-Gel Blue, an affinity matrix bearing a covalently attached analog of ATP, and are eluted by hexose 6-phosphates competitive with nucleotide binding to the parent enzyme. Based on the ability of various hexoses and hexose 6-phosphates (and analogs) to protect against guanidine-induced denaturation and subsequent proteolysis it is concluded that both fragments contain discrete sites for hexoses and hexose 6-phosphates, with specificities resembling those seen for the binding of these ligands to the parent enzyme. Synergistic interactions between the hexose and hexose-6-P binding sites, previously seen with the parent enzyme, are also observed with the C fragment but not the N fragment. The existence of binding sites for hexoses and hexose 6-phosphates on both halves conflicts with previous binding studies demonstrating a single hexose binding site and a single hexose 6-phosphate binding site on the intact 100-kDa enzyme, leading to the conclusion that one of each pair of sites must be latent in the intact enzyme, becoming manifest only in the isolated discrete halves. Several investigators have previously suggested that the 100-kDa mammalian hexokinases evolved by duplication and fusion of a gene encoding an ancestral 50-kDa Glc-6-P-insensitive hexokinase, similar to the present-day yeast enzyme, with sensitivity to Glc-6-P resulting from evolution of a duplicated catalytic site into a regulatory site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Various nucleoside di- and triphosphates have been compared with respect to their ability to protect rat brain hexokinase (ATP: d-hexose 6-phosphotransferase, EC 2.7.1.1) activity against inactivation by chymotrypsin, glutaraldehyde, heat, and 5,5′-dithiobis(2-nitrobenzoic) acid. ATP could be distinguished from other nucleoside triphosphates in these comparisons, which may be related to the specificity with which ATP is utilized as a substrate. All nucleoside derivatives examined provided substantial protection against two or more of the above inactivating agents, indicating relatively nonspecific binding of nucleotides by brain hexokinase, consistent with a similar lack of specificity in the inhibition of this enzyme by nucleoside derivatives. The fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and of tetraiodofluorescein (TIF) was enhanced by binding to brain hexokinase. TNS binding was not affected by the presence of various relevant metabolites (Glc, glucose 6-phosphate, ATP), nor did TNS inhibit the enzyme. In contrast, substantial (approximately 70%) decreases in the fluorescence of bound TIF resulted from the addition of various nucleoside derivatives, and TIF served as a competitive inhibitor of brain hexokinase. These observations are consistent with the view that TIF binds to a nucleotide binding site of the enzyme. The inability of nucleotides to totally displace TIF was taken to indicate the existence of an additional TIF binding site (or sites) discrete from the catalytic site, and probably identical to the site(s) at which TNS binds with no effect on catalytic activity. The effects of saturating levels of ATP and ADP were not additive indicating that both compounds were displacing TIF from the same site i.e., a common nucleotide binding site. Glc, mannose, and 2-deoxyglucose greatly enhanced the ability of nucleotides to displace TIF, while fructose, galactose, and N-acetylglucosamine did not, indicating the existence of interactions between hexose and nucleotide binding sites; the hexoses themselves were not effective at displacing TIF. The enhanced binding of nucleotides in the presence of the first three hexoses but not the latter three can be directly correlated with the relative ability of these hexoses to induce specific conformational changes in the enzyme. The hexoses themselves were not effective at displacing TIF. Glucose 6-phosphate and 1,5-anhydroglucitol 6-phosphate could also displace TIF, and as with the nucleotides, a maximum of approximately 70% decrease in fluorescence was observed and the effectiveness of glucose 6-phosphate was enhanced in the presence of Glc. Other hexose 6-phosphates tested were not effective at displacing TIF. The specificity with which hexose 6-phosphates displaced TIF could be correlated with their ability to induce specific conformational change in the enzyme. The results are discussed as they relate to the kinetic mechanism and allosteric regulation by nucleotides that have been proposed for this enzyme.  相似文献   

