首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon-14 was incorporated into C-6 of glucose from [1-14C]galactose during gluconeogenesis from dihydroxyacetone in liver cells from fasted rats, proving the existence of a futile cycle between fructose-6-P and fructose-1,6-P2 under the conditions used. Using a steady-state model and assumed values for the rates of aldolase and glucose-6-P isomerase, the rates of phosphofructokinase were estimated, ranging from about 15% to nearly 40% of the net rate of gluconeogenesis. Glucagon depressed the rate of phosphofructokinase by as much as 85% and increased the rate of gluconeogenesis by up to 45%. l-epinephrine in the range from 10 to 100 μm also depressed phosphofructokinase, being nearly as effective as glucagon only at high concentrations. The effect of epinephrine was only partially reversed by 10 μm dl-propranolol. Ethanol (10 mm) depressed phosphofructokinase flux nearly as well as glucagon, but had no significant effect on the rate of gluconeogenesis from dihydroxyacetone.  相似文献   

2.
A fructose diphosphatase–phosphofructokinase substrate cycle has been reconstructed in vitro to provide a system that recycles fructose 6-phosphate and hydrolyses ATP to ADP and Pi. The concerted actions of glucose phosphate isomerase, phosphofructokinase, aldolase and triose phosphate isomerase catalysed the loss of 3H from [5-3H,U-14C]glucose 6-phosphate. This was used as the basis of a method for the estimation of the fructose diphosphatase–phosphofructokinase substrate cycle. For the reconstructed cycle, the rate of decrease of the 3H/14C ratio in [5-3H,U-14C]hexose 6-phosphate was proportional to the rate of fructose 6-phosphate substrate cycling. A detailed theoretical treatment of this relationship is developed, which enables the rate of substrate cycling to be determined in vivo.  相似文献   

3.
4.
1. The effects of Ca2+ on the activities and regulatory properties of trehalase, hexokinase, phosphofructokinase, fructose diphosphatase and pyruvate kinase from vertebrate red and white muscle and insect fibrillar and non-fibrillar muscle have been investigated. These muscles were selected because of the possible difference in the role of glycolysis in energy production in the vertebrate muscles, and the possible difference in the role of Ca2+ in the control of contraction in the two types of insect muscle. An increase in Ca2+ concentration from 0.001μm to 10μm did not modify the activities nor did it modify the regulatory properties of these enzymes from these various muscles. 2. Concentrations of Ca2+ above 0.1mm inhibited the activities of hexokinase and phosphofructokinase from the different muscles. It has been suggested that this inhibition may provide the basis for a theory of regulation of glycolysis (Margreth et al., 1967). If phosphofructokinase is located within the sarcoplasmic reticulum, its activity will be inhibited when the muscle is at rest, but the release of Ca2+ from the reticulum during contraction will lead to a stimulation of its activity and hence an increase in glycolytic flux. The distribution of hexokinase and phosphofructokinase in the various cell fractions of these muscles was very variable. In particular, both enzymes were present almost exclusively in the 100000g supernatant fraction in the extracts of insect flight muscles. Thus there is no correlation between the properties of the enzymes and their distribution in muscle. 3. It is concluded that Ca2+ does not control the activities of the important regulatory enzymes of glycolysis in muscle. It is suggested that in some muscles the sensitivity of the control mechanism at the level of phosphofructokinase to changes in the concentration of AMP may be increased by a process known as `substrate-cycling'.  相似文献   

5.
The aim of this work was to investigate the extent of glycolysis during gluconeogenesis in the germination of marrow (Cucurbita pepo L. var. medullosa Alef.). The activities of phosphofructokinase (E.C. 2.7.1.11) in extracts of cotyledons, of seeds, and seedlings grown in the dark for 2, 5, and 8 days were 3·5, 4·8, 9·4, and 11·8 nmol substrate consumed per cotyledon per min, respectively. The comparable figures for pyruvate kinase (E.C. 2.7.1.41) were 16·3, 72·3, 974, and 1485. The patterns of 14CO2 production from [1-14C], [2-14C], [3,4-14C], and [6-14C]glucose indicated that at all the above stages of germination glycolysis was appreciable and predominated over the pentose phosphate pathway. These patterns, and the distribution of label from [1-14C], and [3-14C]pyruvate supplied to 5-day-old cotyledons, indicated that the pyruvate formed in glycolysis was converted to acetyl units that were used primarily in biosyntheses. It is concluded that glycolysis occurred at all the stages of germination examined and was particularly active during gluconeogenesis. It is suggested that the significance of this glycolysis is the provision of intermediates for biosyntheses, a need that may not be met by corresponding gluconeogenic intermediates as these may be retained within organelles.  相似文献   

