首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The hormonally active form of vitamin D, 1,25-dihydroxy vitamin D3, is known to induce in the intestine and kidney of chicks the synthesis of a calcium-binding protein (CaBP). Here we report a correlation between the tissue levels of CaBP and the levels of apparent messenger RNA in total polysomes as determined by the vitamin D and dietary calcium status. Polysomes from pooled duodenal mucosa and kidney were prepared by the Mg2+ precipitation method. After translation in a heterologous, rabbit nuclease-treated reticulocyte system, the immunoprecipitated pellet of CaBP was dissolved and the proteins were separated on 10% sodium dodecyl sulfate-polyacrylamide gels. When 13 nmol of D3 was given to 4-week-old rachitic chicks which were sacrificed 48 h later, it was found that the duodenum had eightfold more apparent mRNA for CaBP in the polysomes than the kidney. This was also reflected in the values of CaBP/mg protein in these tissues (duodenum, 7 μg/mg vs kidney, 0.9 μ/mg). Also, after giving D3, there was a twofold increase in both apparent mRNA levels in the polysomes and in CaBP levels in the duodena of chicks which were raised on low-calcium diets versus chicks raised on high-calcium diets. While apparent mRNA for CaBP was present in polysomes from rachitic chick kidney, it was not detectable in the duodenum. From these studies it appears that the induction of CaBP by 1,25(OH)2D3 in both the intestine and kidney is determined by similar control mechanisms.  相似文献   

2.
Vitamin D3 and its biologically active metabolite 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] are shown to induce in the chick intestine and kidney the biosynthesis of a calcium binding protein (CaBP). In vitamin D3-replete chickens raised under adequate dietary calcium (Ca) and phosphorus (P) conditions, the steady-state level of intestinal CaBP (30–50 g/mg protein) is 5- to 20-fold greater than that of renal CaBP. Whereas dietary phosphorus restriction is known to elevate both intestinal and renal CaBP levels, dietary calcium restriction elevates only intestinal CaBP. The present study reports the rates of biosynthesis in vivo and in vitro, and of biodegradation in vivo, of both intestinal and renal CaBP after administration of vitamin D3 or 1,25(OH)2D3 to rachitic chicks. The apparent rate constant of degradation for intestinal CaBP was 0.024 h?1 (t12 = 29 h) and that for renal CaBP was 0.019 h?1 (t12 = 36 h) while total cellular soluble protein in the intestine and kidney had half-lives of 43 and 70 h, respectively. The time course of induction of the synthesis of CaBP was determined in intestine and kidney after administration of a physiological dose of 1,25(OH)2D3 to rachitic chicks. Intestinal CaBP synthesis was detectable by 3 hours, reached a maximal rate by 10 hours, and sharply decayed by 16–20 hours. The time course of induction of renal CaBP synthesis was very similar, although the rate of renal CaBP synthesis was readily detectable at the initial time of administration of 1,25(OH)2D3. The relative rates of synthesis of CaBP in the intestine and kidney under a variety of dietary Ca and P conditions in the vitamin D3-replete chick exactly paralleled the steady-state level of CaBP in these two tissues. These results are consistent with a model in which the steady-state levels of intestinal and renal CaBP are solely determined by their respective rates of biosynthesis; the CaBP biosynthetic capability, in turn, is regulated by the availability of 1,25(OH)2D3 to each target organ.  相似文献   

3.
Since intestinal calcium-binding protein (CaBP) can he regarded as an expression of the hormone-like action of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on the duodenal enterocyte we have investigated the potential biological activity of 25R and 25S,26-(OH)2D3 (two recently synthesized epimers of vitamin D3 metabolite) to promote intestinal CaBP production as compared to bone calcium mobilization in vitamin D and calcium-deficient rats. In our assay steroids exhibited a 72 hour calcemic response. Our results show a linear relationship between CaBP synthesis and the logarithm of the dose (130–2080 pmol dose range) of either 25R or 25S epimer. The CaBP response was comparable for both epimers. Similarly bone calcium mobilization response was dose related as a linear function of the logarithm of the administered dose. Again, calcemic response was comparable for both epimers. In our model these two epimers were about as active on intestine to increase CaBP amount as on bone to elevate serum calcium level. Bilateral nephrectomy abolished CaBP response to a large dose (1040 pmol) of either 25R or 25S epimer but did not abolish it to a 130 pmol dose of 1α, 25-(OH)2D3.  相似文献   