3.
Using direct and competitive epitope mapping methods, 23 monoclonal antibodies (Mabs) against rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) were divided into nine groups, each recognizing epitopes within defined surface regions of the N- or C-terminal domains; the latter have been associated with regulatory or catalytic functions, respectively. Reactivity of Mabs with the isolated domains was also studied. Based on the effect of various ligands on immunoreactivity, specific regions involved in ligand-induced conformational changes were identified. Adjacent epitopic regions, designated Regions F and G and located in the N- and C-terminal domains, respectively, were selectively affected by inhibitory hexose 6-phosphates (or analogs), marking these regions as being involved in transmission of the conformational signal from the regulatory N-terminal domain to the catalytic C-terminal domain. Consistent with this, the Ki for inhibition of the enzyme by the glucose 6-phosphate analog, 1,5-anhydroglucitol-6-phosphate, was markedly increased by Mabs binding in these regions, but unaffected by Mabs binding elsewhere in the molecule. Reactivity with Mabs recognizing conformationally sensitive epitopes in Region H of the C-terminal domain was greatly decreased by binding of substrate hexoses that induce closure of a cleft in the catalytic domain; selective recognition of the "open cleft" conformation, thereby preventing closure of the cleft required for progression of the catalytic cycle, can account for the marked decrease in Vmax that results from binding of these Mabs. Reactivity with Mabs binding to Region H was also decreased in the presence of inhibitory hexose 6-phosphates, implying that cleft closure was also induced by the latter; this is consistent with the suggestion that limitation of access to the C-terminal ATP binding site, resulting from cleft closure, is a factor in inhibition of the enzyme.  相似文献   

4.
Calf intestinal alkaline phosphatase is inactivated by 2,3-butanedione and phenylglyoxal. The reaction with either reagent results in a biphasic loss of enzymatic activity. Inactivation by 2,3-butanedione in borate buffer can be reversed after gel-filtration in Tris buffer but no enzyme reactivation is observed after phenylglyoxal treatment. Phosphate, ATP and NADH protect the enzyme from both compounds while no protection is displayed by L-phenylalanine. The selective chemical modification indicates that two differently reacting types of arginines are present in the active site domains of the dimeric enzyme.  相似文献   

5.
8-Azido-ATP serves as a substrate for rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1). Irradiation of hexokinase in the presence of this photoactivatable ATP analog results in inactivation of the enzyme. ATP and hexose 6-phosphates (Glc-6-P, 1,5-anhydroglucitol-6-P) previously shown to competitively inhibit nucleotide binding protect the enzyme from photoinactivation; other hexose 6-phosphates do not. Hexoses (Glc, Man) previously shown to enhance nucleotide binding also protect against photoinactivation; other hexoses do not. These effects of hexoses and hexose 6-phosphates can be interpreted in terms of the conformational changes previously shown to result from the binding of these ligands and to influence the characteristics of the nucleotide binding site (M. Baijal and J. E. Wilson (1982) Arch. Biochem. Biophys. 218, 513-524). Limited tryptic cleavage of the enzyme produces three major fragments having molecular weights of about 10K, 40K, and 50K, and thought to represent major structural domains within the enzyme (P. G. Polakis and J. E. Wilson (1984) Arch. Biochem. Biophys. 234, 341-352). Tryptic cleavage of the enzyme, photoinactivated in the presence of 14C-labeled azido-ATP, discloses prominent labeling of the 10K and 40K domains, which are known to originate from the N- and C-terminal regions, respectively. Labeling of the 40K domain is influenced by ligands in a manner that corresponds to the effectiveness of these ligands in protecting against photoinactivation whereas labeling of the 10K domain is not affected by these same ligands. It is concluded that the 40K domain includes the binding site for nucleotide substrates. More refined two-dimensional peptide mapping techniques demonstrate that the predominant site of labeling is a peptide segment, molecular weight approximately 20K, that is located in the central and/or C-terminal region of the 40K domain. Labeling of the 10K domain is attributed to nonspecific interaction of azido-ATP with the hydrophobic sequence shown to be located at the N-terminus of brain hexokinase (P. G. Polakis and J. E. Wilson (1985) Arch. Biochem. Biophys. 236, 328-337).  相似文献   