6.
7.
The condensation of substituted aromatic aldehydes with 7-amino-4-methyl-quinolin-2(1H)-one (1) has lead to the isolation of quinolin-2(1H)-one derived Schiff bases (2-14). The copper(II) complexes (2a-14a) of the ligands were also prepared, and together with their corresponding free ligands were fully characterised by elemental analyses, spectral methods (IR, 1H and 13C NMR, AAS, UV-Vis), magnetic and conductance measurements. The bidentate ligands coordinated to the copper(II) ion through the deprotonated phenolic oxygen and the azomethine nitrogen of the ligands in almost all cases. X-ray crystal structures of two of the complexes, 5a and 8a, confirmed the bidentate coordination mode. All of the compounds were investigated for their antimicrobial activities against the fungus, Candida albicans, and against Gram-positive and Gram-negative bacteria. The compounds were found to have excellent anti-Candida activity but were inactive against Staphylococcus aureus and Escherichia coli. Selected compounds (2-8 and 2a-8a) were also screened for their in vitro anticancer potential using the human hepatic carcinoma cell line, Hep-G2. Several derivatives were shown to be active comparable to that of cisplatin.  相似文献   

8.
  • 1.1. In the present study the major metabolic pathways of glucose metabolism were determined in isolated liver cells using [2-13C]acetate and 13C magnetic resonance spectroscopy.
  • 2.2. The relative reaction rates of glucose synthesis to the TCA cycle were determined from the 13C distribution in glucose where the overall 13C enrichment of glucose was 6.41 ± 1.94% (mean ± SD; n = 6) and the mean 13C enrichment of C1, C2, C5, C6 to C3, C4 was 2.63 ± 0.30.
  • 3.3. Since the distribution of tracer in glucose is a function of the relative entry rates of pyruvate to acetyl-CoA into the oxaloacetate pool this was calculated to be 0.32 ± 0.15 and the factor for carbon exchange (1/P) between the gluconeogenic pathway and the TCA cycle was calculated to be 1.03 ± 0.20.
  • 4.4. With this carbon exchange factor and the approximated 13C enrichment of acetyl-CoA the intramitochondrial 13C enrichment of phosphoenolpyruvate was calculated and the “true” rate of hepatic gluconeogenesis from phosphoenolpyruvate estimated.
  • 5.5. Since acetate was metabolized solely in liver cells the 13C enrichment of acetyl-CoA could be approximated from that of 3-hydroxybutyrate.
  • 6.6. The carbon 13 enrichment of 3-hydroxybutyrate and phosphoenolpyruvate was 5.89 ± 0.90% and 5.96 ± 1.67%, respectively.
  • 7.7. The per cent gluconeogenesis from phosphoenolpyruvate calculated as the ratio of the 13C enrichment of glucose to that of 3-hydroxybutyrate times 1/P was 107 ± 8%.
  • 8.8. In this study the validity of assessing isotopic exchange at oxaloacetate as suggested by Katz [Katz J. (1985) Am. J. Physiol.248, R391–R399] when interpretation of the data are not obscured by pseudoketogenesis.
  • 9.9. Magnetic resonance spectroscopy provides direct information about intramolecular tracer distribution by which flux rates in major metabolic pathways are derived.
  相似文献   

9.
1. Substrate cycling of fructose 6-phosphate through reactions catalysed by phosphofructokinase and fructose diphosphatase was estimated in bumble-bee (Bombus affinis) flight muscle in vivo. 2. Estimations of substrate cycling of fructose 6-phosphate and of glycolysis were made from the equilibrium value of the 3H/14C ratio in glucose 6-phosphate as well as the rate of 3H release to water after the metabolism of [5-3H,U-14C]glucose. 3. In flight, the metabolism of glucose proceeded exclusively through glycolysis (20.4μmol/min per g fresh wt.) and there was no evidence for substrate cycling. 4. In the resting bumble-bee exposed to low temperatures (5°C), the pattern of glucose metabolism in the flight muscle was altered so that substrate cycling was high (10.4μmol/min per g fresh wt.) and glycolysis was decreased (5.8μmol/min per g fresh wt.). 5. The rate of substrate cycling in the resting bumble-bee flight muscle was inversely related to the ambient temperature, since at 27°, 21° and 5°C the rates of substrate cycling were 0, 0.48 and 10.4μmol/min per g fresh wt. respectively. 6. Calcium ions inhibited fructose diphosphatase of the bumble-bee flight muscle at concentrations that were without effect on phosphofructokinase. The inhibition was reversed by the presence of a Ca2+-chelating compound. It is proposed that the rate of fructose 6-phosphate substrate cycling could be regulated by changes in the sarcoplasmic Ca2+ concentration associated with the contractile process.  相似文献   