4.
5.
The role of 1,25(OH)2D3 on the intestinal NCX activity was studied in vitamin D-deficient chicks (-D) as well as the hormone effect on NCX1 protein and gene expression and the potential molecular mechanisms underlying the responses. Normal, -D and -D chicks treated with cholecalciferol or 1,25(OH)2D3 were employed. In some experiments, -D chicks were injected with cycloheximide or with cycloheximide and 1,25(OH)2D3 simultaneously. NCX activity was decreased by -D diet, returning to normal values after 50 IU daily of cholecalciferol/10 days or a dose of 1 μg calcitriol/kg of b.w. for 15 h. Cycloheximide blocked NCX activity enhancement produced by 1,25(OH)2D3. NCX1 protein and gene expression were diminished by -D diet and enhanced by 1,25(OH)2D3. Vitamin D receptor expression was decreased by -D diet, effect that disappeared after 1,25(OH)2D3 treatment. Rapid effects of 1,25(OH)2D3 on intestinal NCX activity were also demonstrated. The abolition of the rapid effects through addition of Rp-cAMPS and staurosporine suggests that non genomic effects of 1,25(OH)2D3 on NCX activity are mediated by activation of PKA and PKC pathways. In conclusion, 1,25(OH)2D3 enhances the intestinal NCX activity in -D chicks through genomic and non genomic mechanisms.  相似文献   

6.
The essential role of vitamin D throughout the life of most mammals and birds as a mediator of calcium homeostasis is well established. In view of the complex endocrine system existent for the regulated metabolism of vitamin D3 to both 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] and 24R,25-dihydroxyvitamin D3 [24R,25-(OH)2D3] (both produced by the kidney), an intriguing problem is to elucidate whether only one or both of these dihydroxyvitamin D3 metabolites is required for the generation of all the biological responses mediated by the parent vitamin D3. In contrast to the accumulated knowledge concerning the short term actions of 1,25(OH)2-D3 on stimulating intestinal calcium absorption and bone calcium reabsorption, relatively little is known of the biological function of 24,25(OH)2D3. We report now the results of a nine month study in which chicks were raised on a vitamin D-deficient diet from hatching to sexual maturity and received as their sole source of “vitamin D” either 24,25(OH)2D3 or 1,25(OH)2D3 singly or in combination. Specifically we are describing the integrated operation of the vitamin D endocrine system as quantitated by the individual measurement in all birds of 22 variables related to “vitamin D status” and as evaluated by the statistical procedure of multivariate discriminant analysis. Twelve of these variables involved detailed analysis of the bone including quantitative histology and the other 10 variables reflect various manifestations of vitamin D action, e.g. serum Ca2+ and Pi levels, vitamin D-dependent calcium binding protein (CaBP) in the intestine and kidney, egg productivity etc. As evaluated by the multivariate analysis, it is clear that 24,25(OH)2D3 and 1,25(OH)2D3 are simultaneously required for normalization of calcium homeostasis.  相似文献   

7.
A crude aqueous extract of the leaves of T. flavescens when administered orally to vitamin D-deficient chicks produced significant increases in plasma phosphate but had little effect on plasma calcium. When chicks, fed a high strontium diet to inhibit endogenous 1,25(OH)2 vitamin D3 production and intestinal calcium transport, were dosed with the extract or synthetic 1,25(OH)2D345Ca absorption from the duodenum in vivo was stimulated, whereas vitamin D3 was ineffective. Partial purification of the crude extract on a Sephadex GH25 column yielded two factors, one of which mimicked 1,25 (OH)2D3 activity in chicks fed the high strontium diet while the other produced a significant increase in plasma phosphate. The presence of these substances, together with previously demonstrated organic solvent soluble vitamin D-type activity, may account for the calcinogenic nature of the plant.  相似文献   

8.
The possible involvement of plasma calcium and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in the regulation of the concentration of kidney calcium-binding protein (CaBP) was investigated. Chicks were fed diets varying in Ca2+ and P, with or without vitamin D. CaBP and 1,25(OH)2D3 were determined by competitive binding assays. A significant correlation between plasma and kidney 1,25(OH)2D3 was found, the linear regression equation of best-fit was plasma 1,25(OH)2D3 = 0.14 + 1.56 kidney 1,25(OH)2D3. In the vitamin D-fed chicks, kidney CaBP varied independently of the circulating or organ level of 1,25(OH)2D3 (P greater than 0.05), but was lower in the vitamin D-deficient than in the vitamin D-fed birds. A significant correlation was observed between kidney CaBP and plasma calcium (Cap). The regression equations were CaBP = Cap/(85.57-4.00 Cap) (R = 0.845) and CaBP = 0.0558 + 0.0404 Cap (R = 0.749), for vitamin D-treated and vitamin D-deficient chicks, respectively. The results suggest that the concentration of kidney CaBP is modulated by plasma calcium, but one or more of the vitamin D metabolites may be required for its synthesis.  相似文献   