6.
Treatment of purine nucleoside phosphorylase (EC 2.4.2.1), from either calf spleen or human erythrocytes, with 2,3-butanedione in borate buffer or with phenylglyoxal in Tris buffer markedly decreased the enzyme activity. At pH 8.0 in 60 min, 95% of the catalytic activity was destroyed upon treatment with 33 mM phenylglyoxal and 62% of the activity was lost with 33 mm 2,3-butanedione. Inorganic phosphate, ribose-1-phosphate, arsenate, and inosine when added prior to chemical modification all afforded protection from inactivation. No apparent decrease in enzyme catalytic activity was observed upon treatment with maleic anhydride, a lysine-specific reagent. Inactivation of electrophoretically homogeneous calf-spleen purine nucleoside phosphorylase by butanedione was accompanied by loss of arginine residues and of no other amino acid residues. A statistical analysis of the inactivation data vis-à-vis the fraction of arginines modified suggested that one essential arginine residue was being modified.  相似文献   

7.
The effectiveness of Glc, mannose, 2-deoxyglucose, fructose, galactose, arabinose, and N-acetylglucosamine at protecting rat brain hexokinase (ATP: d-hexose 6-phosphotransferase, EC 2.7.1.1) from inactivation by chymotrypsin, glutaraldehyde, heat, and Ellman's reagent have been compared. The relative effectiveness at protecting against these inactivating agents decreases in the order Glc > mannose > 2-deoxyglucose > fructose, galactose, and arabinose, the last three providing no significant protection at all. The nonphosphorylatable substrate analog, N-acetylglucosamine, provides substantial protection against heat inactivation, but is ineffective against inactivation by the other agents. Similar inactivation studies were conducted using several hexose 6-phosphates. Glc-6-P and 1,5-anhydroglucitol-6-P provided substantial protection while 2-deoxyglucose-6-P, fructose-6-P, mannose-6-P, and galactose-6-P were all relatively ineffective at protecting hexokinase activity. The protective effect of these ligands is taken as an indication of ligand-induced conformational changes in brain hexokinase. The results are interpreted in terms of, and considered to support, a recently proposed model (J. E. Wilson, 1978, Arch. Biochem. Biophys.185, 88–99) in which the suitability of a carbohydrate as a substrate depends directly on its ability to induce specific conformational changes prerequisite for subsequent catalytic events while the inhibitory effectiveness of a hexose 6-phosphate is likewise related to its ability to evoke appropriate conformational change in the enzyme. Synergistic interactions between hexose and hexose-6-P binding sites, first reported for Glc and Glc-6-P by Ellison et al. (1975, J. Biol. Chem.250, 1864–1871), have been confirmed. Thus, although fructose and galactose were themselves quite ineffective at providing protection against inactivation of hexokinase by chymotrypsin or glutaraldehyde, they greatly increased the protection afforded by suboptimal (with respect to degree of protection in the absence of added hexose) levels of Glc-6-P. Conversely, the 6-phosphates of fructose, galactose, mannose, and 2-deoxyglucose, which were themselves ineffective at protecting the enzyme activity, markedly enhanced the protection provided by suboptimal levels of Glc or mannose. Based on the relationship between this enhancement of Glc-dependent protection and the hexose-6-P concentration, the dissociation constants for the complexes of hexokinase with 2-deoxyglucose-6-P and mannose-6-P were estimated to be ?0.5 mm.  相似文献   

8.
Rat liver ATP citrate lyase was inactivated by 2, 3-butanedione and phenylglyoxal. Phenylglyoxal caused the most rapid and complete inactivation of enzyme activity in 4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid buffer, pH 8. Inactivation by both butanedione and phenylglyoxal was concentration-dependent and followed pseudo- first-order kinetics. Phenylglyoxal also decreased autophosphorylation (catalytic phosphate) of ATP citrate lyase. Inactivation by phenylglyoxal and butanedione was due to the modification of enzyme arginine residues: the modified enzyme failed to bind to CoA-agarose. The V declined as a function of inactivation, but the Km values were unaltered. The substrates, CoASH and CoASH plus citrate, protected the enzyme significantly against inactivation, but ATP provided little protection. Inactivation with excess reagent modified about eight arginine residues per monomer of enzyme. Citrate, CoASH and ATP protected two to three arginine residues from modification by phenylglyoxal. Analysis of the data by statistical methods suggested that the inactivation was due to modification of one essential arginine residue per monomer of lyase, which was modified 1.5 times more rapidly than were the other arginine residues. Our results suggest that this essential arginine residue is at the CoASH binding site.  相似文献   