10.
Five khayanolides (1-O-acetylkhayanolide B 1, khayanolide B 2, khayanolide E 3, 1-O-deacetylkhayanolide E 4, 6-dehydroxylkhayanolide E 5) were isolated from the stem bark of African mahogany Khaya senegalensis (Meliaceae). Their structures and absolute configurations were determined through extensive spectroscopic analyses including MS, NMR, and single-crystal X-ray diffraction experiments. The results established that two previously reported khayanolides, 1α-acetoxy-2β,3α,6,8α,14β-pentahydroxy-[4.2.110,30.11,4]-tricyclomeliac-7-oate 6 and 1α,2β,3α,6,8α,14β-hexahydroxy-[4.2.110,30.11,4]-tricyclomeliac-7-oate 7, were, in fact, 1-O-acetylkhayanolide B 1 and khayanolide B 2, and that the two reported phragmalin derivatives, methyl 1α-acetoxy-6,8α,14β,30β-tetrahydroxy-3-oxo-[3.3.110,2.11,4]-tricyclomeliac-7-oate 8 and methyl 1α,6,8α,14β,30β-pentahydroxy-3-oxo-[3.3.110,2.11,4]-tricyclomeliac-7-oate 9, were, in fact, khayanolide E 3 and 1-O-deacetylkhayanolide E 4, respectively. Based on the results from this study and consideration of the biogenetic pathway, the methyl 6-hydroxyangolensate in African mahogany K. senegalensis should have a C-6 S configuration while methyl 6-hydroxyangolensate in genuine mahogany Swietenia species should have a C-6 R configuration.  相似文献   

11.
A soluble extract from rat skeletal muscles has been used with purified mitochondrial ATPase (F1) to develop steady states with respect to glycolytic flux, the concentrations of glycolytic intermediates and inorganic phosphate, and the concentrations and ratios of adenine nucleotides. Incubations were carried out in media resembling the ionic composition in the cell cytoplasm, in an attempt to evaluate the quantitative contributions of various effectors to the overall control mechanism under simulated in vivo conditions. The primary control reaction of glycolytic flux under the conditions studied could be identified with phosphofructokinase, followed by secondary control of the reaction catalyzed by hexokinase. Glycolytic flux was increased with increasing pH over the range 6.6–7.6, both in the absence and presence of ATPase. Without other added effectors, the glycolyzing extract maintained an ATP/ADP ratio of about 50 in the pH range 7.0–7.6, and phosphofructokinase was incompletely suppressed. Addition of increasing amounts of ATPase markedly stimulated glycolytic flux coincident with lowered steady-state ATP/ADP ratios, and decreased accumulation of hexose monophosphates. Control of flux by the ATP/ADP ratio (and simultaneously altered AMP concentration) was less effective if pH (7.3 to 7.6) or phosphate concentration (2 to 20 mm) was increased. Flux through phosphofructokinase was controlled principally when the ATP/ADP ratios were varied in the range between > 50 and 15. The inhibitory effect of citrate was evaluated. Suppression of glycolytic flux and accumulation of hexose monophosphates were dependent on incubation conditions. If the pH was 7.3 or less, and the phosphate concentration low (2 mm), flux through phosphofructokinase was significantly suppressed even at citrate concentrations less than 50 μm. Simultaneous decrease in the steady-state ATP/ADP ratio and elevation of AMP was ineffective in reversing this inhibition. At higher pH and, more dramatically, when the phosphate concentration was increased, sensitivity to citrate inhibition was markedly diminished. These data, taken together with studies of respiratory control with isolated mitochondria (21., 24.), J. Biol. Chem.250, 2275–2282) strongly suggest that adenine nucleotide control of both glycolysis and respiration is exerted when the ratio of free nucleotides (not protein bound) in the cytosol is in the range of 15 to > 50. The data further suggest that citrate plays an important role in the regulation of glycolysis in muscle when the ATP/ADP ratio is high (and the phosphate concentration is correspondingly low), but that this inhibition is overcome by liberation of inorganic phosphate during muscle contraction.  相似文献   