9.
10.
Summary After injection of 3H 1,25(OH)2 vitamin D3 to rats fed a vitamin D-deficient diet, nuclear concentration and retention of radioactivity exists in reticular cells of the thymus medulla and cortex, as well as outer cells of developing Hassal's corpuscles. Lymphocytes do not show nuclear concentration of radioactivity. Nuclear concentration in reticular cells is prevented by prior injection of excess 1,25(OH)2 vitamin D3. The results indicate that reticular-endothelial cells contain nuclear receptors for 1,25(OH)2 vitamin D3 and suggest that effects of 1,25(OH)2 vitamin D3 on immune response and lymphocyte differentiation are indirect and mediated through genomic modulation of reticular cell functions such as messenger secretion.  相似文献   

11.
A combination of ion microscopic and conventional radionuclide techniques was employed to investigate the temporal-spatial dynamics of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-stimulated intestinal calcium (Ca) absorption. At varying times following the administration of a single intravenous dose of 1,25(OH)2D3, to vitamin D-deficient chicks, transepithelial transport and tissue retention of Ca were quantitated in vivo, using the ligated duodenal loop technique and47Ca as the tracer. The localization of Ca in the intestinal tissue during absorption was monitored by ion microscopy, using the stable Ca isotope,44Ca, as the absorbed species. There was little transepithelial absorption of Ca in the vitamin D-deficient animals despite a substantial tissue accumulation of luminally derived Ca, the latter localizing predominantly in the brush border region of the enterocyte, as shown by the44Ca-ion microscopic images. The early (30 min-1 h) response to 1,25(OH)2D3 was an increased tissue uptake of luminal47Ca, which also primarily associated with the brush border region, again as shown by ion microscopy. At 2–4 h after the 1,25(OH)2)D3 dose, there was a progressive redistribution of Ca from the brush border region throughout the cytoplasm and into the lamina propria. At 8–16 h,47Ca absorption was maximal and44Ca was sparsely distributed in the intestinal tissue.47Ca absorption gradually declined and reached pre-dose levels by 72 h. At this time, tissue44Ca was again largely limited to the brush border region. These results provide support for the multiple actions of 1,25(OH)2D3 on the intestinal Ca absorption  相似文献   

12.
1,25(OH)2D3 increases cell permeability to calcium. This increase is not mediated by proteins sensitive to cycloheximide or actinomycin D inhibition. We propose that CaBP may associate with intracellular membranes and organelles to prevent intracellular calcium accumulation and the potential cytotoxic effects of such accumulation. In support of this hypothesis, the amount of mitochondrial mineralization in chick intestinal cells was markedly increased by 1,25(OH)2D3 treatment when CaBP synthesis was simultaneously blocked by cycloheximide treatment. Mineral in membrane vesicles was increased by 1,25(OH)2D3 treatment, but was blocked by simultaneous treatment with cycloheximide.  相似文献   

13.
Administration of an aqueous extract of the calcinogenic plant Solanummalacoxylon (S.m.) to vitamin D-deficient or strontium fed chicks produces significant plasma 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) activity within 6 hr. (via radioreceptor assay) and subsequently elicits the appearance of immunoreactive intestinal calcium binding protein. Studies of a purified aqueous extract of S.m. show that it does not compete effectively with radioactive 1,25-(OH)2D3 for binding to the sterol's intestinal receptor. However, treatment of the extract with β-glucosidase releases a biologically active substance which is soluble in organic solvents and efficiently competes with labeled sterol for the receptor. This factor migrates exactly with tritiated 1,25-(OH)2D3 on high resolution Celite liquid-liquid partition columns. Thus, S.m. contains a molecule very similar or identical to 1,25-(OH)2D3 which is combined with one or more carbohydrate moieties in the native plant. This glycoside is probably cleaved invivo before biological activity is attained.  相似文献   