9.
The Type I isozyme of rat hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) is comprised of N- and C-terminal domains, associated with regulatory and catalytic functions, respectively. Extensive sequence similarity between the domains is consistent with evolution of the enzyme by gene duplication and fusion. Cleavage at tryptic sites located in the C-terminal domain is markedly sensitive to ligands present during digestion, while analogous sites in the N-terminal domain are either resistant to trypsin or unaffected by the presence of ligands. These results imply a lack of structural equivalence between the N- and C-terminal domains, with the overall structure of the N-terminal domain being "tighter" and with a major component of ligand-induced conformational changes being focused in the C-terminal domain. Based on a previously proposed structure for brain hexokinase, protection by substrate hexoses is attributed to substrate-induced closing of a cleft in the C-terminal domain. Similar protection at C-terminal cleavage sites results from binding of inhibitory hexose-6-phosphates to the N-terminal domain. In addition, hexose-6-phosphates evoke cleavage at a site, T5, located in a region that has been associated with binding of ATP to the C-terminal domain. Thus, alterations in this region, coupled with reduced accessibility resulting from cleft closure, may account for the mutually exclusive binding of inhibitory hexose-6-phosphates and substrate ATP. In the absence of Mg2+, all nucleoside triphosphates examined (ATP, UTP, CTP, and GTP) protected against digestion by trypsin. In contrast, ATP-Mg2+ stabilized the C-terminal domain but destabilized the N-terminal domain, while the chelated forms of the other nucleoside triphosphates were similar to the unchelated forms in their effect on proteolysis; the unique response to ATP-Mg2+ reflects the specificity for ATP as a substrate.  相似文献   

10.
Reaction of Petunia hybrida 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS) with the arginine reagents phenylglyoxal (PGO) and p-hydroxyphenylglyoxal (HPGO) leads to inactivation of the enzyme. Inactivation with HPGO leads to modification of approximately 3 mol of arginine per mole of enzyme. The modification reaction follows pseudo-first-order kinetics with a t1/2 of 1 min at 5 mM p-hydroxyphenylglyoxal in 0.1 M triethanolamine HCl, pH 7.8. By titration of HPGO-modified enzyme with 5,5'-bis(dithio-2-nitrobenzoic acid), the possibility of cysteine modification by the arginine reagent was ruled out. While shikimate 3-phosphate (S3P) afforded partial protection to the enzyme against inactivation by HPGO, complete protection could be obtained by using a mixture of S3P and glyphosate. Under the latter conditions, only 1 mol arginine was modified per mole of enzyme. This pattern of reactivity suggests that two arginines may be involved in the binding of S3P and glyphosate to EPSP synthase. A third reactive arginine appears to be nonessential for EPSPS activity. Labeling of EPSP synthase with [14C]phenylglyoxal, peptic digestion, HPLC mapping, and amino acid sequencing indicate that Arg-28 and Arg-131 are two of the reactive arginines labeled with [14C]PGO.  相似文献   

11.
The inactivation of yeast hexokinase A (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) by phenylglyoxal obeys pseudo first-order kinetics. Formation of a reversible enzyme-reagent complex prior to modification is suggested by the observed saturation kinetics. Loss of activity correlates with the incorporation of 1 mol of [14C]phenylglyoxal per mol 50 000 dalton subunit. No significant conformational change occurs concomitantly. Inactivation is attributable to modification of an arginyl residue. The pattern of protection by substrates and analogs favors an interaction of this essential residue with the terminal phosphoryl group of ATP or glucose 6-phosphate.  相似文献   