12.
Summary Proximal tubule cells were isolated from swine kidney and cultured for periods of more than 30 days. The cells formed confluent monolayers after plating on a collagen surface and they were passaged more than 5 times on this matrix. The cells maintain several metabolic functions of proximal tubule cells, including gluconeogenesis and the ability to respond to epinephrine and parathyroid hormone. Gluconeogenesis, a principal metabolic pathway in proximal tubule cells, was examined as a function of days in culture. The isolated cells showed a nearly constant rate of gluconeogenesis from 14C-lactate, 14C-alkaine and 14C-glycerol with no significant loss of activity for at least 30 days in culture. Likewise, the activities of several cytosolic and membrane associated enzymes including, alkaline phosphatase, -glutamyltransferase, fructose-1,6-bisphosphatase and phosphofructokinase were nearly constant over the same time period.The cells responded to treatment with epinephrine and parathyroid hormone, and the rate of gluconeogenesis from 14C-lactate doubled in the presence of these hormones. The morphological and biochemical evidence obtained in these studies show that the proximal tubule cells isolated from swine kidney provide an excellent well defined system for studying the hormonal regulation of carbohydrate metabolism in this tissue.Abbreviations PTH Parathyroid Hormone - cAMP cyclic 3,5-adenosine Monophosphate  相似文献   

13.
Four new platinum(II) complexes: PtII L1·H2O (C1, H2 L1 = C20H16N2O2), PtII L2Cl2 (C2, L2 = C22H16N2O2), PtII L3Cl2·H2O (C3, L3 = C20H16N2), PtII L4Cl2·0.4H2O (C4, L4 = C18H14N4) have been synthesized and characterized by using various physico-chemical techniques. The binding interaction of the four platinum(II) complexes C1C4 with calf thymus (CT)-DNA has been investigated by UV–Vis and fluorescence emission spectrometry. The apparent binding constant (K app) values follow the order: C3 > C1 > C2 > C4. In addition, fluorescence spectrometry of bovine serum albumin (BSA) with the four platinum(II) complexes C1C4 showed that the quenching mechanism might be a static quenching procedure. For C1C4, the number of binding sites was about one for BSA and the binding constants follow the order: C3 (7.08 × 105M?1) > C1 (2.82 × 105M?1) > C2 (0.85 × 105M?1) > C4 (0.15 × 105M?1). With the single condition change such as absence of an external agent, the DNA cleavage abilities of C3 exhibit remarkable changes. In addition, the cytotoxicity of C3 in vitro on tumor cells lines (MCF-7, HepG2 and HT29) were examined by MTT and showed better antitumor effects on the tested cells.  相似文献   

14.
Treatment of malic enzyme with arginine-specific reagents phenylglyoxal or 2,3-butanedione results in pseudo-first-order loss of oxidative decarboxylase activity. Inactivation by phenylglyoxal is completely prevented by saturating concentrations of NADP+, Mn2+, and substrate analog hydroxymalonate. Double log plots of pseudo-first-order rate constant versus concentration yield straight lines with identical slopes of unity for both reagents, suggesting that reaction of one molecule of reagent per active site is associated with activity loss. In parallel experiments, complete inactivation is accompanied by the incorporation of four [14C]phenylglyoxal molecules, and the loss of two arginyl residues per enzyme subunit, as determined by the colorimetric method of Yamasaki et al (R. B. Yamasaki, D. A. Shimer, and R. E. Feeney (1981) Anal. Biochem., 14, 220–226). These results confirm a 2:1 ratio for the reaction between phenylglyoxal and arginine (K. Takahashi (1968) J. Biol. Chem., 243, 6171–6179) and yield a stoichiometry of two arginine residues reacted per subunit for complete inactivation, of which one is essential for enzyme activity as determined by the statistical method of Tsou (C. L. Tsou (1962) Acta Biochim. Biophys. Sinica, 2, 203–211) and the Ray and Koshland analysis (W. J. Ray and D. E. Koshland (1961) J. Biol. Chem., 236, 1973–1979). Amino acid analysis of butanedione-modified enzyme also shows loss of arginyl residues, without significant decrease in other amino acids. Modification by phenylglyoxal does not significantly affect the affinity of this enzyme for NADPH. Binding of l-malate and its dicarboxylic acid analogs oxalate and tartronate is abolished upon modification, as is binding of the monocarboxylic acid α-hydroxybutyrate. The latter result indicates binding of the C-1 carboxyl group of the substrate to an arginyl residue on the enzyme.  相似文献   