14.
15.
When 1,25(OH)2-vitamin D3 was administered to vitamin D-deficient chicks, within two hours the parathyroid glands were observed to accumulate this steroid to a concentration four times that present in the blood and equivalent to levels observed in the target intestine. Similarly, when 25-(OH)-vitamin D3 was administered, the parathyroid glands had 2.4 times the concentration of the metabolite, 1,25-(OH)2-vitamin D3 as that seen in the blood and 60% of that found in the intestine. These results are consistent with the concept that the hormonally active form of vitamin D, 1,25-(OH)2-vitamin D3, may interact with the parathyroid glands to effect changes in parathyroid hormone secretion.  相似文献   

16.
17.
Cytosol prepared from small intestine of vitamin D-sufficient rabbits contains a specific high-affinity binding protein for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). This binding protein sediments at 3.0–3.5 S in sucrose density gradients containing 0.3 m KCl. Scatchard analysis using intestinal cytosol demonstrated a Kd of 0.05 nm and a maximum binding capacity of 92 fmol/mg cytosol protein for 1,25(OH)2D3 at 4°C. Competitive binding studies with various metabolites of vitamin D showed a relative binding affinity of this protein for 1,25(OH)2D3 > 25-hydroxy-vitamin D3 > vitamin D3. With 200 μg of rabbit intestinal cytosol protein, as little as 1.0–2.5 pg of 1,25(OH)2D3 reproducibly displaced the tracer sterol from the binding protein. Analyses of human plasma 1,25(OH)2D3 content yielded values consistent with published results. The vitamin D-replete rabbit provides a convenient, plentiful, and inexpensive source of binding protein for 1,25(OH)2D3 assays.  相似文献   

18.
Bioavailability and bone loss inhibitory effects of vitamin D2 derived from UV-irradiated shiitake mushroom were determined in vivo. The effect of the absence of ovaries on the bioavailability of vitamin D2 and bone structure was also investigated. Sham operated (sham) and ovariectomized (OVX) rats were divided in 3 groups according to their diets, i.e. control: only vitamin D-deficient diets; UV(X): vitamin D-deficient diets with non-irradiated mushroom powder; UV(O): vitamin D-deficient diets with irradiated mushroom powder. The obtained results showed that vitamin D2 from shiitake mushroom was able to increase bone mineral density and trabecular bone structure of femur bone as well as its bioavailability. The absence of estrogen induced adverse effects not only on bioavailability of vitamin D2 but also on trabecular bone. In conclusion, vitamin D2-fortified shiitake mushroom might help postmenopausal women increase vitamin D2 bioavailability and retard trabecular bone loss.

Abbreviations: OVX: ovariectomized; 25(OH)D: 25-hydroxyvitamin D; 1,25(OH)2D: 1,25-dihydroxyvitamin D; BMD: bone mineral density; micro-CT: micro computed tomography; RSM: response surface methodology; RP-HPLC: Reverse phase-high performance liquid chromatography; MS/MS: tandem mass spectrometry; E2: estradiol; NTx: N-terminal telopeptide of type I collagen; BV/TV: bone volume/total volume; BS/BV: bone surface/bone volume; Tb.Th: trabecular thickness; Tb.Sp: trabecular separation.  相似文献   


19.
The administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to rachitic chicks produces an increase in (a) RNA and protein synthesis, (b) calcium binding protein (CaBP) concentration, and (c) alkaline phosphatase activity in the duodenum. These events occur concomitantly with enhanced calcium transport. We inhibited RNA and protein synthesis in richitic chicks and measured the subsequent response to 1,25(OH)2D3. Actinomycin D, injected prior to and following 1,25(OH)2D3 administration, inhibited intestinal RNA polymerase activity, blocked the rise in serum calcium, reduced the amount of CaBP, and increased alkaline phosphatase activity. Cycloheximide injected in similar fashion, inhibited the 1,25(OH)2D3-mediated increase in intestinal protein synthesis, serum calcium, CaBP, and alkaline phosphatase activity. Neither inhibitor blocked the ability of 1,25(OH)2D3 to stimulate calcium transport as measured in isolated duodenal loops in vivo. The ability of either inhibitor to block 1,25(OH)2D3-mediated calcium transport despite inhibition of CaBP production and alkaline phosphatase activity (by cycloheximide) indicates that de novo RNA and protein synthesis, and in particular CaBP and alkaline phosphatase, are not required for the 1,25(OH)2D3 stimulation of calcium transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号