12.
Based on the lack of correlation between the ability of various hexoses to serve as substrate and the ability of the corresponding hexose 6-phosphates to inhibit brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1), R. K. Crane and A. Sols (1954, J. Biol. Chem. 210, 597-606) proposed that this enzyme possesses two discrete sites capable of binding hexose moieties, one serving as the substrate binding site and a second, regulatory in function, to which inhibitory 6-phosphates bind. Subsequent work has provided further experimental support for this proposal. The pioneering work by Crane and Sols focused primarily on the specificity of these sites with respect to requirements for orientation of hydroxyl substituents at the various positions of the pyranose ring. The present study explores additional aspects of the specificity of these sites, namely, the effect of substitution of a sulfur atom in place of the oxygen in the pyranose ring on ability to serve as substrate or inhibitor, and the effect of modification in charge of the substituent at the 6-position on inhibitory effectiveness. 5-Thioglucose is a linear competitive (versus glucose) inhibitor of rat brain hexokinase, with a Ki of about 0.2 mM, and is a linear mixed inhibitor (versus ATP), with Ki values in this same range. 5-Thioglucose is not, however, readily phosphorylated by brain hexokinase. Thus, although 5-thioglucose binds with moderate affinity to the glucose binding site, it is not effectively used as a substrate of the enzyme. Inhibition of brain hexokinase by glucose 6-phosphate or its analogs has been found to require a dianionic substituent at the 6-position. The 6-fluorophosphate derivative and glucose 6-sulfate are poor inhibitors of the enzyme, and the Ki for inhibition by 1,5-anhydroglucitol 6-phosphate increases markedly at pH values below the pK of the 6-phosphate group, indicating that the monoanionic form is ineffective as an inhibitor. In contrast to the detrimental effect that substitution of the oxygen atom in the pyranose ring with a sulfur has on ability to serve as substrate, 5-thio analogs are considerably more effective as inhibitors, the Ki for inhibition by 5-thioglucose 6-phosphate being 10-fold lower than that seen with glucose 6-phosphate. This effect of the heteroatom substitution can partially offset the decreased inhibition resulting from monoanionic character at the 6-position, but the 6-fluorophosphate derivative of 5-thioglucose 6-phosphate still inhibits with a Ki about 1000-fold greater than that seen with 5-thioglucose 6-phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Glucose 6-phosphate as well as several other hexose mono- and diphosphates were found by kinetic studies to be competitive inhibitors of human hexokinase I (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) versus MgATP. Limited proteolysis by trypsin does not destroy the hexokinase activity but produces as well-defined peptide map when the digested enzyme is electrophoresed in the presence of sodium dodecyl sulfate. MgATP at subsaturating concentration protects hexokinase from trypsin digestion, while phosphorylated sugars, Mg2+, glucose and inorganic phosphate have no effect. Addition of glucose 6-phosphate to the MgATP-hexokinase complex at a concentration 100-times higher than its Ki was not able to reverse the MgATP-induced conformation of hexokinase, suggesting that the binding of glucose 6-phosphate and MgATP are not mutually exclusive. Similar evidence was also obtained by studies of the induced modifications of ultraviolet spectra of hexokinase by the binding of MgATP, glucose 6-phosphate and both compounds. Among a library of monoclonal antibodies produced against rat brain hexokinase I and that recognize human placenta hexokinase I, one (4A6) was found to be able to modify the Ki of glucose 6-phosphate (from 25 to 140 microM) for human hexokinase I. The same antibody also weakens the inhibition by all the other hexoses phosphate studied without affecting the apparent Km for MgATP (from 0.6 to 0.75 mM) or for glucose. These data support the view for the binding of glucose 6-phosphate at a regulatory site on the enzyme.  相似文献   

14.
Various ligands of rat brain hexokinase (ATP:d-hexose 6-phosphotransferase, EC 2.7.1.1) have been found to protect the enzyme against either (or both) chymotryptic digestion or inactivation by glutaraldehyde. Using this protective effect, the Kd for various enzyme-ligand complexes has been estimated: hexokinase-Glc, Kd = 0.24 ± 0.03mM (chymotryptic digestion), Kd = 0.26 ± 0.07mM (glutaraldehyde inactivation); hexokinase-Glc-6- P, Kd = 0.041 ± 0.005m M (glutaraldehyde inactivation); hexokinase-ATP, Kd = 1.01 ± 0.28mM (chymotryptic digestion); hexokinase-ATP-Mg 2+, Kd = 0.07-0.08mM (chymotryptic digestion). Other nucleoside triphosphates (UTP, ITP, GTP, and CTP) were much less effective than ATP at protecting against chymotrypsin. Various hexoses were tested for their ability to protect against glutaraldehyde. Only ?good” substrates (mannose, 2-deoxyglucose) protected; nonsubstrates (galactose, arabinose) and N-acetylglucosamine, a competitive inhibitor of Glc binding, were not effective. Various hexose 6-phosphates were tested for their ability to protect against glutaraldehyde inactivation. Glc-6-P was much more effective than were mannose-6-P, galactose-6-P, or fructose-6-P. It was observed that ?good” substrates (Glc, mannose) increased the effectiveness of Glc-6-P at solubilizing the mitochondrial form of the enzyme; galactose and N-acetylglucosamine had no effect on solubilization by Glc-6-P. These results are taken as an indication of enhanced Glc-6-P binding in the presence of Glc, as previously reported by Ellison et al. (J. Biol. Chem., 250, 1864–1871, 1975). Along with previous studies on ligand-induced conformations and kinetics of this enzyme, these results form the basis for a new model for brain hexokinase. This model specifically takes into account the ligand-induced conformations at various points in the catalytic cycle and specifically accounts for the ability of various hexoses to serve as substrates and hexose 6-phosphates to serve as inhibitors in terms of their ability to induce specific conformations of the enzyme. The properties of the various conformations involved in the model are designated by a four-letter code which facilitates comparison and discussion.  相似文献   