15.
Dichloroacetate (2 mm) stimulated the conversion of [1-14C]lactate to glucose in hepatocytes from fed rats. In hepatocytes from rats starved for 24 h, where the mitochondrial NADHNAD+ ratio is elevated, dichloroacetate inhibited the conversion of [1-14C]lactate to glucose. Dichloroacetate stimulated 14CO2 production from [1-14C]lactate in both cases. It also completely activated pyruvate dehydrogenase and increased flux through the enzyme. The addition of β-hydroxybutyrate, which elevates the intramitochondrial NADHNAD+ ratio, changed the metabolism of [1-14C]lactate in hepatocytes from fed rats to a pattern similar to that seen in hepatocytes from starved rats. Thus, the effect of dichloroacetate on labeled glucose synthesis from lactate appears to depend on the mitochondrial oxidation-reduction state of the hepatocytes. Glucagon (10 nm) stimulated labeled glucose synthesis from lactate or alanine in hepatocytes from both fed and starved rats and in the absence or presence of dichloroacetate. The hormone had no effect on pyruvate dehydrogenase activity whether or not the enzyme had been activated by dichloroacetate. Thus, it appears that pyruvate dehydrogenase is not involved in the hormonal regulation of gluconeogenesis. Glucagon inhibited the incorporation of 10 mm [1-14C]pyruvate into glucose in hepatocytes from starved rats. This inhibition has been attributed to an inhibition of pyruvate dehydrogenase by the hormone (Zahlten et al., 1973, Proc. Nat. Acad. Sci. USA70, 3213–3218). However, dichloroacetate did not prevent the inhibition of glucose synthesis. Nor did glucagon alter the activity of pyruvate dehydrogenase in homogenates of cells that had been incubated with 10 mm pyruvate in the absence or presence of dichloroacetate. Thus, the inhibition by glucagon of pyruvate gluconeogenesis does not appear to be due to an inhibition of pyruvate dehydrogenase.  相似文献   

16.
A study was undertaken to assess the role of a physiological concentration of glutamine in AS-30D cell metabolism. Flux of14C-glutamine to14CO2 and of14C-acetate to glutamate was detected indicating reversible flux between glutamate and TCA cycle -ketoglutarate. These fluxes were transaminase dependent. A flux analysis was compared using data from three tracers that label -ketoglutarate carbon 5, [2-14C]glucose, [1-14C]acetate and [5-14C]glutamine. The analysis indicated that the probability of flux of TCA cycle -ketoglutarate to glutamate was, at minimum, only slightly less than the probability of flux of -ketoglutarate through -ketoglutarate dehydrogenase. The apparent Km for oxidative flux of [14C]glutamine to14CO2, 0.07 mM, indicated that this flux was at a maximal rate at physiological, 0.75 mM, glutamine. Although oxidative flux through -ketoglutarate dehydrogenase was the major fate of glutamine, flux of glutamine to lipid via reductive carboxylation of -ketoglutarate was demonstrated by measuring incorporation of [5-14C]glutamine into14C-lipid. In media containing glucose (6 mM), and glutamine (0.75 mM) 47 per cent of the lipid synthesized from substrates in the media was derived from glutamine via reductive carboxylation and 49 per cent from glucose. These findings of nearly equal fluxes suggest that lipogenesis via reductive carboxylation may be an important role of glutamine in hepatoma cells.  相似文献   

17.
1. Recycling of metabolites between fructose 6-phosphate and triose phosphates has been investigated in isolated hepatocytes by the randomization of carbon between C(1) and C(6) of glucose formed from [1-14C]galactose. 2. Randomization of carbon atoms was regularly observed with hepatocytes isolated from fed rats and was then little influenced by the concentration of glucose in the incubation medium. It was decreased by about 50% in the presence of glucagon. 3. Randomization of carbon atoms by hepatocytes isolated from starved rats was barely detectable at physiological concentrations of glucose in the incubation medium, but was greatly increased with increasing glucose concentrations. It was nearly completely suppressed by glucagon. These large changes can be attributed to parallel variations in the activity of phosphofructokinase. 4. The main factors that appear to control the activity of phosphofructokinase under these experimental conditions are the concentration of fructose 6-phosphate, the concentration of fructose 1,6-bisphosphate and also the affinity of the enzyme for fructose 6-phosphate. 5. The affinity of phosphofructokinase for fructose 6-phosphate was diminished by incubation of the cells in the presence of glucagon and also by filtration of an extract of hepatocytes through Sephadex G-25 and by purification of the enzyme. When assayed at 0.25 or 0.5mm-fructose 6-phosphate, the activity of phosphofructokinase present in a liver Sephadex filtrate was increased by a low-molecular-weight effector, which could be isolated from a liver extract by ultrafiltration, gel filtration or heat treatment, but was rapidly destroyed in trichloroacetic acid, even in the cold. This effector appears to be a highly acid-labile phosphoric ester. Its concentration was greatly increased in hepatocytes incubated in the presence of glucose and was decreased in the presence of glucagon.  相似文献   