15.
ADPglucose pyrophosphorylase (EC 2.7.7.27) from the cyanobacteriumSynechocystis PCC 6803 was desensitized to the effects of allosteric ligands by treatment with the arginine reagent, phenylglyoxal. Enzyme modification by phenylglyoxal resulted in inactivation when the enzyme was assayed under 3P-glycerate-activated conditions. There was little loss of the catalytic activity assayed in the absence of activator. Pi, 3P-glycerate, and pyridoxal-P were able to protect the enzyme from inactivation, whereas substrates gave minimal protection. The protective effect exhibited by Pi and 3P-glycerate was dependent on effector concentration. MgCl2 enhanced the protection afforded by 3P-glycerate. The enzyme partially modified by phenylglyoxal was more resistant to 3P-glycerate activation and Pi inhibition than the unmodified form.V max at saturating 3P-glycerate concentrations and the apparent affinity of the enzyme toward Pi were decreased upon phenylglyoxal modification. Incorporation of labeled phenylglyoxal into the enzyme was proportional to the loss of activity. Pi and 3P-glycerate nearly completely prevented incorporation of the reagent to the protein. Results suggest that one arginine residue per mol of enzyme subunit is involved in the binding of allosteric effector in the cyanobacterial ADPglucose pyrophosphorylase.  相似文献   

16.
The arginine-specific reagent phenylglyoxal inactivated the vacuolar H(+)-ATPase of red beet. Inactivation by phenylglyoxal followed pseudo-first-order kinetics and a double log plot of the t1/2 of inactivation versus phenylglyoxal concentration yielded a slope of 1.18. Neither inorganic anions nor DIDS protected from phenylglyoxal-mediated inactivation of the H(+)-ATPase. Indeed, Cl- stimulated the rate of phenylglyoxal-mediated H(+)-ATPase inactivation relative to SO4(2-). ATP, but not MgATP or ADP, protected from phenylglyoxal-mediated inactivation and inactivation resulted in a decrease in the Vmax of the H(+)-ATPase with little effect on the Km. Collectively, these results are consistent with phenylglyoxal-mediated inactivation of the vacuolar H(+)-ATPase resulting from modification of a single arginine residue in the catalytic nucleotide binding site of the vacuolar H(+)-ATPase. Stimulation of phenylglyoxal-mediated inactivation by Cl- indicates that exposure of the phenylglyoxal-sensitive functional arginine residue is enhanced in the presence of Cl-. The failure of MgATP to protect from phenylglyoxal inactivation suggests that ATP, rather than MgATP, binds directly to the catalytic site and that Mg2+ may act to promote catalysis subsequent to ATP binding.  相似文献   

17.
ADPglucose pyrophosphorylase (EC 2.7.7.27) from the cyanobacteriumSynechocystis PCC 6803 was desensitized to the effects of allosteric ligands by treatment with the arginine reagent, phenylglyoxal. Enzyme modification by phenylglyoxal resulted in inactivation when the enzyme was assayed under 3P-glycerate-activated conditions. There was little loss of the catalytic activity assayed in the absence of activator. Pi, 3P-glycerate, and pyridoxal-P were able to protect the enzyme from inactivation, whereas substrates gave minimal protection. The protective effect exhibited by Pi and 3P-glycerate was dependent on effector concentration. MgCl2 enhanced the protection afforded by 3P-glycerate. The enzyme partially modified by phenylglyoxal was more resistant to 3P-glycerate activation and Pi inhibition than the unmodified form.V max at saturating 3P-glycerate concentrations and the apparent affinity of the enzyme toward Pi were decreased upon phenylglyoxal modification. Incorporation of labeled phenylglyoxal into the enzyme was proportional to the loss of activity. Pi and 3P-glycerate nearly completely prevented incorporation of the reagent to the protein. Results suggest that one arginine residue per mol of enzyme subunit is involved in the binding of allosteric effector in the cyanobacterial ADPglucose pyrophosphorylase.  相似文献   

18.
V D Redkar  U W Kenkare 《Biochemistry》1975,14(21):4704-4712
Inactivation of bovine brain mitochondrial hexokinase by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), a sulfhydryl specific reagent, has been investigated. The study shows that the inactivation of the enzyme by DTNB proceeds by way of prior binding of the reagent to the enzyme and involves the reaction of 1 mol of DTNB with a mol of enzyme. At stoichiometric levels of DTNB, the inactivation of the enzyme is accompanied by the formation of a disulfide bond. But it is not clear whether the disulfide bond or the mixed disulfide intermediate formed prior to it causes inactivation. On the basis of considerable protection afforded by glucose against this inactivation it is tentatively concluded that the sulfhydryl residues involved in this inactivation are at the glucose binding site of the enzyme, although other possibilities are not ruled out. An analysis of effects of various substrates and inhibitors on the kinetics of inactivation and sulfhydryl modification by DTNB has led to the proposal that the binding of substrates to the enzyme is interdependent and that glucose and glucose 6-phosphate produce slow conformational changes in the enzyme. Protective effects by ligands have been employed to calculate their dissociation constant with respect to the enzyme. The data also indicate that glucose 6-phosphate and inorganic phosphate share the same locus on the enzyme as the gamma phosphate of ATP and that nucleotides ATP and ADP bind to the enzyme in the absence of Mg2+.  相似文献   

19.
Treatment of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with the arginine-specific reagent, phenylglyoxal, irreversibly inactivated both 6-phosphofructo-2-kinase and fructose-6-bisphosphatase in a time-dependent and dose-dependent manner. Fructose 6-phosphate protected against 2,6-phosphofructo-2-kinase inactivation, whereas MgGTP protected against fructose-2,6-bisphosphatase inactivation. Semi-logarithmic plots of the time course of inactivation by different phenylglyoxal concentrations were non-linear, suggesting that more than one arginine residue was modified. The stoichiometry of phenylglyoxal incorporation indicated that at least 2 mol/mol enzyme subunit were incorporated. Enzyme which had been phosphorylated by cyclic-AMP-dependent protein kinase was inactivated to a lesser degree by phenylglyoxal, suggesting that the serine residue (Ser32) phosphorylated by cyclic-AMP-dependent protein kinase interacts with a modified arginine residue. Chymotryptic cleavage of the modified protein and microsequencing showed that Arg225, in the 6-phosphofructo-2-kinase domain, was one of the residues modified by phenylglyoxal. The protection by fructose 6-phosphate against the labelling of chymotryptic fragments containing Arg225, suggests that this residue is involved in fructose 6-phosphate binding in the 6-phosphofructo-2-kinase domain of the bifunctional enzyme.  相似文献   

20.
The fate of unlabelled D-glucose and D-[2-3H]glucose in pancreatic islets was simulated taking into account experimental values for glycolytic flux, intracellular concentration of D-glucose 6-phosphate and phosphoglucoisomerase activity. The model, which also takes into account the isotopic discrimination in velocity and intramolecular transfer of tritium between D-[2-3H]glucose 6-phosphate and D-[1-3H]fructose 6-phosphate in the reaction catalyzed by phosphoglucoisomerase, revealed that the predicted generation of 3HOH from D-[2-3H]glucose was much higher than the true experimental value. Such a discrepancy is reinforced by the consideration that the generation of 3HOH from D-[2-3H]glucose in islet cells is not solely attributable to the phosphoglucoisomerase-catalyzed detritiation of hexose 6-phosphates metabolized in the glycolytic pathway. In order to reconcile experimental and theoretical values for 3HOH production, it was found necessary to postulate enzyme-to-enzyme tunnelling of hexose 6-phosphates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. It is proposed that such a tunnelling may favour the anomeric specificity of D-glucose metabolism in islet cells, by restricting the anomerization of hexose 6-phosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号