18.
A series of new sulfonamides have been synthesized from Ampyrone with different benzene sulfonyl chlorides to yield the N-1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) benzenesulfonamides (4ae). All synthesized compounds were characterized on the basis of FTIR, 1H NMR, and 13C NMR, and also by the aid of mass spectral data. Further, all synthesized compounds have studied for their in vitro antimicrobial activities against selected bacterial as well as fungal strains by the agar well diffusion method. Free radical scavenging activity has been investigated by using DPPH method. Among all the synthesized compounds, 4b, 4d, and 4e exhibited significant antimicrobial and antioxidant activities.  相似文献   

19.
3-Mercaptopicolinic acid, a non-competitive inhibitor of phosphoenolpyruvate carboxykinase (EC 4.1.1.19) was used to study the control of gluconeogenesis by this enzyme in germinating marrow (Cucurbita pepo) cotyledons. In vitro, phosphoenolpyruvate carboxykinase was inhibited by 3-mercaptopicolinic acid, with aKi of 5.9 M. At 25°C the inhibitor caused an increase in the label incorporated from [2-14C]acetate into CO2, and a decrease in the label incorporated into the insoluble and neutral fractions. Phosphoenolpyruvate carboxykinase had a flux control coefficient for gluconeogenesis (C PEPCK J ) of between 0.7 and 1.0. 3-Mercaptopicolinic acid was a less effective inhibitor of phosphoenolpyruvate carboxykinase at lower temperatures (Ki = 8.6 M at 17°C, 13.3 M at 10°C) and had similar effects on the metabolism of [2-14C]acetate by marrow cotyledons when the temperature was reduced to 17°C and 10°C. The control coefficient for this enzyme did not change with temperature, indicating that phosphoenolpyruvate carboxykinase exerts a high degree of control over gluconeogenesis at all temperatures examined.Abbreviations PEP Phosphoenolpyruvate - PEPCK PEP carboxykinase The authors thank Dr. Ian Woodrow (University of Melbourne, Australia) for helpful discussions. This work was supported by a grant from the Science and Engineering Research Council, U.K. (GR/F 50978).  相似文献   

20.
  • 1.1. To evaluate the condition under which net glucose production from acetone, added as sole substrate, occurs different pretreatments of mice, in combination with starvation, were used; (i) acetone pretreatment (acetone is a known inducer of cytochrome P-450 isozymes involved in this pathway), (ii) fructose pretreatment (to induce NADPH + H+ generating enzymes) or (iii) their combination.
  • 2.2. There was net glucose formation from acetone only in that case, when the cells were prepared from 48 hr fasted animals pretreated with both acetone and fructose. However, using 2-14C-acetone, incorporation of 14C-carbon into glucose could be detected in all the cases and, at the same time, acetone was without any effect on protein synthesis.
  • 3.3. The addition of acetone increased gluconeogenesis from alanine in almost all the cases. The only exception from this general rule was that the case, when hepatocytes were prepared from acetone pretreated 48 hr starved mice where, instead of the elevation of glucose formation, a decrease of that was caused by acetone.
  • 4.4. Acetone decreased 14C-carbon incorporation into glucose from 14C-(U)-alanine added at saturating concentration in hepatocytes prepared from starved mice.
  • 5.5. Similarly to acetone there was no net glucose formation from acetol either when added alone, however, it enhanced gluconeogenesis from alanine at non-saturating concentrations of the amino acid.
  • 6.6. Methylglyoxal proved gluconeogenic in all the cases.
  • 7.7. It is concluded that net glucose formation from acetone as sole substrate occurs only under those conditions which are far from a physiological situation, however, when gluconeogenesis from another substrate takes place, acetone can contribute to net glucose formation in hepatocytes prepared from fasted mice.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号